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We study a hybrid semiconductor-optomechanical system, which consists of a cavity with an oscillating mirror
made by semiconducting materials or with a semiconducting membrane inside. The cavity photons and the
excitons in the semiconducting oscillating mirror or membrane form into polaritons. Thus, the optomechanical
interaction between the cavity photons and the mirror or membrane is changed into the polariton-mechanical
interaction. We theoretically study the eigenvalues and eigenstates of this tripartite system with the generalized
rotating-wave approximation. We show the mechanical-resonator-modulated emission spectra of polariton
modes. We also analyze the mechanical effect on the statistical properties of the polariton when the cavity is
driven by a weak classical field. This work provides a detailed description of the rich nonlinearity, which is
resulted from the competition between parametric coupling and three-wave mixing interaction concerning the
polariton modes and the phonon mode. It also offers a way to operate the photons, phonons, and excitons in the
integrated semiconducting-optomechanical platform.
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I. INTRODUCTION

Cavity optomechanical systems, which consist of single-
mode cavity fields and mechanical resonators, have attracted
growing interest for their potential applications in ultrasen-
sitive force sensors, frequency conversion, high-precision
measurements, and quantum information processing [1–6].
They can also be used to realize more complex tasks by
coupling to other systems. For example, there are studies that
optomechanical systems are coupled to either two-level or
other systems via either cavity fields [7–15] or mechanical
resonators [16–19], and even both of them [20]. Various
materials are used or proposed to construct optomechanical
systems in order to increase or control optomechnaical cou-
pling. However, material properties of cavities and mechanical
resonators in these studies are less studied.

It is known that many optomechanical systems are made of
semiconducting materials, for example, cavity optomechanics
was demonstrated in gallium arsenide [21–26] and gallium
phosphide microdisks [27]. Recently, there are reports on the
coupling between excitons (electron-hole pairs) and mechani-
cal resonator, in GaAs/AlGaAs quantum dot systems [28,29].
Also, an optomechanical experiment showed that the mechan-
ical modes of a GaAs nanomembrane can be cooled down
via photothermal effect mediated by excitons inside the mem-
brane [26]. Moreover, cavityless optomechanics is demon-
strated by virtue of optopiezoelectric back-action through ex-
citons in an n-GaAs/i-GaAs bilayer cantilevers [30,31]. Such
carrier mediated optomechanical coupling does not require
any optical cavities but is based on the piezoelectric effect.
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In addition, an approach to optically access the dark exci-
tons using a time-varying strain to a n-Al0.3Ga0.7As/i-GaAs
micromechanical resonator is studied experimentally [32].

Besides, semiconducting microcavity quantum electrody-
namics (QED) is extensively studied since the observation
of the strong coupling between a single-mode cavity field
and excitons in semiconducting quantum well [33–36]. It is
well known that the strong coupling between the excitons and
photons mix them into the so-called polaritons [37]. In low-
dimensional semiconductor [38–41] or semiconducting cavity
QED [42,43] systems, the polaritons can be observed through
photoluminescence, photon reflection, or transmission. Re-
cently, cavity polariton optomechanics has been demonstrated
and the polariton-mediated strong light-sound interaction was
shown [44,45]. Moreover, unconventional bistability in op-
tomechanical system with cavity polariton [46] and exciton-
phonon entanglement [47] was also studied.

All of these studies [44–47] open up a way to operate
photons, excitons, and phonons in an integrated semicon-
ducting platform utilizing semiconducting microcavity QED
and optomechanics. For example, the spectrum of mechanical
oscillation is proposed to detect the fine energy structure of the
excitons in semiconducting materials, in the way of measuring
the wavelength dependence of thermal-mechanical vibration
of the mechanical resonator [23,30,31]. As shown in Ref. [23],
the ability to detect small but sharp photoabsorption peaks
allows the mechanically resolved photoabsorption measure-
ment to offer a complement to the existing photoabsorption
measurements that directly measure absorption intensities.
Motivated by these works [24,26,30,31,44–46], here we study
a hybrid system combining the semiconducting microcavity
quantum electrodynamics with optomechanics. The system
consists of a cavity with an oscillating mirror made by
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semiconducting materials or with a semiconducting mem-
brane inside the cavity. We will show how the mechanical mo-
tion affects the emission spectra and blockade of polaritons.

The paper is organized as follows. In Sec. II, we will
describe a theoretical model for the interaction between the
exciton, a single-mode cavity field, and the mechanical res-
onator. In Sec. II A, we introduce the polariton modes formed
by the cavity photons and excitons. In Sec. II B, we first
present general method to get the eigenvalues of the hybrid
system, and then as an example, we analyze eigenvalues and
eigenstates of one polariton subspace for fully coupled hybrid
system by diagonalizing the system Hamiltonian with the
generalized rotating-wave approximation (GRWA) proposed
in Ref. [48]. In Sec. III, we study the emission spectra of
the polaritons and show how the mechanical resonator af-
fects the properties of the spectra. In Sec. IV, the statistic
properties of the polaritons are investigated via the equal-
time second-order correlation function, and furthermore the
polariton blockade and tunneling are discussed. Finally, we
summarize our research results in Sec. V. For the compactness
and completeness of the paper, the details about Schwinger’s
representations of the Hamiltonian, the eigenvalues in the one-
and two-polariton subspaces are shown in Appendices A, B,
and C, respectively.

II. MODEL

As schematically shown in the left parts of Fig. 1, we
study a hybrid cavity polariton optomechanical system that
consists of a cavity either with an oscillating mirror made of
semiconducting materials in Fig. 1(a) or a semiconducting
membrane placed in the middle of the cavity in Fig. 1(b).
In the right parts of Figs. 1(a) and 1(b), we also show the
coupling relationship corresponding to the left ones. The
difference between these two situations, shown in Figs. 1(a)
and 1(b), is whether there is direct coupling between the
excitons in the semiconductor and the mechanical resonator,
while we assume that the couplings of the photons to excitons
and phonons exist in both configurations. The Hamiltonian of
the whole system can be written as (h̄ = 1)

H = ωca
†a + ωmb†b + ωexc

†c + g0a
†a(b† + b)

+ λc†c(b† + b) + η(a†c + c†a), (1)

where a (a†), b (b†), and c (c†) are the annihilation (creation)
operators of the cavity field, mechanical resonator, and ex-
citon, with corresponding resonant frequencies ωc, ωm, and
ωex , respectively. The first line in Eq. (1) shows the free
Hamiltonian of the system, while the rest terms describe
the interaction in the fully coupled tripartite hybrid system.
The parameter g0 = ωcxzpf/L represents the single photon-
phonon coupling constant caused by the radiation pressure
between the cavity field and the oscillating mirror (or vi-
brating membrane), where xzpf is the mechanical zero-point
fluctuation and L is the length of the cavity. The parameter
λ denotes the coupling between the exciton and mechanical
resonator, while η describes the interaction between the cavity
photon and the exciton with rotating-wave approximation.
For the case shown in Fig. 1(a), we assume that the oscil-
lating mirror made of semiconducting materials moves in

FIG. 1. Schematic diagram of a hybrid semiconducting cavity
optomechanical system with (a) an oscillating mirror made by the
semiconducting materials or (b) a thin semiconducting membrane
inside the cavity. In each panel, the right part further shows the
coupling relation between the three parts of the hybrid system,
which consists of the photons confined in the cavity, excitons in the
semiconducting materials, and phonons in the oscillating resonator.
In the right parts of both (a) and (b), the cavity is denoted by blue
square brackets with the letter “a” inside. The excitons are presented
by pairs of black (denoting the electrons) and white dots (denoting
holes) with the letter “c,” which are attracted to each other by the
Coulomb interaction. Mechanical oscillator is denoted by a ball
bounded to a spring with the letter “b.” The parameters η, g0, and
λ represent the cavity photon-exciton, photon-phonon, and exciton-
phonon coupling constants, respectively. We assume (i) the mirror
in (a) moves in translation; (ii) the membrane in (b) has drumlike
vibration; (iii) there is no direct coupling between the exciton and
mechanical resonator in (a).

translation, and there is no direct coupling between the ex-
citon and the phonon, i.e., λ = 0. However, for the drumlike
vibrations shown in Fig. 1(b), the coupling constant between
the exciton and the mechanical modes is nonzero, i.e., λ �= 0,
as a result of the piezoelectric effect. In our paper, we will
study the model shown in Fig. 1(b) for generality and regard
g0 = λ as the balanced coupling case. Our research results can
be applied to the case shown in Fig. 1(a) by setting λ = 0.

A. Polariton modes

When the photons are coupled to the excitons, the cavity
and exciton modes are hybridized into polariton modes, which
can be expressed as [37](

A

B

)
=
(

cos θ sin θ

− sin θ cos θ

)(
a

c

)
.

