
PHYSICAL REVIEW A 98, 033824 (2018)

Chiral microresonator assisted by Rydberg-atom ensembles

Xiao-Fei Liu,1 Tie-Jun Wang,1 Yong-Pan Gao,1 Cong Cao,2 and Chuan Wang1,3,*

1State Key Laboratory of Information Photonics and Optical Communications and School of Science,
Beijing University of Posts and Telecommunications, Beijing 100876, China

2School of Ethnic Minority Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
3College of Information Science and Technology, Beijing Normal University, Beijing 100875, China

(Received 12 June 2018; published 25 September 2018)

The chiral light-matter interaction, which shows great potential in applications ranging from photonic devices
to quantum information processing, can be achieved with the development of recent experimental advances of
the fabrication technologies on nanoscales. Traditionally, the chiral optics based on spin-momentum locking in
micro- and nanophotonics could be observed only for specific optical modes, such as the transverse magnetic
mode. Here in this study, we investigate that the chirality of a whispering-gallery-mode (WGM) microresonator
can be well controlled with assistance from coupled Rydberg-atom ensembles. The presented asymmetric
backscattering also originates from interferences between scattered optical modes in the WGM microresonator,
which is proposed by Wiersig [Phys. Rev. A 84, 063828 (2011)]. Therefore the flow of light can be well
controlled, and the statistical properties of photons could be changed by regulating this asymmetric coupling.
Most importantly, its universal chiral property is not limited by specific optical modes which may also be used
as optical diodes and routers.
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I. INTRODUCTION

Chirality which describes the mirror-symmetric property
of a system plays an important role in modern physics. It can
be observed in many phenomena and systems which involve
the symmetry, such as the quantum Hall effect [1], Higgs
boson physics [2], double-well Bose-Einstein condensates [3],
topological insulators [4], and superconductors [5]. As the
property of photons is similar with electrons, the concept of
chirality can also be extended to optical domains. Recently,
as a result of experimental advances in fabricating micro-
and nanophotonic structures, chiral quantum optics has be-
come possible and been achieved in experiments [6]. For
example, the time-reversal symmetry of Maxwell’s equations
gives rise to a transverse spin component of photons and the
spin-momentum locking in strongly confined optical fields
[7–9]. This transverse spin will flip its sign if the propagation
direction of the optical field is reversed. Meanwhile, when
this spin-momentum locking optical field interacts with a
dipole emitter supporting both the σ+ and σ− transition, the
nonreciprocal transmission can be achieved due to this chiral
light-matter interaction [10–16].

During the past decades, there has been remarkable
progress in the study of ultrahigh-quality factor Q micro-
cavities which could greatly improve the performance of
light-matter interaction [17–21]. Specifically, the whispering-
gallery-mode (WGM) microresonators [22,23], in which light
travels through internal total reflection, have a Q factor larger
than 108 and small mode volumes in microscales. They have
been widely used in ultralow-threshold micro- and nanolaser
[24–26], parity-time (PT ) symmetric or antisymmetric optics
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[27–31], cavity quantum electrodynamics (C-QED) [32], op-
tomechanics [33–37], nonlinear optics [38–40], ultralong pho-
ton storage [41], and ultrasensitive detections [42–44]. Mean-
while, the chiral light-matter interaction can be controlled at
the single-photon level, with potential applications in quantum
information processing. More recently, the quantum optical
circulator [45], single-photon isolation [46], and all-optical
quantum router [15] which are based on the chiral light-
matter interaction have been achieved in WGM microcavities
coupled with the cold 87Rb atoms. The WGM microcavities,
like microsphere or microtoroid, support both the TE and
TM modes. However, only the TM mode can exhibit this
chiral light-matter interaction and spin-momentum locking
phenomenon. Therefore these chiral photonic devices are
dependent on the polarization of input light, which may limit
their further applications.

