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Many-particle interferometry and entanglement by path identity
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We introduce a general scheme of many-particle interferometry in which two identical sources are used and
“which-way information” is eliminated by making the paths of one or more particles identical (path identity).
The scheme allows us to generate many-particle entangled states. We provide general forms of these states and
show that they can be expressed as superpositions of various Dicke states. We illustrate cases in which the scheme
produces maximally entangled two-qubit states (Bell states) and maximally three-tangled states (three-particle
Greenberger-Horne-Zeilinger-class states). A striking feature of the scheme is that the entangled states can be
manipulated without interacting with the entangled particles; for example, it is possible to switch between two
distinct Bell states. Furthermore, each entangled state corresponds to a set of many-particle interference patterns.
The visibility of these patterns and the amount of entanglement in a quantum state are connected to each other.
The scheme also allows us to change the visibility and the amount of entanglement without interacting with the
entangled particles and, therefore, has the potential to play an important role in quantum information science.
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I. INTRODUCTION

In 1991, Zou, Wang, and Mandel reported observation of
single-photon interference by using two identical two-photon
sources [1,2]. A striking feature of their experiment, which
was originally suggested by Ou, was to make the paths of the
same photon generated by the two sources identical (Fig. 1).
This path identity created coherence between the beams (b1

and b2) of the other photon and a single-photon pattern re-
sulted. The interference pattern could be manipulated without
interacting with the photon that was detected. In a recent
series of work the concept of path identity has been applied
to imaging [3,4], spectroscopy [5], generating a light beam
in any state of polarization [6], fundamental test of quantum
mechanics [7,8], measuring correlations between two photons
[9,10], and generating multiphoton high-dimensional entan-
gled states [11].

The aim of this paper is to introduce a general scheme of
generating many-particle entangled states and many-particle
interference patterns by applying the method of path identity.
An important feature of this scheme is that the generated
entangled states (and also the interference patterns) can be
manipulated without interacting with the entangled particles.

The paper is organized as follows. In Sec. II, we introduce
the scheme in its simplest form and show that it can be
used to produce two-particle entangled sates and interference
patterns. Then in Sec. III, we introduce the scheme in its
most general form. In Sec. IV, we show that the scheme
can produce three-particle GHZ-class states. In Sec. V, we
illustrate how the scheme can be used to control the amount
of entanglement in the generated quantum states. In Sec. VI,
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FIG. 1. Zou-Wang-Mandel experiment. Q and Q′ are two iden-
tical sources emitting two photons (1,2) into beams (b1, b2) and
(b′

1, b
′
2). The paths of photon 2 are made identical by sending beam

b2 through Q′ and aligning it with b′
2. Photon 2 is not detected.

Single-photon interference is observed at detector d when b1 and b′
1

are superposed.

we briefly discuss the fidelity for the output states. Finally, we
summarize the results in Sec. VII.

II. SIMPLEST CASE: TWO-PARTICLE INTERFERENCE
AND ENTANGLEMENT

Case I (Fig. 2).—Suppose that a three-particle source Q

emits particles 1, 2, and 3 into beams b1, b2, and b3, respec-
tively [Fig. 2(a)]. We now consider another identical source Q′
whose emitted beams are denoted by b′

1, b′
2, and b′

3. If the two
sources emit in quantum superposition [12], the three-particle
state is given by

|X3〉 = (|b1〉1|b2〉2|b3〉3 + eiφ0 |b′
1〉1|b′

2〉2|b′
3〉3)/

√
2, (1)
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FIG. 2. (Case I) Two-particle interference and entanglement by
one-particle path identity: (a) Schematic of the setup. Q and Q′

are two identical three-particle sources emitting particles (1,2,3) into
beams (b1, b2, b3) and (b′

1, b
′
2, b

′
3). Beam b3 is aligned with b′

3 in such
a way that it is not possible to determine the source of particle 3 if
observed after Q′. The phase change along b3 due to propagation
from Q to Q′ is θ3. Beams b1 and b′

1 are superposed by BS1 (beam
splitter or an equivalent device) with two outputs detected at d1

and d ′
1. The phase difference between b1 and b′

1 is φ1. Likewise b2

and b′
2 are superposed by BS2 with two outputs at d2 and d ′

2; the
corresponding phase difference is φ2. Particle 3 is never detected. (b)
Two-particle interference patterns. Probabilities (Pd1d2 , Pd1d ′