Here, tan 2θ = 2η/�ce and θ ∈ [0, π/2], with �ce = ωex −
ωc, which is the detuning between the exciton and the photon.
This transformation shows that the photonic and excitonic
components vary a lot in polariton modes A and B for differ-
ent detuning �ce and coupling constant η between the photon
and the exciton. When the detuning �ce is very large, the po-
lariton mode A approaches either bare cavity (positive infinite
detuning) or exciton mode (negative infinite detuning), and
vice versa for mode B. However, for the resonant case with
�ce = ωex − ωc = 0, θ = π/4, we can get the maximally
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hybridized polariton modes A/B = (c ± a)/
√

2, where A (B)
mode corresponds to the sign + (−). Using the polariton
modes, we can rewrite the total Hamiltonian in Eq. (1) as

H0 = ωAA†A + ωBB†B + ωmb†b

+ (QAA†A + QBB†B )(b† + b)

+Q(A†B + B†A)(b† + b). (2)

Here, ωA and ωB are the eigenvalues of the polariton modes
A and B with

ωA/B = 1

2
(ωc + ωex ) ± η

sin 2θ
, (3)

where the sign + (−) corresponds to ωA (ωB). Parameters
QA,QB (Q) denote the parametric (three-wave mixing inter-
action) polariton-phonon coupling constants. These parame-
ters can be expressed in terms of the parameters g0, λ, and θ

as

QA = g0 cos2 θ + λ sin2 θ, (4)

QB = g0 sin2 θ + λ cos2 θ, (5)

Q = (λ − g0) cos θ sin θ. (6)

We can find that the couplings between the polariton modes
and mechanical mode are modified since the polariton modes
are mixtures of both cavity field and exciton modes. We also
note that, for large photon-exciton detuning with �ce � η so
that θ ≈ 0 (or the balanced coupling case with g0 = λ), the
three-wave mixing interaction Q ≈ 0 (Q = 0) and there are
only parametric couplings between the polariton modes and
the phonon mode.

B. Eigenvalues and eigenstates

To have insight into the nature of the fully coupled tripartite
system, we first study the eigenvalues and eigenstates of the
Hamiltonian in Eq. (2). In terms of Schwinger’s representation
for two bosonic polariton modes A and B, the angular-
momentum operators can be constructed as [49]

Jx = 1

2
(A†B + B†A), Jy = 1

2i
(A†B − B†A),

Jz = 1

2
(A†A − B†B ). (7)

The operators Jx , Jy , and Jz represent the X, Y , and Z

components of the total angular-momentum operator J , which
can be given as [49]

J 2 = J 2
x + J 2

y + J 2
z = N

2

(
N

2
+ 1

)
. (8)

Here, N = A†A + B†B denotes the total polariton number
operator of modes A and B. Then, the Hamiltonian in Eq. (2)
can be rewritten as

H1 = 1
2 (ωA + ωB )N + (ωA − ωB )Jz + ωmb†b

+ (�N + GeiφJy Jze
−iφJy

)
(b† + b), (9)

Other parameters are given by

� = 1
2 (QA + QB ), φ = 2θ, G = g0 − λ. (10)

For the large photon-exciton detuning (�ce � η, then
φ ≈ 0) or the balanced coupling (g0 = λ, then G = 0) case,
i.e., when there are only parametric couplings between the
polariton modes and the phonon mode, we can apply a unitary
transformation

U2 = exp[(�N + GJz)(b† − b)/ωm] (11)

to the Hamiltonian in Eq. (9). This transformation displaces
the creation and annihilation operators of the mechanical res-
onator by (�N + GJz)/ωm. Then, Eq. (9) can be transformed
into

H̃2 = 1

2
(ωA + ωB )N + (ωA − ωB )Jz + ωmb†b

− 1

ωm

(�N + GJz)2. (12)

Thus, the eigenvalues of the system can be approximately
obtained as

Ej,m,nb
= j (ωA + ωB ) + m(ωA − ωB ) + nbωm

− 1

ωm

(2�j + Gm)2 (13)

when φ ≈ 0 or G = 0. The eigenstates corresponding to
Eq. (12) can also be given by

ψj,m,nb
= |j,m〉|nb〉j,m. (14)

Here, (j,m) are the quantum numbers labeling the simulta-
neous eigenstates |j,m〉 of the angular momentum operators
J 2 and Jz, whose detailed description can be referred to
Appendix A. The angular quantum numbers can be obtained
as j = N /2, m = −N /2, . . . ,N /2, according to Eqs. (7)
and (8), with the parameter N denoting the total polariton
number corresponding to the total polarition number operator
N . The parameter nb denotes the phonon excitation number
corresponding to the phonon number operator Nb = b†b, i.e.,
Nb|nb〉 = nb|nb〉, while the state

|nb〉j,m = e−βj,m(b†−b)|nb〉 (15)

represents a (j,m) polariton displaced Fock state [50] with
the displacement βj,m = (N� + mG)/ωm. The last term in
Eq. (13) describes the frequency shifts and the nonlinearity of
the polariton modes, caused by the parametric coupling to the
phonon mode b.

However, for the most common case in which the three-
wave mixing interaction is involved, i.e., when φ �= 0 and
G �= 0, Eq. (9) can be transformed into [51,52]

H2 = 1
2 (ωA + ωB )N + (ωA − ωB )(cos φJz + sin φJx )

+ ωmNb + (�N + GJz)(b† + b) (16)

by performing a rotation U1 = exp(−iφJy ). In order to tackle
the static shift of the mechanical resonator equilibrium posi-
tion caused by polaritons, we apply the unitary transform U2,
which is shown in Eq. (11), to Eq. (16). Then, we obtain an
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effective Hamiltonian

H3 = 1

2
(ωA + ωB )N + (ωA − ωB ) cos φJz + ωmNb

+ (ωA − ωB ) sin φJx cosh

[
G

ωm

(
b† − b

)]
+ i(ωA − ωB ) sin φJy sinh

[
G

ωm

(
b† − b

)]
− 1

ωm

(�N + GJz)2. (17)

It is clear that the effective Hamiltonian in Eq. (12) for the
φ = 0 case can be arrived by setting φ = 0 in Eq. (17) directly,
and the effective Hamiltonian with G = 0 in Eq. (12) can
also be obtained by performing an inverse transformation
U

†
1 = exp(iφJy ) to Eq. (17) with G = 0.
The three-wave mixing interaction included in the second

and third lines of Eq. (17) plays an important role for the com-
mon case, and its competition with the parametric coupling
will surely induce more abundant nonlinear phenomena. We
can expand the hyperbolic functions cosh and sinh, respec-
tively, as

cosh

[
G

ωm

(b† − b)

]
= G0(Nb ) + G1(Nb )b†

2

+ b2G1(Nb ) + · · · , (18)

sinh

[
G

ωm

(b† − b)

]
= F1(Nb )b† − bF1(Nb )

+F2(Nb )b†
3 − b3F2(Nb )

+ · · · . (19)

Here, Gi (Nb ) (i = 0, 1, . . . ) and Fj (Nb ) (j = 1, 2, . . . ) are
coefficients that depend on the phonon number operator Nb =
b†b and the dimensionless parameter G/ωm. Different orders
of approximations can be performed by only keeping resonant
terms while neglecting others in the expansions. The zeroth-
order approximation of the Hamiltonian, whose validity has
been shown to be restricted to the large detuning regime,
i.e., (ωA − ωB ) cos φ � ωm [53–56], can be obtained by only
keeping G0(Nb ) but neglecting the phonon exchange terms in
the expansion of Eq. (17). However, for the resonant case we
considered in this work, i.e., (ωA − ωB ) cos φ = ωm, single-
phonon exchange terms F1(Nb )b†, bF1(Nb ) should be taken
into account in the first-order approximation [57,58].

We note that the total polariton number operator N

commutes with the total Hamiltonian of the system, i.e.,
[H3, N ] = 0, thus the Hamiltonian of the closed system can
be block-diagonalized in the basis of the eigenstates of the
polariton number operator. When there is no polariton excita-
tion, i.e., N = 0, the eigenvalue behaves just like the usual
harmonic structure. As shown in Fig. 2(c), it reveals that
the eigenvalues are independent of the coupling constant g0

between the cavity field and mechanical resonator.
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FIG. 2. Energy levels of the system for polariton excitation num-
bers (a) N = 2, (b) N = 1, (c) N = 0 versus the coupling strength
g0/ωm when the cavity field resonantly interacts with excitons, i.e.,
�ce = 0. The black-solid curves represent the numerical result while
the red-dashed curves are following the GRWA results. Specifically,
the red-dashed curves in (a) correspond to the results shown in
Eqs. (C18), (C20) and (C21), while they are referred to Eqs. (24)
and (27) in (b). Other parameters are η = 0.5 ωm, λ = 0.5 ωm.

For the N = 1 subspace, Jx, Jy , and Jz are defined in
two-dimensional space and equivalent to Pauli operators,
i.e., Jx = σx/2, Jy = σy/2, and Jz = σz/2. As shown in the
Appendix B, by applying a unitary transformation

U3 =
[ 1

λ−
μ−
λ−

1
λ+

μ+
λ+

]
(20)
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to its angular-momentum part, the total Hamiltonian in
Eq. (17) with single-phonon exchange terms can be
reduced to

H GRWA
3 = ωmNb + ξ−,Nb

∣∣∣∣12 ,−1

2

〉〈
1

2
,−1

2

∣∣∣∣
+ ξ+,Nb

∣∣∣∣12 ,
1

2

〉〈
1

2
,

1

2

∣∣∣∣
+PNb

b†
∣∣∣∣12 ,−1

2

〉〈
1

2
,

1

2

∣∣∣∣
+PNb

b

∣∣∣∣12 ,
1

2

〉〈
1

2
,−1

2

∣∣∣∣, (21)

with the generalized rotating-wave approximation
(GRWA) [48]. Here, the phonon-number-dependent
parameters are given by

ξ±,Nb
= ε± + μ±

λ2±
(ωA − ωB ) sin φ[G0(Nb ) − β] (22)

and

PNb
= 1

2M12(ωA − ωB ) sin φF1(Nb ). (23)

Note here we have neglected the energy baseline
(ωA + ωB )/2 for the sake of clarity and simplicity.
The parameters λ±, μ±, ε±, M12 are defined in
Appendix B. The superscript GRWA refers to the fact that
the rotating-wave approximation is made after performing
the first-order correction. The rotating-wave term for the
expansion of iσy sinh [G(b† − b)/ωm] in Eq. (17) is exhibited
in the energy-conserving terms b| 1

2 , 1
2 〉〈 1

2 ,− 1
2 | + H.c.

with phonon-number-dependent coupling strength PNb
.