Another method to achieve the universal chiral optics is to
construct a non-Hermitian system [47–53] which originates
from the energy or information exchange between the system
and environment. In WGM microcavities, the existence of
one nanoparticle around the evanescent field could induce
the coherent backscattering between two counterpropagat-
ing modes. The mode splitting becomes more complicated
when multi-Rayleigh scatterers exist simultaneously [49–56].
In 2011, Wiersig [49] proposed that two or more particles
could lead to the appearance of exceptional points (EPs)
and asymmetric backscattering between counterpropagating
optical modes. This phenomenon results from destructive
or constructive interference of the scattered optical modes.
Subsequently, this system is found to be used to enhance the
detection sensitivity of particles [50,51]; meanwhile, asym-
metric backscattering, EPs, and sensitive detections are ob-
served in experiments [52–54].
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In this paper, we will show a precise control of chiral
matter-light interaction and asymmetric backscattering as-
sisted by Rydberg-atom ensembles. The asymmetric backscat-
tering in this paper also originates from interferences between
different scattered modes in non-Hermitian systems, which
is proposed by Wiersig [49]. The difference is that we can
control chiral properties of optical fields through changing the
input frequency and strength of an external control field acting
on Rydberg atoms while keeping the position (or phase) of the
atom ensembles unchanged. In this model, the energy level of
the Rydberg atom is the standard �-type configuration, which
couples with both the cavity mode and the external classical
control field. After adiabatically eliminating the excited state
of the Rydberg atom, the Stark shift and coupling strength be-
tween the atom and cavity mode can be well controlled. Fur-
thermore, the asymmetric backscattering which is quantized
by the chirality parameter D could be achieved. Meanwhile,
statistical properties of photons are also determined by this
chiral property, and an analytical expression of the equal-time
second-order correlation function g(2)(0) is derived when the
pump driving is weak.

This paper is organized as follows. In Sec. II, we show the
model and the adiabatic elimination of excited states of Ryd-
berg atoms. Furthermore, the Hamiltonian is transformed into
the interaction between four boson fields using the Holstein-
Primakoff transformation. In Sec. III, the model is further sim-
plified into the interaction between two counterpropagating
optical modes by eliminating atom ensembles. The chirality
of this system is also analyzed in detail. Section IV discusses
statistical properties of photons. Finally, we give the summary
and further discussions.

II. THEORETICAL MODEL

Consider the system that contains a WGM microtoroid
coupled with Rydberg-atom ensembles and add-drop–type
taper fiber, as shown in Fig. 1(a). The WGM microtoroid sup-
ports both the clockwise (CW) and counterclockwise (CCW)
optical mode, which are described by the bosonic annihilation
operator âcw (âccw) and creation operator â

†
cw (â†

ccw). These
two modes (both TE or TM mode) have the same resonant
frequency ωc and dissipation rate κ . Figure 1(b) shows the
�-type energy levels of the atom, which are represented by
|ej

k 〉, |gj

k 〉, and |f j

k 〉 for the kth atom in the j th ensemble. The
|ej

k 〉 ↔ |gj

k 〉 transition is driven by an external control field
with central frequency ω

j
p, while the transition |ej

k 〉 ↔ |f j

k 〉
interacts with degenerate CW and CCW modes with coupling
strength Jj . The total number of Rydberg atoms in the j th
ensemble is Nj .

The Hamiltonian of this system could be described
as Ĥ = Ĥc + Ĥa + ĤI , where Ĥc is the Hamiltonian of
the optical WGM field which has the expression Ĥc =
ωc(â†

cwâcw + â
†
ccwâccw ) by setting h̄ = 1. The second term

Ĥa = ∑
j,k (ωgσ

jk
gg + ωeσ

jk
ee + ωf σ

jk

ff ) describes the Hamil-

tonian of atoms in which σ
jk
gg = |gj

k 〉〈gj

k |, σ
jk
ee = |ej

k 〉〈ej

k |, and
σ

jk

ff = |f j

k 〉〈f j

k | stand for the corresponding transitions of the
kth atom in the j th ensemble. The interaction Hamiltonian
ĤI represents the coupling between atoms and optical fields
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FIG. 1. (a) Illustration of microtoroid coupled with Rydberg-
atom ensembles. Meanwhile, this microtoroid also couples with two
taper fibers, forming the add-drop structure. The phase of the j th
ensemble is represented by βj . When a probe signal is input from
port 1 (or port 2), the transmission is detected from port 3 (or port 4),
i.e., port 1 → port 3 (or port 2 → port 4). The intrinsic dissipation
rate of the microtoroid is κ0, and the coupling strengths with these
two taper fibers are κext

1 and κext
2 , respectively. (b) The energy level of

the Rydberg atom and its interaction with the cavity modes âcw(ccw)

and the external control laser.

which is expressed as

ĤI =
∑
j,k

[
Jiσ

jk

ef (âcweiβj +âccwe−iβj) + �j σ
jk
eg e−iω

j
pt + H.c.