2
, Pd ′

1d2 ,
Pd ′

1d ′
2
) of joint detection at the pairs of detectors (d1, d2), (d1, d

′
2),

(d ′
1, d2), and (d ′

1, d
′
2) vary sinusoidally with phase θ3 that can only

be modulated using particle 3. Interference patterns Pd1d2 and Pd ′
1d ′

2

are in phase (dashed line). These patterns are complementary to the
patterns Pd1d ′

2
and Pd ′

1d2 (solid line). We have set �(2) = 2nπ , n being
an integer. A maximum and a minimum of an interference pattern are
attained for two distinct Bell states.

where |b1〉1 denotes particle 1 in beam b1, etc., φ0 is a phase
factor, and we have assumed that emission probability at
the two sources are equal. Note that |X3〉 is a three-particle
Greenberger-Horne-Zeilinger (GHZ) state [13,14].

Suppose now that the paths of particle 3 emitted by Q

and Q′ are made identical (b3 = b′
3). This can be done by

sending beam b3 through Q′ and aligning it with b′
3 [Fig. 2(a)].

We therefore have |b3〉3 → exp[iθ3]|b′
3〉3, where θ3 can be

interpreted as the phase gained due to propagation from Q

to Q′. Applying this transformation to Eq. (1), we find that
|X〉 → |ψ0〉, where [15]

|ψ0〉 = 1√
2

(|b1〉1|b2〉2 + ei(φ0−θ3 )|b′
1〉1|b′

2〉2)|b′
3〉3. (2)

This state is a tensor product of a “spin-free” two-particle
entangled state [16] and a single third particle state.

Beams b1 and b′
1 are superposed by a 50-50 beam splitter

(or an equivalent device), BS1, and the two outputs are
received by detectors d1 and d ′

1. The phase difference between
the beams b1 and b′

1 is given by φ1. Likewise b2 and b′
2 are

superposed (corresponding phase difference φ2) by BS2 with
outputs at d2 and d ′

2. The consequent transformations of the
pairs of kets are therefore given by

|bj 〉j → (|dj 〉j + i|d ′
j 〉j

)/√
2, (3a)

|b′
j 〉j → eiφj

(|d ′
j 〉j + i|dj 〉j

)/√
2, (3b)

where j = 1, 2. Applying the evolution given by Eq. (3) to the
state in Eq. (2), we find that

|ψ0〉 → |ψ〉 = 1

2

{
(1 − eiζ

(3)
1 )

1√
2

(|d1〉1|d2〉2 − |d ′
1〉1|d ′

2〉2)

+ i(1 + eiζ
(3)
1 )

1√
2

(|d1〉1|d ′
2〉2 + |d ′

1〉1|d2〉2)
}
|b′

3〉3, (4)

where ζ
(3)
1 = φ0 + φ1 + φ2 − θ3. The complex coefficients

associated with |d1〉1|d2〉2, |d1〉1|d ′
2〉2, |d ′

1〉1|d2〉2, and
|d ′

1〉1|d ′
2〉2 are the probability amplitudes of joint (coincidence)

detection of particles 1 and 2 at the pairs of detectors (d1, d2),
(d1, d

′
2), (d ′

1, d2), and (d ′
1, d

′
2), respectively. The coincidence

detection rate at these pairs of detectors are given by the
corresponding probabilities (square of the modulus of the
probability amplitudes), i.e., by

Pd1d2 = Pd ′
1d

′
2
= 1

4

[
1 − cos

(
�(2) − θ3

)]
, (5a)

Pd1d
′
2
= Pd ′

1d2 = 1
4

[
1 + cos

(
�(2) − θ3

)]
, (5b)

where �(2) = φ0 + φ1 + φ2, i.e., ζ
(3)
1 = �(2) − θ3.

Clearly two-particle interference [17–20] involving 1 and
2 will occur. The fact that |b′

3〉3 gets factored out in Eq. (18)
implies that one does not need to detect particle 3 to observe
the interference of 1 and 2. However, the two-particle inter-
ference patterns can be modulated by using this undetected
particle [Fig. 2(b)], as is evident from the appearance of
θ3 in the joint-detection probabilities. Equation (5) shows
that the two-particle interference patterns at the two pairs
of detectors (d1, d2) and (d ′

1, d
′
2) are identical. Similarly, the

patterns observed at (d ′
1, d2) and (d1, d

′
2) are also identical.

The patterns observed in the former set of detector pairs are
complementary to those observed in the latter set of detector
pairs [Fig. 2(b)].