In the nbth subspace with the basis of | 1
2 ,− 1

2 , nb〉 and
| 1

2 , 1
2 , nb − 1〉 (nb = 1, 2, . . . ), the eigenvalues of the system

can be given as

EGRWA
1
2 ,p,nb

=
(

nb − 1

2

)
ωm + 1

2
(ξ−,nb

+ ξ+,nb−1)

±1

2

√
(ωm + ξ−,nb

− ξ+,nb−1)2 + 4P2, (24)

with the parameters ξ±,nb
= 〈nb|ξ±,Nb

|nb〉, P =
〈nb|PNb

|nb − 1〉. The subscript p = + or p = − denotes
the upper and lower eigenvalues, respectively. Meanwhile,
the corresponding eigenstates in the nbth subspace of the
Hamiltonian H GRWA

3 are given by∣∣ϕGRWA
1
2 ,p,nb

〉 = 1

t 1
2 ,p,nb

(∣∣∣∣12 ,−1

2
, nb

〉
+ ν 1

2 ,p,nb

∣∣∣∣12 ,
1

2
, nb − 1

〉)
,

with

ν 1
2 ,nb,p

= P−1
[
EGRWA

1
2 ,p,nb

− (nbωm + ξ−,nb
)
]
, (25)

t 1
2 ,p,nb

=
√

1 + ν2
1
2 ,nb,p

. (26)

Particularly, the energy for the ground-state | 1
2 ,− 1

2 , 0〉 is

EGRWA
G = ε−. (27)

Considering the fact that unitary transformations have
nothing to do with the eigenvalues but change the eigen-

states, thus the eigenstates of the Hamiltonian H1 can be
approximately obtained from that of Hamiltonian H GRWA

3 , by
performing the conjugate unitary transformations correspond-
ingly, as

∣∣ψGRWA
1
2 ,p,nb

〉 = U
†
1U

†
2U

†
3

∣∣ϕGRWA
1
2 ,p,nb

〉
= U

†
1

∣∣∣∣12 ,−1

2

〉
1

λ−

1

t 1
2 ,p,nb

|nb〉 1
2 ,− 1

2

+U
†
1

∣∣∣∣12 ,−1

2

〉
1

λ+

ν 1
2 ,nb,p

t 1
2 ,p,nb

|nb − 1〉 1
2 ,− 1

2

+U
†
1

∣∣∣∣12 ,
1

2

〉
μ−
λ−

1

t 1
2 ,p,nb

|nb〉 1
2 , 1

2

+U
†
1

∣∣∣∣12 ,
1

2

〉
μ+
λ+

ν 1
2 ,nb,p

t 1
2 ,p,nb

|nb − 1〉 1
2 , 1

2
, (28)

∣∣ψGRWA
G

〉 = U
†
1U

†
2

∣∣∣∣12 ,−1

2
, 0

〉
= U

†
1

∣∣∣∣12 ,−1

2

〉
|0〉 1

2 ,− 1
2
.

(29)

Here, |nb〉 1
2 ,m = exp [−(� + mG)(b† − b)/ωm]|nb〉 is the

displaced Fock state, with the displacement (� + mG)/ωm

determined by the quantum number m in the N = 1 subspace,
and m = ±1/2, nb = 1, 2, . . . .

We have gotten all the eigenvalues for the N = 1 sub-
space with GRWA. This method can be extended to other
subspaces with higher polariton excitation number N . In the
Appendix C, the eigenvalues EGRWA

1,q,nb
in Eqs. (C18), (C20),

and (C21) and eigenstates |ψGRWA
1,q,nb

〉 in Eqs. (C22), (C23),
and (C24) for the N = 2 subspace are also obtained.

In Fig. 2, the eigenvalues in the two-, one-, and zero-
polariton subspace are plotted as a function of the photon-
phonon coupling strength g0 for given λ, respectively. In each
panel, we have subtracted the base energy j (ωA + ωB ), with
j = N /2. The energy-level structures described by Eqs. (24)
and (27) for the resonant case ωc = ωex are shown in red
dashed curves, while the energy structures with the numeri-
cally exact diagonalization of the Hamiltonian in Eq. (16) for
each polariton subspace are shown in black solid curves. The
good agreement for g0 < ωm between the theoretical method
and numerical one shows the validity of GRWA in the regime
we are working with. Discrepancies appear with the increase
of the difference |G| = |g0 − λ| between the photon-phonon
and exciton-phonon coupling strengths. That is, for given
λ (e.g., λ = 0.5 ωm in Fig. 2), discrepancies appear when
g0 approaches 0 or surpasses 1 ωm, i.e., |G| becomes larger
than 0.5 ωm. They are mainly caused by the overlooked Stark
effect and higher-order phonon transitions. It is obvious that
the energy levels display much more abundant nonlinearity
compared to the large photon-exciton detuning case as shown
in Eq. (13), which is caused by the competition between
the parametric coupling and three-wave mixing interaction
concerning the polariton modes and phonon mode. What is
more, as shown in the vertical black dotted line in Figs. 2(a)
and 2(b), the specific photon-phonon coupling strength g0,
where the energy gap EGRWA

1
2 ,+,nb

− EGRWA
1
2 ,−,nb

[Eq. (24)] in the same
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nbth manifold has the minimum value, is extremely close to
the exciton-phonon coupling strength λ. If we further assume
|2η/sin 2θ | = ωm, the gap is closed in the theoretical method,
and the coupling strength g0 equals λ. These phenomena can
be used to detect the exciton-phonon coupling strength in the
semiconducting cavity.

III. EMISSION SPECTRA OF THE POLARITONS

Let us now study the mechanical effect on the emission
spectra of polaritons. There are many loss mechanisms in-
volved in the dynamics of this hybrid system, including the
mechanical damping rate γm, polariton emission rates κA and
κB . However, in this section we only consider the simplest
situation when the decay rates of the mechanical resonator
and polariton modes are completely neglected. That is, we set
γm = κA = κB = 0. Or, equivalently, we assume that the time
length t of the excitation in the cavity satisfies the condition
1/γ � t � 1/κA,B � 1/γm, where γ is the half-bandwidth
of the spectrometer. In this case, it is also reasonable to neglect
the three decay mechanisms. Thus, the only broadening mech-
anism comes from the detecting spectrometer, and its physical
spectrum can be given by [59,60]

S(ω) = 2γ

∫ t

0
dt1

∫ t

0
dt2 exp[−(γ − iω)(t − t2)]

× exp[−(γ + iω)(t − t1)]G(t1, t2), (30)

where G(t1, t2) represents the dipole correlation function of
the polaritons and is defined as

G(t1, t2) = 〈ψ (0)|B†(t2)B(t1)|ψ (0)〉 (31)

with |ψ (0)〉 the initial state of the system. Here, we take
the lower-level polariton mode B as an example, and the
analytic procedure can also be applied to the case of the mode
A. Taking into account that the transition between different
energy levels satisfies the condition

〈j ′m′|B|jm〉 =
√

j − m − 1δj ′,j− 1
2
δm′,m+ 1

2
, (32)

we can conclude the selection rule j ′ = j − 1
2 and m′ = m +

1
2 . And it is evident that j ′ is only determined by the initial
state |ψ (0)〉. We first consider the case that the transition
occurs between N = 1 and 0 subspaces, and the mechanical
resonator is in the displaced Fock state |n0〉 1

2 ,− 1
2

initially.
Thus, we make the assumption that the initial state of the
system can be written as |ψ (0)〉 = | 1

2 ,− 1
2 〉|n0〉 1

2 ,− 1
2
. In fact,

the method we used here is not restricted to our assumption
of this particular initial state, but can be extended to more
general case. The time-evolution operator U (t ) of the system
concerning these subspaces can be gotten from the eigenval-
ues and eigenstates, i.e., Eqs. (24), (27), (28), and (29), which
we have shown in the last section, that is,

U (t ) = e−iH1t = e−iEGRWA
G t

∣∣ψGRWA
G

〉〈
ψGRWA

G

∣∣
+
∑
p,nb

e
−iEGRWA

1
2 ,p,nb

t ∣∣ψGRWA
1
2 ,p,nb

〉〈
ψGRWA

1
2 ,p,nb

∣∣. (33)

Taking into account the fact that B(t ) = U †(t )BU (t ), the
correlation G(t1, t2) can be obtained as