]
.

(1)

Here, σ
jk

ef = |ej

k 〉〈f j

k | and σ
jk
eg = |ej

k 〉〈gj

k |, which correspond

to the transition from the |f j

k 〉 state (or |gj

k 〉 state) to the |ej

k 〉
state. For simplification, we assume that the size of each atom
ensemble is small enough so that different atoms within one
ensemble have the same coupling strength Jj and �j together
with the same phase βj . By applying the unitary evolution
operation Û (t )=T exp {− i(Ĥa + Ĥc )t}, the total Hamilto-
nian can be transformed into an interaction picture using
the formula Ĥ

(1)
I = Û †(t )Ĥ Û (t ) − iÛ †(t )∂Û (t )/∂t , which

becomes

Ĥ
(1)
I =

∑
j,k

[
Jjσ

jk

ef (âcweiβj + âccwe−iβj )eiδj t

+�j σ
jk
eg ei�

j
pt + H.c.

]
. (2)

Here, the effective detunings are �
j
p = ωe − ωg − ω

j
p and

δj = ωe − ωf − ωc. When they are much larger than the
corresponding coupling strength, i.e., δj ,�

j
p � Jj ,�j , the

excited states can be adiabatically eliminated. Then we trans-
form the Hamiltonian into the noninteracting picture again,
and it becomes Ĥ (2) = Ĥ (2)

a + Ĥ (2)
c + Ĥ

(2)
I . Apparently, Ĥ (2)

c

stays unchanged while Ĥ (2)
a and Ĥ

(2)
I have the expression as

Ĥ (2)
a =

∑
j,k

[(
ωg − �2

j

�
j
p

)
σ jk

gg +
(

ωf − J 2
j

�
j
p

n̂

)
σ

jk

ff

]
(3)

and

Ĥ
(2)
I =

∑
j,k

[
−�j Jj

�
j
p

σ
jk

gf (âcweiβj +âccwe−iβj )e−iω
j
pt+H.c.

]
,

(4)

033824-2



CHIRAL MICRORESONATOR ASSISTED BY RYDBERG- … PHYSICAL REVIEW A 98, 033824 (2018)

with n̂ = â
†
cwâcw + â

†
ccwâccw. The average value 〈n̂〉 repre-

sents the number of photons inside this microresonator. From
Eq. (3), it is clearly seen that the energy level of the |gj

k 〉
and |f j

k 〉 state have changes of −�2
j /�

j
p and −J 2

j n̂/�
j
p,

respectively.
Then we introduce the collective spin operator given by

S+
j =∑Nj

k=1 σ
jk

fg and S−
j =∑Nj

k=1 σ
jk

gf . The S+
j and S−

j operators

could be transferred into the bosonic mode b̂j using the
Holstein-Primakoff (HP) transformation, i.e., S+

i = b̂
†
j (Nj −

b̂
†
j b̂j )1/2 and S−

j = (Nj − b̂
†
j b̂j )1/2

b̂j . When the mean number
of excitations is much less than the total number of atoms,
i.e., 〈b̂†j b̂j 〉 � Nj , the collective spin operator can be further

simplified into S+
j � √

Nj b̂
†
j and S−

j � √
Nj b̂j .

For convenience, Ĥ (2) is rewritten as Ĥ in the follow-
ing. As shown in Fig. 1(a), the CW mode of the micro-
toroid is pumped by the field with strength ε and frequency
ωin

c . In the rotating reference frame, the total Hamiltonian
becomes Ĥ = Ĥ0 + ĤI + Ĥdrive. If this system is excited
from port 1, the driving term has the expression Ĥdrive =√