G(t1, t2) =
∑

n1=0,n2

e
i(EGRWA

G −EGRWA
00n2

)(t2−t1 )

× ∣∣〈ψ (0)
∣∣ψGRWA

G

〉∣∣2∣∣〈ψGRWA
G

∣∣B†∣∣ψ00n2

〉∣∣2
+

∑
n1>0,p,n2

e
i(EGRWA

1
2 ,p1 ,n1

−EGRWA
00n2

)(t2−t1 )

×∣∣〈ψ (0)
∣∣ψGRWA

1
2 ,p1,n1

〉∣∣2∣∣〈ψGRWA
1
2 ,p1,n1

∣∣B†∣∣ψ00n2

〉∣∣2,
with |ψ00n2〉 = |00〉|n2〉. Thus, the stationary spectrum can be
decomposed into three parts as

S10
B (ω) = S1(ω) + S2(ω) + S3(ω), (34)

where

S1(ω) =
∑

n1=0,n2

�1(ω)
∣∣〈ψ (0)|ψGRWA

G

〉∣∣2
× ∣∣〈ψGRWA

G

∣∣B†∣∣ψ00n2

〉∣∣2,
S2(ω) =

∑
n1>0,n2

�2(ω)
∣∣〈ψ (0)|ψGRWA

1
2 ,+,n1

〉∣∣2
× ∣∣〈ψGRWA

1
2 ,+,n1

∣∣B†∣∣ψ00n2

〉∣∣2,
S3(ω) =

∑
n1>0,n2

�3(ω)
∣∣〈ψ (0)|ψGRWA

1
2 ,−,n1

〉∣∣2
× ∣∣〈ψGRWA

1
2 ,−,n1

∣∣B†∣∣ψ00n2

〉∣∣2,
with

�i (ω) = 2γ

γ 2 + [ω − ωB − (δi − n2ωm)]2 , (35)

and δ1 = η/sin 2θ + EGRWA
G , δ2 = η/sin 2θ + EGRWA

1
2 ,+,n1

, δ3 =
η/sin 2θ + EGRWA

1
2 ,−,n1

. Physically, this decomposition can be

understood by the fact that the initial state |ψ (0)〉 =
| 1

2 ,− 1
2 〉|n0〉 1

2 ,− 1
2

is not the eigenstate of the Hamiltonian in
Eq. (2), but it can always be interpreted as the superposition of
the eigenstates |ψGRWA

G 〉 and |ψGRWA
1
2 ,p,n1

〉 (p = ±). Moreover, the

subscript in S10
B (ω) denotes that this is the emission spectrum

for the lower-level polariton mode B, while the superscript
denotes the transition is from N = 1 subspace to N = 0 sub-
space. Note the transient terms and very slowly varied terms
have been neglected and the base line (ωA + ωB )/2 for the
N = 1 subspace is added. We can observe that the eigenvalues
determine the positions of the spectral component and the
overlap between different states decides the intensity of the
spectral lines. As a matter of fact, the spectrum is composed
of three parts with equidistance but different central points
δ1, δ2, δ3. For each part, the interval is marked by the me-
chanical resonator frequency ωm, and (n1 − n2) with n1, n2 ∈
[0,∞) gives us a clue for numerous sidebands [61,62]. These
sidebands are developed around δ1, δ2, δ3, respectively, and
semantically we name them as center frequencies. However,
the sidebands can only be resolved when their peaks go over
the height of nearby Lorentzian.
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FIG. 3. Rescaled emission spectrum S10
B (ω)/ω−1

m of polariton
mode B (black solid curves) from N = 1 to 0 as a function
of rescaled frequency detuning (ω − ωB )/ωm without the exciton-
phonon coupling, i.e., λ = 0, under different cavity photon-phonon
coupling strength g0 = 0, 0.3 ωm, 0.5 ωm, 0.8 ωm from (a)–(d). The
black solid, blue dashed-dotted, and red dotted curves represent
the rescaled S10

B (ω)/ω−1
m , S2(ω)/ω−1

m , and S3(ω)/ω−1
m , respectively.

Other parameters are set to be: �ce = 0, η = 0.5 ωm, γ = 0.15 ωm.

In Fig. 3, the rescaled emission spectrum S10
B (ω)/ω−1

m

(black solid curves) is plotted as a function of the rescaled
frequency detuning (ω − ωB )/ωm with various optomechan-
ical coupling strengths g0 = 0, 0.3 ωm, 0.5 ωm, 0.8 ωm. In
order to see the effect of the mechanical resonator clearly,
we first exclude the influence of exciton-phonon coupling by
setting λ = 0. Rescaled spectra S2(ω)/ω−1

m and S3(ω)/ω−1
m

with central frequencies δ2, δ3 are plotted in the blue dashed
dotted and the red dotted curves, respectively. The S1(ω) does
not show up here because we choose n0 = 2. In this case,
the initial state |ψ (0)〉 = | 1

2 ,− 1
2 〉|2〉 1

2 ,− 1
2

is orthogonal to the

ground state |ψGRWA
G 〉, i.e, 〈ψ (0)|ψGRWA

G 〉 = 0, which leads to
S1(ω) = 0. First, in Fig. 3(a), we consider the situation g0 = 0
and λ = 0, i.e., the polariton mode is totally decoupled with
the mechanical resonator. In this case, the emission spectrum
is not affected by the mechanical resonator. That is, only
one Lorentzian peak appears around ω = ωB denoting the
bare polariton mode spectrum. And it mainly comes from the
contribution of S3(ω)/ω−1

m . Moreover, with the increase of op-
tomechanical coupling strength g0 from 0.3 ωm to 0.8 ωm, as
shown in Fig. 3(b) to Fig. 3(d), we find that the contributions
of S2(ω)/ω−1

m and S3(ω)/ω−1
m to the rescaled total spectrum

S10
B (ω)/ω−1

m vary a lot. Besides, more sidebands appear at
the frequency δ2 − n2ωm and δ3 − n2ωm for g0 > γc, e.g.,
two to six sidebands from Fig. 3(b) to Fig. 3(d), while at the
expense of lower central peak. Usually, the maximum number
of sidebands corresponds to the phonon number truncated for
calculation (here we set as 6).

0
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FIG. 4. Rescaled emission spectrum S10
B (ω)/ω−1

m of polariton
mode B (black solid curves) from N = 1 to 0 as a function of
rescaled frequency detuning (ω − ωB )/ωm with the exciton-phonon
coupling λ = 0.5 ωm, under different cavity photon-phonon coupling
strength g0 = 0, 0.3 ωm, 0.5 ωm, 0.8 ωm from (a)–(d). The black
solid, blue dashed dotted, and red dotted curves represent the rescaled
S10

B (ω)/ω−1
m , S2(ω)/ω−1

m , and S3(ω)/ω−1
m , respectively. Other param-

eters are set to be �ce = 0, η = 0.5 ωm, γ = 0.15 ωm.

In Fig. 4, we take the exciton-phonon coupling into ac-
count, for example, λ = 0.5 ωm. We find that, for each specific
g0, more sidebands appear, compared to the case of λ =
0 as shown in Fig. 3. Even when g0 = 0, there are three
sidebands as shown in Fig. 4(a) and it mainly comes from
the contribution of S2(ω)/ω−1

m . From Figs. 3 and 4, we can
find that the mechanical resonator enriches the spectrum of
polariton mode with more sidebands. Moreover, when there
is only parametric coupling between the polariton modes and
the phonon mode, i.e., G = g0 − λ = 0, the peaks of the
two subseries S2(ω)/ω−1

m and S3(ω)/ω−1
m overlap because of

the central frequency detuning δ2 − δ3 = ωm in this case, as
shown in Fig. 2. However, the introduction of the three-wave
mixing interaction (G = g0 − λ �= 0) staggers the peaks of
the two subseries, and leads to the staggering structure of the
rescaled total emission spectrum S10

B (ω)/ω−1
m .

IV. BUNCHING AND ANTIBUNCHING RESONANCES OF
THE POLARITON MODES

In this section, we will show how the mechanical resonator
affects the statistical properties of the polariton emission. We
assume that the cavity field of the hybrid system is driven by
a weak classical field with the frequency ωd . In this case, the
Hamiltonian in Eq. (1) is changed into

H
′ = H + iε(a†e−iωd t − aeiωd t ). (36)

Here, H is given in Eq. (1), and ε is the coupling strength
between the cavity field and the driving field. In the rotating
reference frame of the driving field under the frequency ωd
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with unitary operator R(t ) = exp[−iωd (A†A + B†B )t], we
can write the total Hamiltonian of the system as

H̃ ′ = �AA†A + �BB†B + ωmb†b

+ (QAA†A + QBB†B )(b† + b)

+Q(A†B + B†A)(b† + b)

+ iε[cos θ (A† − A) − sin θ (B† − B )], (37)

where �A = ωA − ωd (�B = ωB − ωd ) is the detuning be-
tween the polariton mode A (B) and the driving field. For the
open system, the dissipative terms in the polariton representa-
tion must be considered and can be expressed in the Lindblad
superoperator form

Ldiss � γm

2
[(Nth + 1)D[b] + NthD[b†]]

+ κAD[A] + κBD[B]. (38)