κext
1 (εâcw + ε∗â†

cw ). Here, Ĥ0 = �c(â†
cwâcw + â

†
ccwâccw ) +∑

j �j b̂
†
j b̂j , which represents the Hamiltonian of two coun-

terpropagating optical fields and Rydberg-atom ensembles.
The detuning �c is ωc − ωin

c and �j has the expression ωf −
ωg + �2

j /�
j
p − ω

j
p − ωin

c under the condition J 2
j 〈n̂〉/�j

p �
ωf . The interaction term ĤI could be written as

ĤI =
∑

j

Gj (âcwb̂
†
j e

iβj + âccwb̂
†
j e

−iβj ) + H.c., (5)

where this coupling strength Gj has the expression as
−√

Nj�j Jj /�
j
p. Generally, the coupling strength Jj and the

phase βj can only be controlled by changing the position
of atom ensembles. However, since the atom ensemble is in
nanoscales, this position is hard to change precisely. For-
tunately, Eq. (5) demonstrates that when the excited state
is adiabatically eliminated, the effective coupling strength
Gj between optical modes and Rydberg atoms is not only
determined by the original strength Jj , but also depends on
Rabi frequency �j , the detuning �

j
p, and the number of

atoms Nj . This suggests that we can continuously tune the
atom-cavity coupling by changing the external laser acting
on atom ensembles while keeping the position of atom en-
sembles unchanged, which is much more easily operated in
experiment.

III. CHIRAL LIGHT-MATTER INTERACTION
ENGINEERED ASYMMETRIC BACKSCATTERING

From the above analysis, a simplified model describ-
ing the interaction between counterpropagating optical fields
and Rydberg-atom ensembles is obtained. Here the coupling
strength Gj between optical fields and Rydberg atoms can be
effectively controlled through changing the input frequency
and strength of external control field after the excited state of
the Rydberg atom is adiabatically eliminated. When we ne-
glect the driving term of this system, the dynamics of bosonic
operators have the following expression in the Heisenberg

picture after taking the dissipation into consideration and
neglecting quantum noise terms:

dâcw

dt
=

(
−i�c − κ

2

)
âcw − i

∑
j

Gj b̂j e
−iβj , (6)

dâccw

dt
=

(
−i�c − κ

2

)
âccw − i

∑
j

Gj b̂j e
iβj , (7)

db̂j

dt
=

(
−i�j − γ

2

)
b̂j − iGj (âcweiβj + âccwe−iβj ), (8)

where κ and γ are the dissipation rate of optical fields âcw (and
âccw) and atom ensembles, respectively. This κ consists of the
intrinsic dissipation rate of the microtoroid κ0 and coupling
decay rate κext

1(2). Then, Eq. (8) can be formally integrated as

b̂j (t ) = b̂j (0)e(−i�j −γ /2)t − i

∫ t

0
Gj [âcw(t ′)eiβj

+ âccw(t ′)e−iβj ]e(−i�j −γ /2)(t−t ′ )dt ′. (9)

The collective bosonic mode b̂j can be further adiabatically
eliminated under the condition that the dissipation γ or the
detuning �j are larger than those of optical modes, i.e.,
�j , γ � �c, κ . Apparently, the first term of Eq. (9) becomes
zero under the high dissipation condition. Since the evolution
of optical fields is much slower than atom ensembles, the
values of âcw and âccw at time t ′ can be regarded as nearly the
same with the values at time t . Therefore, the operators âcw(t ′)
and âccw(t ′) are written as âcw(t ) and âccw(t ), which can be
taken out from this integration. Finally, Eq. (9) is derived
to be b̂j (t ) = iχjGj (âcweiβj + âccwe−iβj ), in which χj =
(−i�j − γ /2)−1. By taking this result into Eqs. (6) and (7),
the evolution of optical fields becomes d(âcw âccw )T /dt =
M (âcw âccw )T , and the matrix M is given by⎛
⎝−i�c − κ

2
+ ∑

i χjG
2
j

∑
j χjG

2
j e

−i2βj∑
j χjG

2
j e

i2βj −i�c − κ

2
+ ∑

j χjG
2
j

⎞
⎠. (10)

The diagonal elements of Eq. (10) represent the effective
detuning �′

c and the damping rate κ ′ of optical modes, which
can be expressed as

�′
c = �c −

∑
j

G2
j�j

�2
j + γ 2/4

, (11)

κ ′ = κ +
∑

j

G2
j γ

�2
j + γ 2/4

. (12)

Apparently, the changes of �′
c and κ ′ are proportional to the

square of coupling strength Gj . That is to say, when �j and γ

are kept unchanged, an increase of G2
j will lead to the increase

of κ ′ and the reduction of �′
c. Next, we focus on the effect

of �j on both �′
c and κ ′. Assuming that we continuously

tune the detuning �n of the nth atom ensemble and keep
other ensembles unchanged, as shown in Fig. 2, the changes
of dissipation rate κ ′ exhibit symmetric behaviors, while the
changes of detuning �′

c shows an antisymmetric line shape.
Moreover, the existence of more atomic ensembles would
increase the dissipation rate of optical fields because more
dissipative channels are opened. The changes of �′

c and κ ′ are
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FIG. 2. The changes of effective detunings �′
c and dissipation

rate κ ′ when tuning the nth atom ensemble. The blue line (circle
symbol) and dashed red line correspond to the changes of κ ′ with
dissipation rate γ /κ = 7 and γ /κ = 10, respectively. Also, the green
line (square symbol) and dotted black line demonstrate the changes
of �′

c with dissipation rate γ /κ = 7 and γ /κ = 10, respectively.
The coupling strength between this ensemble and the microtoroid
is Gn/κ = 5.

also related to the dissipation rate γ of atom ensembles. When
γ is reduced from 10κ to 7κ , the peak value of the change of
κ ′ becomes higher, and the Fano-like shape of the change of
�′

c becomes more obvious, which is shown in Fig. 2.
With considering the dissipation of this system, the ef-

fective Hamiltonian described by the evolution M is non-
Hermitian, which could be expressed as

Ĥeff = i
∑

j

χjG
2
j e

−i2βj â†
cwâccw+i

∑
j

χjG
2
j e

i2βj âcwâ†
ccw

+
(

�′
c − i

κ ′

2

)
(â†

cwâcw + â†
ccwâccw ). (13)

Here, the off-diagonal elements |M12| and |M21|, which de-
scribe the coupling between CW and CCW mode, are not
exactly the same. This property leads to the asymmetric
backscattering of this system. As shown in Fig. 1(a), when
the light is input from port 1 (or port 2), the normalized trans-
mission coupled out from port 3 (or port 4) can be derived as

T1→3(2→4) = 16|M21(12)|2κext
1 κext

2

|(−2i�′
c − κ ′)2 − 4M12M21|2 . (14)

Here, κext
1 and κext

2 represent the resonator-waveguide cou-
pling strength of this add-drop structure, as shown in Fig. 1(a).
When |M12| �= |M21|, the transmissions of 1 → 3 and 2 → 4
are different. Furthermore, the chirality parameter D is de-
fined to describe the asymmetric backscattering of this system
as

D = |M21| − |M12|
|M21| + |M12| . (15)

It is apparent that when |M21| (or |M12|) becomes zero, the
chirality becomes 1 (or −1). That is to say, only the CW mode
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FIG. 3. The changes of chirality D with respect to the detun-
ing �1 and the coupling strength G1 of the first atom ensemble.
Other parameters have values κext

1 /κ0 = 2, κext
2 /κ0 = 0.2, γ /κ = 5,

�2/κ = 15, β = 0.1π , and G2/κ = 2.

(or CCW mode) can couple into the CCW (or CW mode). The
requirement for the exact asymmetric backscattering is∑

j

χjG
2
j e

+(−)i2βj = 0. (16)

Note that when it is the + (or −) symbol, the CW mode
(or CCW mode) can only couple into a CCW mode (or CW
mode). When the position of the j th atomic ensemble is fixed,
χj can be faithfully controlled through changing the input
frequency of the external field ω

j
p, and the coupling strength

Gj can be controlled by modifying the Rabi frequency �j .
Therefore, M12 or M21 can be continuously tuned to make the
system into an exact asymmetric backscattering region while
keeping the phase βj unchanged.

In order to show the efficiency of controlling the chirality
proposed here, we consider the situation containing
two Rydberg-atom ensembles with phase 0 and β,
respectively. Under this situation, Eq. (16) evolves into
G2

1χ1 + G2
2χ2 exp {+(−)2iβ}=0. Apparently, the real

and imaginary part should be zero simultaneously. Here,
we define cos α1(2) =γ /|γ + 2i�1(2)| and sin α1(2) =
2�1(2)/|γ + 2i�1(2)|. When the CW mode can only couple
into CCW mode, the coupling strength G1(2) and the detuning
�1(2) need to satisfy the following conditions:

�1 = γ

2
tan (α2 + 2β ), (17)

G2
1|χ1| cos α1 = G2

2|χ2| cos (α2 + 2β ). (18)

Here, when the + sign is replaced by a − sign, the CCW mode
can only couple into a CW mode. The changes of chirality D

with respect to the detuning �1 and coupling strength G1 are
shown in Fig. 3. The chirality D exhibits a clear feature of
the continuous transition from 1 to −1 by choosing proper �1

and G1. When the chirality D is 1, T2→4 = 0, i.e., the CW
mode can couple into the CCW mode. Similarly, when D is
−1, T1→3 becomes zero, and only the CCW mode can couple
into the CW mode.