Here, the superoperator has the form of D[o]ρ = oρo† −
1
2 (o†oρ + ρo†o) (o can be any operator of the system, i.e.,
A,B, b). The first line in Eq. (38) describes the coupling
of the mechanical resonator to a thermal bath, and Nth =
1/[exp(h̄ωm/kBT ) − 1] denotes the thermal phonon num-
ber at temperature T , with kB the Boltzmann constant.
D[A],D[B] represent the leakage of the polariton modes A

and B with the polariton decay rates

κA = κa cos2 θ + κex sin2 θ, (39)

κB = κa sin2 θ + κex cos2 θ. (40)

Here, κa , κex , and γm represent the decay rates of the cavity,
exciton, and mechanical modes, respectively. Besides, note
that the term (κa − κex )2 has been neglected in the process
of getting the decay rates κA and κB as shown in Eqs. (39)
and (40) [63]. This is reasonable when the splittings of these
two modes are far larger than their decay rates κa, κex , which
is consistent with our original assumption. Because of the
high frequency of the polariton modes, we have neglected
the thermal excitations of excitons and photons in the low-
temperature limit. Then, the master equation for the reduced
density matrix operator ρ of the whole system can be de-
scribed by

ρ̇ = i[ρ, H̃ ′] + Ldissρ. (41)

It can be solved numerically in the complete basis set |nA〉 ⊗
|nB〉 ⊗ |nb〉, with nA, nB and nb = 0, 1, 2 . . . denoting the ex-
citation numbers in polaritons A,B and mechanical resonator
modes, respectively. In this work, the numerical calculations
are done utilizing the quantum toolbox [64,65] by solving the
master equation within a truncated Fock state space.

Next, we use polariton mode B as an example to show the
effect of the mechanical resonator on the statistical properties
of the polaritons. The equal-time second-order correlation
function of polariton mode B can be given as [66]

g(2)(0) = 〈B†B†BB〉
〈B†B〉2

, (42)

which describes the statistical properties of the polariton
mode B. The status g(2)(0) < 1 [g(2)(0) > 1] characterizes the

-2 -1.5 -1 -0.5 0 0.5 1
10-5

100
105

-2 -1.5 -1 -0.5 0 0.5 1
10-5
100

105

g B2
(0

)

-2 -1.5 -1 -0.5 0 0.5 1
ΔB/ωm

10-5

100
105

-2 -1.5 -1 -0.5 0 0.5 1
10-5

100

105

S
1

S
0

S
2 D

0

D
-2D

+2

D
1

D
-2 D

+1 D
G0

D
+1

D
G0

D
2

D
+2

D
-1

S
11

D
G0

S
21 (d)

(c)

(b)

(a)P
G0

P
20

P
11

P
10

P
21

P
12

P
31P

22
P

31
S

10

P
G0

P
10

P
20

D
-1

P
11P

21
P

12P
22

P
32

P
13

S
10

S
11

P
10

P
20

P
11

P
31

P
21

D
+1

P
22 D

-1

P
1

P
2

P
0P

3
P

4

FIG. 5. The equal-time second-order correlation function g(2)(0)
versus the rescaled detuning �B/ωm for various coupling strengths,
e.g., g0 = 0 in (a), g0 = 0.3 ωm in (b), g0 = 0.5 ωm in (c), and
g0 = 0.8 ωm in (d). Other parameters are �ce = 0, λ = 0.5 ωm, η =
0.5 ωm.

polariton blockade (tunneling) process, in which the polariton
exhibits sub-Poisson (or super-Poisson) statistics [67–74].

Figure 5 shows how the polariton statistics depends on
dimensionless detuning �B/ωm. We note that each panel
has several dips and resonant peaks, which denote the one-
polariton and multipolariton resonant transition, respectively.

It will be easier to understand from the coupling balanced
case g0 = λ, which is shown in Fig. 5(c). In this case, there
are only parametric couplings between the polariton modes
and the phonon mode. We only need one subscript nb (nb =
0, 1, 2 . . . ) to label the dips and peaks caused by different
phonon number. Specifically, the dips Dnb

(nb = 0, 1, 2 . . . )
are caused by the single polariton transition from the state
| 1

2 ,− 1
2 〉|nb〉 1

2 ,− 1
2

to the state |0, 0〉|0〉, when the detuning
between the driving field and the polariton mode B satisfies
the condition �B/ωm = (g2

0/ω
2
m) − nb. The peaks Pnb

(nb =
0, 1, 2 . . . ) correspond to the two-polariton transition from
the state |1,−1〉|nb〉1,−1 to the state |0, 0〉|0〉 when the de-
tuning �B/ωm = (2g2

0/ω
2
m) − (nb/2). Moreover, we also la-

bel another series of peaks Snb
(nb = 0, 1, 2 · · · ), which are

the consequence of one-polarion transition from the state
|1,−1〉|nb〉1,−1 to the state | 1

2 ,− 1
2 〉|0〉 1

2 ,− 1
2

under the condition

of �B/ωm = (3g2
0/ω

2
m) − nb. Obviously, the distribution of

these points is equally spaced, and all separated by one time
or half of the frequency of the mechanical resonator ωm in
each series.

When g0 �= λ, the three-wave mixing interaction between
A, B, and b makes the system exhibit richer nonlinearity, and
the eigenstate concerning the phonon mode changes from the
displaced Fock state |nb〉j,m to their superposition as shown in
Eq. (28). Thus, the positions of the dips and peaks change a
lot and we introduce two subscripts to label them. As shown in
Figs. 5(a), 5(b), and 5(d), we consider three different coupling
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strengths g0 = 0, 0.3 ωm, and 0.8 ωm, respectively, and figure
out the following:

(i) The dips labeled by Dp,nb
in Figs. 5(a), 5(b), and

5(d) are the results of one-polariton transition from the state
|ψGRWA

1
2 ,p,nb

〉 to the state |0, 0〉|0〉 at the effective detuning �′
B =

�B + η/ sin 2θ = −EGRWA
1
2 ,p,nb

. Note that the term η/ sin 2θ is

added; it is because we take the base line (ωA + ωB )/2 for the
N = 1 subspace into account. The parameter p = ± when
nb = 1, 2, 3 . . . , while p = G when nb = 0. For example,
the symbol DG0 labels the transition from the ground state
|ψGRWA

G 〉 in the N = 1 subspace to the state |0, 0〉|0〉. The
equal-time second-order correlation functions g(2)(0) corre-
sponding to the dips Dp,nb

are smaller than 1, i.e., g(2)(0) < 1,
which means that the probability to excite the two polariton is
smaller than that to excite two single polaritons independently,
and then the polariton blockade happens and exhibits sub-
Poisson statistics.

(ii) The peaks marked by Pq,nb
represent the transition

from the state |ψGRWA
1,q,nb

〉 in the subspace N = 2 to the state
|0, 0〉|0〉 at the effective detuning �′

B = −EGRWA
1,q,nb

/2. Here,
q = 1, 2, 3 when nb = 1, 2, 3 . . . denoting the three energy
levels in the nbth block, while for the nb = 0 block, q = 1, 2,
and G, standing for the first- and second-excited state, and
the ground state, respectively. Note that we have taken the
base line ωA + ωB for the N = 2 subspace into account.
Specifically, P10 represents two-polariton transition from the
first-excited state |ψGRWA

1,1,0 〉 to |0, 0〉|0〉 at the effective detun-
ing −EGRWA

1,1,0 /2, while PG0 represents two-polariton transition
from the ground state |ψ̃GRWA

G 〉 [Eq. (C24)] in the N = 2
subspace to |0, 0〉|0〉 at the effective detuning −ẼGRWA

G /2
[Eq. (C21)]. Correspondingly, the equal-time second-order
correlation functions g(2)(0) at these peaks Pq,nb

are larger
than 1, i.e., g(2)(0) > 1, which means that the probability to
excite the two polariton is larger than that to excite two single
polaritons independently, and then the polariton tunneling
happens and exhibits super-Poisson statistics.

(iii) Besides, the small peaks pointed out by Sq,nb
show

the polariton transition between the state |ψGRWA
1,q,nb

〉 in the N =
2 subspace and the ground state | 1

2 ,− 1
2 〉|0〉 1

2 ,− 1
2

in N = 1
subspace. In this case, the transition frequency satisfies the
condition �′

B = −EGRWA
1,q,nb

+ EGRWA
1
2 ,− 1

2 ,0
. For example, S11 (S10)

denotes the transition from the state |ψGRWA
1,1,1 〉 (|ψGRWA

1,1,0 〉) in the
N = 2 subspace to the state |ψGRWA

1
2 ,− 1

2 ,0
〉 in the N = 1 subspace

at the effective detuning �′
B = −EGRWA

1,1,1 (EGRWA
1,1,0 ) + EGRWA

1
2 ,− 1

2 ,0
.

As a summary, in the first column of Tables I and II,
we list the symbols which are used to label the transi-
tions for the balanced (g0 = λ) and unbalanced (g0 �= λ)
coupling cases, respectively. The transitions occur from the
original states (the second column) to the final states (the
third column), when the frequency detuning satisfies the
conditions which are shown in the last column. We use two
subscripts (q, nb) for the unbalanced coupling case (g0 �=
λ) when the three-mixing wave interaction is introduced,
while only one (nb) for the balanced coupling case (g0 = λ),
i.e., there are only parametric couplings between the polari-
ton modes and the phonon mode, to discriminate different
processes.

TABLE I. Symbols representing the transitions from the states
shown in the second column to that in the third column for the
balanced coupling case g0 = λ. In the table, for convenience, we call
the states in the second and third columns as original and final states,
respectively. The last column shows the corresponding conditions
which the frequency detuning �B satisfies, respectively. The symbol
D represents the series of dips, while P, S represent two series of
peaks with one subscript nb.

Symbol Original state Final state Detuning �B

Dnb
| 1

2 , − 1
2 〉|nb〉 1

2 ,− 1
2

|0, 0〉|0〉 g2
0

ω2
m

− nb

Pnb
|1, −1〉|nb〉1,−1 |0, 0〉|0〉 2g2

0
ω2

m
− nb

2

Snb
|1, −1〉|nb〉1,−1 | 1

2 , − 1
2 〉|0〉 1

2 ,− 1
2

3g2
0

ω2
m

− nb

Furthermore, we show the equal-time second-order corre-
lation g(2)(0) versus the rescaled radiation-pressure coupling
strength g0/ωm in Fig. 6 at the given detuning �B = g2

0/ωm.
As analyzed above, for the balanced coupling case g0 = λ,
i.e., there are only parametric couplings between the polariton
modes and the phonon mode, the single polariton transition
from the state | 1

2 ,− 1
2 〉|0〉 1

2 ,− 1
2

in the N = 1 subspace to
the state |0, 0〉|0〉 occurs. The polariton exhibits sub-Poisson
statistics, i.e., the polariton blockade happens. However, the
blockade is destroyed when the coupling strength satisfies
the condition g0/ωm = √

nb/2, which corresponds to the
two-polariton transition from the state |1,−1〉|nb〉1,−1 in the
N = 2 subspace to the state |0, 0〉|0〉, and can be seen in the
peaks Pnb

as shown in Fig. 6(a). For a specific exciton-phonon
coupling strength, e.g., λ = 0.5 ωm in Fig. 6(b), polariton
blockade occurs once g0 = λ, which can be seen in the dip
labeled by D0. With the increase of g0, another two types
of resonant transition occur, as labeled by Pp,nb

and Sq,nb
.

Besides, for the case of λ = 0.5 g0, as depicted in Fig. 6(c), we
observe resonant peaks labeled by S11, S21, P11, and P21. The
original and final states, as well as the frequency conditions
of the transition processes corresponding to these symbols,
can also be found in Tables I and II, respectively. Moreover,
we find that the equal-time second-order correlation function
g(2)(0) keeps smaller than 1 in Fig. 6(a), while it remains
larger than 1 in Fig. 6(c). This phenomenon may imply that the
polariton blockade holding by the parametric coupling, may

TABLE II. Symbols representing the transitions from the states
shown in the second column to that in the third column for the un-
balanced coupling case g0 �= λ. In the table, for convenience, we call
the states in the second and third columns as original and final states,
respectively. The last column shows the corresponding conditions
which the effective frequency detuning �′

B = �B + η/ sin 2θ satis-
fies, respectively. The symbol D represents the series of dips, while
P, S represent two series of peaks, with two subscripts p (q ), nb.

Effective
Symbol Original state Final state Detuning �′

B

Dp,nb
|ψGRWA

1
2 ,p,nb

〉 |0, 0〉|0〉 −EGRWA
1
2 ,p,nb

Pq,nb
|ψGRWA

1,q,nb
〉 |0, 0〉|0〉 −EGRWA

1,q,nb
/2

Sq,nb
|ψGRWA

1,q,nb
〉 | 1

2 , − 1
2 〉|0〉 1

2 ,− 1
2

−EGRWA
1,q,nb

+ EGRWA
1
2 ,− 1

2 ,0
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)

0 0.2 0.4 0.6 0.8 1 1.2
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100

S11

λ=0.5 g0

λ=0.5 ωm

λ=g0
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(b)

(a)

(c)

P10 S12
P11

S11

P10 P11
S12

D0

FIG. 6. The equal-time second-order correlation function g(2)(0)
versus the rescaled coupling strength g0/ωm with the pump detuning
�B = g2

0/ωm for (a) coupling balanced λ = g0 and detuning case:
(b) λ = 0.5 ωm, (c) λ = 0.5 g0. Other parameters are �ce = 0, η =
0.5 ωm.

be destroyed by the negative three-wave mixing interaction
between the polariton modes and the phonon mode, at the
given detuning �B = g2

0/ωm.

V. CONCLUSIONS

In summary, we have studied a hybrid semiconductor-
optomechanical system that combines the semiconducting
microcavity quantum electrodynamics with optomechanics.
We consider two configurations of such hybrid system in
terms of the interaction between the excitons and mechanical
resonator. The first one is that the vibration mirror in the
cavity of the optomechanical system is considered as the semi-
conducting system. In this case, we assume that there is no
direction coupling between the mechanical resonator and the
excitons in the semiconductor mirror. The second one is that
a membrane placed inside the cavity of the optomechanical
system is considered as the semiconducting system. In this
case, we assume that there is radiation pressure type interac-
tion between the mechanical resonator and the excitons in the
semiconductor membrane, which is realized via deformation
or piezoelectric effect. In this paper, we mainly focus on the
second case that the mechanical resonator, the cavity field,
and the exciton are mutually interacting, i.e., the fully coupled
tripartite case. The physics of the system can be described in
terms of the interaction between the mechanical resonator and
the polaritons, formed by the cavity photons and excitons. We
also note that the research results of the second case can be
easily applied to the first one by assuming that the coupling
constant between the excitons and mechanical resonator is
zero.

We derive analytical solutions of the eigenvalues and
eigenstates of the corresponding Hamiltonian with general-
ized rotating-wave approximation when the total excitation
numbers of the polaritons are zero, one, and two. Based on

the eigenvalues and eigenstates, we further study the emis-
sion spectra and statistical properties of the polaritons, and
find the rich nonlinearity occurs due to the interaction be-
tween the polaritions and mechanical resonator. For example,
when the mechanical resonator is decoupled from the exciton
and the cavity field, the emission spectra from one polariton
to zero polarition only show a single peak. However when the
mechanical resonator is coupled to both the exciton and cavity
field or either one of the exciton and cavity field, the emission
spectra exhibit richer structure. Under the modulation of
the mechanical resonator, the emission spectrum peaks and
blockade (tunneling) dips (peaks) of the polariton show many
phonon sidebands, which depend on the coupling strengths of
the mechanical resonator to the cavity field and the exciton.
Moreover, we show how the competition between the two
forms of couplings for the polariton modes and the phonon
mode, i.e., parametric and three-wave mixing interactions,
results in the fine emission spectra and blockade of the polari-
tons. We also find that the three-wave mixing interaction leads
to the staggering structure of the total emission spectrum,
and destroys the polariton blockade, which occurs in the
parametric coupling case.

Our research results lay a theoretical foundation for the
experimental study of optical, mechanical, and electrical sys-
tems, which could lead to highly sensitive and functionalized
optoelectromechanical systems as discussed in Ref. [75]. Our
research results may also be helpful for experimental research
on the high-sensitivity displacement detection using semicon-
ducting resonator [21], or the observation of a semiconducting
band gap through mechanical displacement [26]. In particular,
we show the dependence of the polariton emission spectra on
the mechanical resonator. This can motivate more experiments
along the research direction for controlling photons of the
cavity field, phonons in vibrating mechanical resonator, and
electron (or electron-hole) in an integrated platform. This
hybrid system may also be applied to the quantum network
for quantum information processing, e.g., the realization of
quantum entanglement between different quantum objects,
which is underexplored.
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APPENDIX A: SCHWINGER’S REPRESENTATIONS
OF HAMILTONIAN

We find that it is convenient to obtain eigenvalues and
eigenstates of the Hamiltonian in Eq. (2) using Schwinger’s
representation of the angular momentum for the two bosonic
polariton modes A and B, which is shown in Eq. (7). For given
total excitation number N of polaritons, the simultaneous
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eigenstates of J 2 and Jz are defined as

|j,m〉 = (A†)j+m(B†)j−m

√
(j + m)!(j − m)!

|0〉, (A1)

with the eigenvalues j = N /2, and m = −N /2, . . . ,N /2. In
order to get more intuitive understanding, we can also express
|j,m〉 as |nA〉 ⊗ |nB〉 in terms of polariton Fock state. That is,
|j,m〉 = |nA〉|nB〉, where

nA = j + m, nB = j − m (A2)

represent the excitation numbers in modes A and B, respec-
tively.