To better show the chiral backscattering properties of this
system, the normalized transmission spectra are plotted in
Fig. 4. Figure 4(a) corresponds to the transmission spectra
in the asymmetric backscattering region with �1/γ = −4.5.
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The light can have the transmission from port 2 to port 4.
However, no light can couple out with the input from port 1. In
this case, only the CCW mode can couple into the CW mode,
and the reverse process is not permitted. When �1 is further
increased in Figs. 4(b) and 4(c), the transmission spectra of
these two opposite directions become more similar, indicating
the mutual coupling between the CW and CCW modes.

IV. THE KERR NONLINEARITY AND CONTROLLABLE
PHOTON BLOCKADE

In this section, we investigate the statistical properties
of photons induced by tunable nonlinear terms inside this
system. In 2010, Liew and Savona [57] proposed that two
coupled quantum modes with weak nonlinearity can work as a
single-photon source. Subsequently, Bamba et al. [58] showed
that this phenomenon originates from the destructive quantum
interference effect between different optical modes. Until
now, more properties about photon blockades in coupled-
mode systems are well investigated by theory and experiment
[59–61]. The system considered here contains two optical
modes with Kerr nonlinearity, which can also achieve the
unconventional photon blockade according to the results of
previous research [57–61]. The difference of this paper lies
in that coupling terms between these two optical modes are
asymmetric in the above model. In the following, we will
show that the equal-time second-order correlation function
g(2)(0) can be well controlled through changing this asymmet-
ric interaction of the non-Hermitian Hamiltonian according to
the method given in Refs. [58,59].

When considering the nonlinear term, the χi becomes
[− i(�j − J 2

j n̂/�
j
p ) − γ /2]−1 after adiabatically eliminating

atom ensembles. Under the condition that γ � �j , it be-
comes χj = 4i(�j − J 2

j n̂/�
j
p )/γ 2 − 4/γ using Taylor series

expansion, which indicates that the Hamiltonian contains
the Kerr nonlinear terms â

†
cwâ

†
cwâcwâcw and â

†
ccwâ

†
ccwâccwâccw

together with the cross Kerr nonlinear term â
†
cwâcwâ

†
ccwâccw.

This effect can be illustrated through the effective Hamilto-
nian given by

Ĥ ′ = �′
c(â†

cwâ†
cw + â†

ccwâ†
ccw ) + 2Uâ†

cwâcwâ†
ccwâccw

+U (â†
cwâ†

cwâcwâcw + â†
ccwâ†

ccwâccwâccw )

+ g12â
†
cwâccw + g21âcwâ†

ccw + ε′(â†
cw + âcw ). (19)

The detuning of CW and CCW modes with respect to
the pump laser is rewritten as �′

c, and the dissipation rate
κ ′ has an expression as κ + 4

∑
j G2

j /γ . The nonlinear

term U is −4
∑

j G2
j J

2
j /(�j

pγ 2
i ), while the asymmetric cou-

pling terms are g12 =4i
∑

j G2
j (i�j − γ )e−2βj i/γ 2 and g21 =

4i
∑

j G2
j (i�j − γ )e2βj i/γ 2.

When we neglect this nonlinear term U , the eigenfre-
quency of these two supermodes could be solved as

ω± = i�′
c − κ ′

2
± i

√
g12g21. (20)

Apparently, the imaginary part of g12g21 may not be zero.
It would have the expression as i�′

c − (κ ′ ± 2
√|g12g21|)/2

when g12g21 < 0. In this case, these two supermodes have
the same resonant frequencies, but their dissipation rates are
different, which indicates that they cannot be distinguished
from the transmission spectra. When g12g21 > 0, these two
supermodes have the same dissipation rate but different reso-
nant frequencies, and ω± becomes i(�′

c ± √|g12g21|) − κ ′/2,
which can be well separated from the spectrum. Meanwhile,
the exceptional point corresponds to the relation g12g21 =
0, which shows great potential in ultrasensitive detections
[50,54].