APPENDIX B: EIGENVALUES AND EIGENSTATES
IN N = 1 SUBSPACE

For the N = 1 subspace, we first consider the zeroth-order
approximation which neglects the terms involving energy
exchange between the phonon and the polaritons. Then, the
Hamiltonian in Eq. (17) can be approximated as

H
(0)
3 = 1

2
(ωA − ωB ) cos φσz + ωmNb − 1

ωm

(
� + G

2
σz

)2

+ 1

2
(ωA − ωB ) sin φσxG0(Nb ). (B1)

For the sake of clarity, we have neglected the energy base-
line (ωA + ωB )/2. And there are only terms concerning the
phonon number operator Nb = b†b. Thus, the Hilbert space
can be decomposed into nb manifolds in the basis of the
angular momentum and mechanical resonator | 1

2 ,− 1
2 , nb〉 and

| 1
2 , 1

2 , nb〉. Based on the fact that

σx

∣∣∣∣12 ,
1

2

〉
=
∣∣∣∣12 ,−1

2

〉
, σx

∣∣∣∣12 ,−1

2

〉
=
∣∣∣∣12 ,

1

2

〉
,

σy

∣∣∣∣12 ,
1

2

〉
= i

∣∣∣∣12 ,−1

2

〉
, σy

∣∣∣∣12 ,−1

2

〉
= −i

∣∣∣∣12 ,
1

2

〉
,

the Hamiltonian in Eq. (B1) in the nbth manifold takes on the
form

H
(0)
3,nb

=
⎡⎣e(1)

nb

Bnb

2

Bnb

2 e(2)
nb

⎤⎦, (B2)

with

e(1)
nb

= −1

2
(ωA − ωB ) cos φ + nbωm − λ2

ωm

, (B3)

e(2)
nb

= 1

2
(ωA − ωB ) cos φ + nbωm − g2

0

ωm

, (B4)

Bnb
= (ωA − ωB ) sin φG0(nb ). (B5)

Here, for a given phonon number nb, the coefficient G0(nb ) is
given as [48]

G0(nb ) = 〈nb|G0(Nb )|nb〉

=
〈
nb

∣∣∣∣cosh

[
G

ωm

(
b† − b

)]∣∣∣∣nb

〉
= exp

(
− G2

2ω2
m

)
Lnb

(
G2

ω2
m

)
. (B6)

Here, the simple Laguerre polynomials Lnb
are the special

case of the generalized Laguerre polynomials

Lα
n (x) =

n∑
l=0

(−1)l
(n + α)!xl

(n − l)!(α + l)!l!
(B7)

with the degree n = nb and index α = 0, i.e., L0
nb

(x) =
Lnb

(x). Using Eq. (B2), the eigenvalues corresponding to the
Hamiltonian in Eq. (B1) can be straightforwardly given by

ε 1
2 ,p,nb

= nbωm − 1

2ωm

(
g2

0 + λ2
)

± 1

2

√(
e

(2)
nb

− e
(1)
nb

)2 + B2
nb

, (B8)

where p = + or p = − denote the two eigenvalues in the
subspace of one polariton and nb phonon excitations. The
corresponding eigenstates are∣∣ε 1

2 ,p,nb

〉 = 1

λ 1
2 ,p,nb

(
1

μ 1
2 ,p,nb

)
(B9)

with

μ 1
2 ,p,nb

= 2

Bnb

(
ε 1

2 ,p,nb
− e(1)

nb

)
,

λ 1
2 ,p,nb

=
√

1 + μ2
1
2 ,p,nb

.

For the resonant case (ωA − ωB ) cos φ = ωm discussed in
the main text, the single-phonon exchange terms need to be
included in the first-order approximation. Thus, the Hamilto-
nian in Eq. (17) can be approximately written into two parts

H
(1)
3 = H

(1)
3,0 + H

(1)
3,1 , (B10)

with

H
(1)
3,0 = H

(0)
3 − 1

2
(ωA − ωB ) sin φσx[G0(Nb ) − β] (B11)

and

H
(1)
3,1 = 1

2
(ωA − ωB ) sin φσx[G0(Nb ) − β]

+ i

2
(ωA − ωB ) sin φσy[F1(Nb )b† − bF1(Nb )].

(B12)

Here, the parameter β = G0(0) = exp (−G2/2ω2
m) is intro-

duced for the convenience of the calculations. It helps to sep-
arate the Hamiltonian H

(1)
3 in the zeroth and nbth manifolds.

The term H
(1)
3,0 − ωmNb, which can be derived from Eq. (B11),

corresponds exactly to the zeroth subspace of the Hamilto-
nian in the zeroth-order approximation shown in Eq. (B1).
Meanwhile, the Hamiltonian in nbth manifolds is included in
Eq. (B12). In the Hamiltonian H

(1)
3,0 , the angular momentum

and mechanical resonator operators are completely decou-
pled. And its angular momentum part can be diagonalized
in the basis of | 1

2 ,− 1
2 〉 and | 1

2 , 1
2 〉, by applying a unitary

transformation

U3 =
[

1
λ−

μ−
λ−

1
λ+

μ+
λ+

]
, (B13)
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where λ± = λ 1
2 ,±,0, μ± = μ 1

2 ,±,0, and ε± = ε 1
2 ,±,0. There-

fore, H
(1)
3,0 can be diagonalized into

H̃
(1)
3,0 = U3H

(1)
3,0U

†
3 = ωmNb +

[
ε− 0
0 ε+

]
. (B14)

In this way, the second part H
(1)
3,1 of the Hamiltonian H

(1)
3 is

transformed into

H̃
(1)
3,1 = U3H

(1)
3,1U

†
3

= 1

2
L(ωA − ωB ) sin φ[G0(Nb ) − β]

+ 1

2
M (ωA − ωB ) sin φ[F1(Nb )b† − bF1(Nb )],

(B15)

with

L =
[ 2μ−

λ2−
μ−+μ+
λ−λ+

μ++μ−
λ−λ+

2μ+
λ2+

]
, M =

[
0 μ−−μ+

λ−λ+
μ+−μ−
λ−λ+

0

]
.

The matrix elements L12 = L21 = (μ− + μ+)/λ−λ+ induce
the Stark shift of the energies, which can be fully taken
into account at the expense of lacking analytical expressions
for the eigenvalues and will be neglected in our analyti-
cal derivation [76]. Moreover, we also neglect the counter-
rotating-wave terms σ+b† + σ−b. Thus, under the generalized
rotating-wave approximation (GRWA), we can get the total
Hamiltonian H GRWA

3 , as shown in Eq. (21). In the basis of
| 1

2 ,− 1
2 , nb〉 and | 1

2 , 1
2 , nb − 1〉 (nb = 1, 2, . . . ),H GRWA

3 takes
the following matrix form:

H GRWA
3,nb

=
[
nbωm + ξ−,nb

P
P (nb − 1)ωm + ξ+,nb−1

]
,

with

ξ±,nb
= ε± + μ±

λ2±
(ωA − ωB ) sin φ[G0(nb ) − β],

P = 1

2
M12(ωA − ωB ) sin φRnb−1,nb

,

Rnb−1,nb
= 〈nb|F1(Nb )b†|nb − 1〉

= 1√
nb

G

ωm

exp

(
− G2

2ω2
m

)
L1

nb−1

(
G2

ω2
m

)
.

APPENDIX C: EIGENVALUES AND EIGENSTATES IN
N = 2 SUBSPACE

In this appendix, we provide explicit expressions for the
eigenvalues in the N = 2 subspace. Similarly, in the zeroth-
order approximation, the Hamiltonian has the form

H
(0)
3 = (ωA − ωB ) cos φJz + ωmNb − 1

ωm

(2� + GJz)2

+(ωA − ωB ) sin φJxG0(Nb ). (C1)

For the sake of clarity, we have neglected the constant term
ωA + ωB . And the Hilbert space can be decomposed into
different nb manifolds spanned by the angular-momentum
operator and oscillator basis of |1,−1, nb〉, |1, 0, nb〉, and

|1, 1, nb〉. For nbth manifold, the Hamiltonian takes the form

H (0)
nb

=

⎡⎢⎢⎣
e(1)
nb

√
2

2 Bnb
0

√
2

2 Bnb
e(2)
nb

√
2

2 Bnb

0
√

2
2 Bnb

e(3)
nb

⎤⎥⎥⎦,

with

e(1)
nb

= (ωB − ωA) cos φ + nbωm − 1

ωm

(2� − G)2, (C2)

e(2)
nb

= nbωm − 1

ωm

(2�)2, (C3)

e(3)
nb

= (ωA − ωB ) cos φ + nbωm − 1

ωm

(2� + G)2, (C4)

Bnb
= (ωA − ωB ) sin φG0(nb ). (C5)

The determinant of a matrix in this form gives the cu-
bic equation λ3 + rλ + s = 0 and the eigenvalue ε = λ +
1
3 (e(1)

nb
+ e(2)

nb
+ e(3)

nb
). Here,

r = 3ca − b2

3a2
, (C6)

s = 2b3 − 9abc + 27a2d

27a3
(C7)

with

a = 1, b = −(e(1)
nb

+ e(2)
nb

+ e(3)
nb

)
,

c = e(1)
nb

e(2)
nb

+ e(2)
nb

e(3)
nb

+ e(3)
nb

e(1)
nb

− B2
nb

,

d = −e(1)
nb

e(3)
nb

e(3)
nb

+ 1

2

(
e(3)
nb

− e(1)
nb

)
B2

nb
.

Then, the corresponding eigenvalues ε1,q,nb
(q = 1, 2, 3) are

straightforwardly given by

ε1,1,nb
= nbωm − 1

ωm

[
(2�)2 + 2

3
G2

]
+ wχ1,nb

+ w2χ2,nb
,

ε1,2,nb
= nbωm − 1

ωm

[
(2�)2 + 2

3
G2

]
+ w2χ1,nb

+ wχ2,nb
,

ε1,3,nb
= nbωm − 1

ωm

[
(2�)2 + 2

3
G2

]
+ χ1,nb

+ χ2,nb
,

with

w = 1

2
(−1 +

√
3i),

χ1,nb
= 3

√
− s

2
+
√( s

2

)2
+
( r

3

)3
,

χ2,nb
= 3

√
− s

2
−
√( s

2

)2
+
( r

3

)3
.

The corresponding eigenstates

|ε1,q,nb
〉 = 1

λ1,q,nb

⎛⎝k1,q,nb

1
f1,q,nb

⎞⎠,
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where

k1,q,nb
=

√
2

2 Bnb

ε1,q,nb
− e

(2)
nb

,

f1,q,nb
=

√
2

2 Bnb

ε1,q,nb
− e

(3)
nb

,

λ1,q,nb
=
√

1 + k2
1,q,nb

+ f 2
1,q,nb

.

As the first-order correction, we include the term
iJy[F1(Nb )b† − bF1(Nb )]. The Hamiltonian now consists of
two parts:

H
(1)
3 = H

(1)
3,0 + H

(1)
3,1 , (C8)

with

H
(1)
3,0 = H

(0)
3 − (ωA − ωB ) sin φJx[G0(Nb ) − β] (C9)

and

H
(1)
3,1 = (ωA − ωB ) sin φJx[G0(Nb ) − β]

+ i(ωA − ωB ) sin φJy[F1(Nb )b† − bF1(Nb )].

(C10)

The angular-momentum part in H
(1)
3,0 can be diagonalized in

the basis of angular momentum in the N = 2 subspace, i.e.,
|1,−1〉, |1, 0〉, and |1, 1〉, by a unitary matrix

U4 =

⎡⎢⎢⎣
k1
λ1

1
λ1

f1

λ1

k2
λ2

1
λ2

f2

λ2

k3
λ3

1
λ3

f3

λ3

⎤⎥⎥⎦. (C11)

Then, the total Hamiltonian in the first-order approximation
can be transformed into

H̃
(1)
3,1 = U4H

(1)
3,1U

†
4

= L(ωA − ωB ) sin φ[G0(Nb ) − β]

+M (ωA − ωB ) sin φ[F1(Nb )b† − bF1(Nb )].

(C12)

Here, L is a symmetric matrix with

Lii =
√

2(ki + fi )

λ2
i

, (C13)

Lij =
√

2

2

(kj + fi ) + (ki + fj )

λiλj

, (C14)

while M is an antisymmetric one with

Mij (i<j ) =
√

2

2

(ki + fj ) − (kj + fi )

λiλj

. (C15)

Once again, we neglect the static shift of the mechani-
cal resonator which can be fully taken into account at the
expense of losing analytical expressions for the eigenvalues
and eigenvectors using Braak’s method [76]. Besides, by
neglecting the remote matrix elements L1,3, L3,1,M1,3,M3,1

and the counter-rotating-wave terms, i.e., J+b† + J−b, we can

arrive at the total Hamiltonian

H GRWA
3 = ωmb†b + ξ1,Nb

|1,−1〉〈1,−1| + ξ2,Nb
|1, 0〉〈1, 0|

+ ξ3,Nb
|1, 1〉〈1, 1|

+M12(ωA − ωB ) sin φF1(Nb )(b†|1,−1〉〈1, 0|
+ b|1, 0〉〈1,−1|)
+M23(ωA − ωB ) sin φF1(Nb )(b†|1, 0〉〈1, 1|
+ b|1, 1〉〈1, 0|) (C16)

with

ξi,Nb
= εi + (ωA − ωB )Lii sin φ[G0(Nb ) − β]. (C17)

The individual bosonic creation (annihilation) operator
b† (b) also appears in the GRWA, so the transitions be-
tween states belonging to different manifolds should be
involved. In the basis of |1,−1, nb + 1〉, |1, 0, nb〉, and
|1, 1, nb − 1〉 (nb = 1, 2, . . . ), the Hamiltonian in the nbth
block H GRWA

3,nb
takes the following matrix form:

H GRWA
3,nb

= nbωm +
⎡⎣ξ1,nb+1 + ωm P 0

P ξ2,nb
D

0 D ξ3,nb−1 − ωm

⎤⎦,

where

P = M12(ωA − ωB ) sin φRnb,nb+1,

D = M23(ωA − ωB ) sin φRnb−1,nb
,

ξi,nb
= εi + (ωA − ωB )Lii sin φ[G0(nb ) − β].

Then, the eigenvalues can be obtained as

EGRWA
1,1,nb

= nbωm + 1

3

(
ξ1,nb+1 + ξ2,nb

+ ξ3,nb−1
)+ Q1,

EGRWA
1,2,nb

= nbωm + 1

3

(
ξ1,nb+1 + ξ2,nb

+ ξ3,nb−1
)+ Q2,

EGRWA
1,3,nb

= nbωm + 1

3

(
ξ1,nb+1 + ξ2,nb

+ ξ3,nb−1
)

+μ1,nb
+ μ2,nb

, (C18)

with

Q1 = min
(
wμ1,nb

+ w2μ2,nb
, w2μ1,nb

+ wμ2,nb

)
,

Q2 = max
(
wμ1,nb

+ w2μ2,nb
, w2μ1,nb

+ wμ2,nb

)
.

Note that here we present the eigenvalues in ascending order.
The parameter μi,nb

can be obtained with the same process
as χi,nb

by solving the cubic equation. And the corresponding
eigenstate has the form

∣∣ϕGRWA
1,q,nb

〉 = 1

�1,q,nb

(K−1,q,nb
|1,−1, nb + 1〉 + |1, 0, nb〉

+F1,q,nb
|1, 1, nb − 1〉), (C19)

033825-13



SAI-NAN HUAI, YU-LONG LIU, YUNBO ZHANG, AND YU-XI LIU PHYSICAL REVIEW A 98, 033825 (2018)

with

K1,q,nb
= P

EGRWA
1,q,nb

− [(nb + 1)ωm + ξ1,nb+1]
,

F1,q,nb
= D

EGRWA
1,q,nb

− [(nb − 1)ωm + ξ3,nb−1]
,

�1,q,nb
=
√

1 + K2
1,q,nb

+ F 2
1,q,nb

.

There is a special case for nb = 0. In the basis of |1,−1, 1〉 and |1, 0, 0〉, the Hamiltonian in this block can be written as

H GRWA
3,0 =

[
ωm + ξ1,1 X

X ξ2,0

]
,

with X = M12(ωA − ωB ) sin φR0,1, and the eigenvalues are given by

EGRWA
1,q,0 = 1

2 (ωm + ξ1,1 + ξ2,0) ± 1
2

√
(ωm + ξ1,1 − ξ2,0)2 + 4X2, (C20)

with q = 1, 2 denoting eigenvalues of the first and second excited states, respectively. The ground state is |1,−1, 0〉 with energy

ẼGRWA
G = ξ−,0 = ε− = − 1

ωm

[
(2�)2 + 2

3
G2

]
+ χ1,0 + χ2,0. (C21)

The eigenstates to the original Hamiltonian have the form

∣∣ψGRWA
1,q,nb

〉 = U
†
1U

†
2U

†
4

∣∣ϕGRWA
1,q,nb

〉 = U
†
1

⎡⎢⎢⎣
|1,−1〉 1

�1,q,nb

(
k1
λ1

K−1,q,nb
|nb + 1〉1,−1 + k2

λ2
|nb〉1,−1 + k3

λ3
F1,q,nb

|nb − 1〉1,−1

)
+|1, 0〉 1

�1,q,nb

(K−1,q,nb

λ1
|nb + 1〉1,0 + 1

λ2
|nb〉1,0 + F1,q,nb

λ3
|nb − 1〉1,0

)
+|1, 1〉 1

�1,q,nb

(
f1

λ1
K−1,q,nb

|nb + 1〉1,1 + f2

λ2
|nb〉1,1 + f3

λ3
F1,q,nb

|nb − 1〉1,1

)
⎤⎥⎥⎦. (C22)

Here, nb = 1, 2, 3 . . . and q = 1, 2, 3. On the other hand, for nb = 0, the first- and second-excited eigenstates are labeled by

∣∣ψGRWA
1,q,0

〉 = U
†
1U

†
2U

†
5

∣∣ϕGRWA
1,q,0

〉 = U
†
1

1

�1,q,0

[ |1,−1〉( 1
�1,−,0

|1〉1,−1 + ϒ1,q,0

�1,+,0
|0〉1,−1

)
+|1, 0〉(ϒ1,1,0

�1,1,0
|1〉1,0 + ϒ1,2,0

�1,2,0
ϒ1,q,0|0〉1,0

)], (C23)

with q = 1, 2 and

U5 =
[ 1

�1,1,0

ϒ1,1,0

�1,1,0

1
�1,2,0

ϒ1,2,0

�1,2,0

]
,

ϒ1,q,0 = 1

X

[
EGRWA

1,q,0 − (ωm + ξ1,1)
]
, �1,q,0 =

√
1 + ϒ2

1,q,0.

The eigenstate corresponding to the ground state is∣∣ψ̃GRWA
G

〉 = U
†
1U

†
2 |1,−1, 0〉 = sin2 φ

2
|1, 1〉|0〉1,−1 + sin φ√

2
|1, 0〉|0〉1,−1 + cos2 φ

2
|1,−1〉|0〉1,−1. (C24)
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