When the excitation of the optical mode is weak enough,
i.e., ε′ � κ ′, only the lower excited states can be excited,
and the mean number of photons inside the microcavity is
relatively small. Assuming that the maximum photon number
is less than 2, the state of this system becomes

|ψ〉 = C00|00〉 + C10|10〉 + C01|01〉 + C20|20〉
+ C02|02〉 + C11|11〉. (21)

Here, the state |ncw, nccw〉 stands for the Fock state in which
this system has ncw photons in the CW mode and nccw photons
in the CCW mode. Since the pump is weak enough, the
coefficients of this Fock state satisfy the condition C00 �
C10, C01 � C20, C11, C02. The evolution of this system can
be solved in this subspace, which follows the Schrodinger
equation

ih̄
∂|ψ〉
∂t

= Ĥ |ψ〉. (22)
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FIG. 5. The changes of the equal-time second-order correlation
function g(2)(0) vs the phase θ and detuning �′

c. The values of other
parameters are ε′/κ ′ = 0.01, U/κ ′ = 0.005, and g/κ ′ = 3.

Under the steady-state condition, these coefficients can be
derived as

C10 = − ε′C00

�−1
0 − g12g21�0

, (23)

C20 = −2 + g12g21(�0 − �1)�1√
2
(
�−1

1 − g12g21�1
) ε′C10, (24)

in which �0 = (�′
c − iκ ′/2)−1 and �1 = (�′

c − iκ ′/2 + U )−1.
With a weak pump, the term C00 → 1 and the second-order
correlation function g(2)(0) can be obtained as

g(2)(0) � 2|C20|2
|C10|4 . (25)

It is obvious as seen from Eqs. (23)–(25) that the photon
statistics is determined by the product of g12 and g21 rather
than their individual values. Here, g12g21 is rewritten as g2eiθ

for simplicity, in which g is the effective coupling strength
and θ is the total phase factor.

In Fig. 5, we plot the correlation function g(2)(0) as a
function of θ and the detuning �′

c while g is kept unchanged.
This figure is calculated from the master equation in the Lind-
blad form ρ̇(t ) = i[ρ(t ), Ĥ ′] − κ ′[L(âcw ) + L(âccw )]ρ(t ),
and L(o)ρ = 1

2 (o†oρ + ρo†o) − oρo†. As shown in Fig. 5(a),
when the phase θ is zero, g(2)(0) < 1, which shows the
strong photon blockade effect. When θ is increased from 0
to π (or decreases to −π ), g(2)(0) will increase (or decrease)
simultaneously. Actually, the number of photons in |10〉 state
originates from the interference from the |01〉 state and |00〉
state. Meanwhile, the photon in the |20〉 state is determined
by the interference from the |11〉 and |10〉 states. Therefore
the phase factor θ and the coupling strength g play important
roles during this process.

When g(2)(0) = 0, this chiral microresonator can be used
as the perfect single-photon source. By setting C20 to be zero,
the condition is given by

4�′
cU

2+(
8�′2

c −2κ ′2+ 2g2 cos θ
)
U+ 4�′3

c =3�′
cκ

′2, (26)(
12�′2

c +16�′
cU+4U 2−κ ′2)κ ′− 4g2U sin θ = 0. (27)
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FIG. 6. The changes of the equal-time second-order correlation
function g(2)(0) vs the coupling strength g21 and U with phase
θ = 0 in (a) and θ = π in (b). The dashed lines are the optical Uopt

calculated from Eq. (29). The detuning �′
c is chosen as κ ′/(2

√
3).

The values of other parameters are ε′/κ ′ = 0.01 and g12/κ
′ = 3.

These conditions are coincident with the results in Ref. [58].
As the Kerr nonlinearity U is weak enough, the optimal
solution for Eqs. (26) and (27) becomes

�′opt
c � ± κ ′

2
√

3
, (28)

U opt � ± 2κ ′3
√

3(3g2 cos θ − 2κ ′2)
. (29)

The changes of g(2)(0) with respect to the coupling strength
g and the Kerr nonlinearity U are shown in Fig. 6. It can be
observed that with the increase of g21 (i.e., g), the minimum
value of g(2)(0) becomes smaller, and the optimal Uopt de-
creases simultaneously. The black dashed lines are calculated
from Eq. (29), which denotes the optimal parameter, and it can
fit well with the numerical calculation. As analyzed above, the
population of each is determined by interferences from nearby
states. The increase of g would enhance this interference, and
also the photon blockade effect.

V. CONCLUSION

To conclude, we have achieved a chiral whispering gallery
mode microresonator assisted by Rydberg-atom ensembles.
The chirality of the system can be well controlled by changing
the input frequency and strength of the external control field
acting on atom ensembles while the position of the ensemble
is kept unchanged. The microresonator exhibits asymmetric
backscattering due to the chiral light-matter interaction, which
has significant applications in optical diodes or optical routers.
Meanwhile, the controllable photon blockade can also be

033824-6



CHIRAL MICRORESONATOR ASSISTED BY RYDBERG- … PHYSICAL REVIEW A 98, 033824 (2018)

achieved by tuning the coupling phase and strength in this
chiral interaction.
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APPENDIX: THE ANALYTICAL SOLUTION OF THE
SCHRÖDINGER EQUATION IN SEC. IV

First, we consider the one-photon excitation states, i.e.,
|10〉 and |01〉 states. The evolution of these two states can be
described as

i
∂C10

∂t
=

(
�′

c − i
κ ′

2

)
C10 + g12C01 + ε′C00, (A1)

i
∂C01

∂t
=

(
�′

c − i
κ ′

2

)
C01 + g21C10. (A2)

Under the steady-state condition, this amplitude can be ob-
tained as C01 =−�0g21C10, and

C10 = − ε′C00

�−1
0 − g12g21�0

. (A3)

Next, we consider the evolution of two-photon excitation
states, i.e., the |20〉, |11〉, and |02〉 states. From the Eq. (22),
the evolution of these states can be given by

i
∂C20

∂t
= (2�′

c−iκ ′+2U )C20+
√

2ε′C10+
√

2g12C11, (A4)

i
∂C02

∂t
= (2�′

c− iκ ′+ 2U )C02+
√

2g21C11, (A5)

i
∂C11

∂t
= (2�′

c−iκ ′+2U )C11+ε′C01+
√

2g21C20

+
√

2g12C02. (A6)

The |02〉 state can be adiabatically eliminated in the steady-
state situation. According to Eq. (27), we can get that 2C02 =
−√

2g21C11�1. Taking this formula into Eqs. (A4) and (A6),
their evolutions become

i
∂C20

∂t
= 2�−1

1 C20 +
√

2g12C11 +
√

2ε′C10, (A7)

i
∂C11

∂t
= (

2�−1
1 − g12g21�1

)
C11 +

√
2g21C20

− g21�0ε
′C10. (A8)

Furthermore, we can get the |11〉 state as

C11 = g21(�1 + �0)

2
(
�−1

1 − g12g21�1
)ε′C10. (A9)

From the above analyses, the transition between different
energy levels can be simplified by eliminating the |10〉 ↔
|01〉 and the |11〉 ↔ |02〉 transitions. The population of the
|20〉 state results from the interference between the |11〉 state
and |10〉 state, i.e., C20 ∝ g12C11 + ε′C10. The C20 could be
expressed as

C20 = −2 + g12g21(�0 − �1)�1√
2
(
�−1

1 − g12g21�1
) ε′C10. (A10)

When C20 approaches zero, the optimal condition derived
from Eqs. (A4)–(A6) becomes∣∣∣∣∣∣

0 g12 ε′

2 �−1
1

√
2g21 0√

2g12 2 �−1
1 ε′g21�

−1
0

∣∣∣∣∣∣ = 0 (A11)

or

�′
c[4(�′

c + U )2 − κ ′2] − 2κ ′2(�′
c + U

) + 2g12g21U

− 4i�′
cκ

′(�′
c + U ) − 2iκ ′(�′

c + U )2 − i
κ ′3

2
= 0.

(A12)

Therefore, when both the real and imaginary parts of
Eq. (A12) are set to be zero, Eqs. (26) and (27), demonstrated
in Sec. IV, can be obtained.
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[36] F. Monifi, J. Zhang, Ş. K. Özdemir, B. Peng, Y. xi Liu, F. Bo, F.
Nori, and L. Yang, Nat. Photonics 10, 399 (2016).

[37] Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B.
Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, Nat. Photonics 10,
657 (2016).

[38] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science
332, 555 (2011).
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[54] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang,
Nature (London) 548, 192 (2017).
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