We now note that the pair of particles (1,2) will be the
following two distinct Bell states for ζ

(3)
1 = 2mπ and ζ

(3)
1 =

(2m + 1)π , respectively:

|�+〉 = 1√
2

(|d1〉1|d ′
2〉2 + |d ′

1〉1|d2〉2), (6a)

|�−〉 = 1√
2

(|d1〉1|d2〉2 − |d ′
1〉1|d ′

2〉2), (6b)
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FIG. 3. (Case II) Two-particle interference and entanglement by
two-particle path identity: Q and Q′ are two identical four-particle
sources emitting particles (1,2,3,4) into beams (b1, b2, b3, b4) and
(b′

1, b
′
2, b

′
3, b

′
4), respectively. The beams b3 and b4 are aligned with b′

3

and b′
4, respectively; the corresponding phase changes are θ3 and θ4.

Particles 3 and 4 are not detected. The rest of the notations are same
as in Fig. 2(a). The two-particle interference patterns produced in
this setup are identical to those shown in Fig. 2, except each pattern
can now be modulated by both θ3 and θ4. The same Bell states are
obtained under conditions strictly similar to case I.

where m = 0,±1,±2, . . . . A comparison between Eqs. (5)
and (6) shows that when the state |�+〉 is obtained, the coinci-
dence counts at (d ′

1, d2) and (d1, d
′
2) maximize and the coinci-

dence counts at (d1, d2) and (d ′
1, d

′
2) minimize [see Fig. 2(b)].

Likewise, the state |�−〉 is obtained when coincidence counts
are maximum at (d1, d2) and (d ′

1, d
′
2), and minimum at (d ′

1, d2)
and (d1, d

′
2). The system therefore allows one to switch between

the two Bell states without any interaction with the pair of
particles.

Case II (Fig. 3).—We now consider two four-particle
sources, Q and Q′, emitting in quantum superposition. Q and
Q′ emit particles 1, 2, 3, and 4 into the beams (b1, b2, b3, b4)
and (b′

1, b
′
2, b

′
3, b

′
4), respectively (Fig. 3). The resulting quan-

tum state is given by

|X4〉 = 1√
2

⎛⎝ 4∏
j=1

∣∣bj

〉
j
+ eiφ0

4∏
j=1

∣∣b′
j

〉
j

⎞⎠. (7)

Beams b3 and b4 are sent through Q′ and are perfectly aligned
with beams b′

3 and b′
4 (path identity). The corresponding

transformations of kets are given by |b3〉3 → exp[iθ3]|b′
3〉3

and |b4〉4 → exp[iθ4]|b′
4〉4. The beams of particles 1 and 2 are

superposed in the same way as in case I. Following theoretical
steps which are strictly similar to case I, we find that the
two-particle interference patterns are given by

Pd1d2 = Pd ′
1d

′
2
= 1

4

[
1 − cos

(
�(2) − θ3 − θ4

)]
, (8a)

Pd1d
′
2
= Pd ′

1d2 = 1
4

[
1 + cos

(
�(2) − θ3 − θ4

)]
, (8b)

where �(2) is defined below Eq. (5).
Let us define ζ

(4)
2 ≡ �(2) − θ3 − θ4. It again follows that

the pair of particles (1,2) will be in the Bell states given by

Eqs. (6a) and (6b) for ζ
(4)
2 = 2mπ and ζ

(4)
2 = (2m + 1)π ,

respectively.
Before introducing the general scheme, we compare cases

I and II and note the following: (1) the difference between the
number of particles produced by a source and the number of
particles used for path identity is the same; (2) both setups
produce the same entangled states; (3) an entangled state is
obtained only when a maximum occurs in a set of interference
patterns; and (4) the entangled states and the interference pat-
terns can be modified without interacting with the associated
particles.

III. GENERAL SCHEME

Let us consider two identical sources, Q and Q′,
each of which can emit N particles (1, 2 . . . , N), into
beams (b1, b2, . . . , bN ) and (b′

1, b
′
2, . . . , b

′
N ), respectively. The

sources emit in quantum superposition and thus produce the
state

|XN 〉 = 1√
2

⎛⎝ N∏
j=1

∣∣bj

〉
j
+ eiφ0

N∏
j=1

∣∣b′
j

〉
j

⎞⎠. (9)

Paths of the particles N − M + 1, . . . , N are made identical
by sending the beams bN−M+1, . . . , bN through Q′ and per-
fectly aligning them with b′

N−M+1, . . . , b
′
N . These alignments

lead to the set of transformations

|bl〉l → exp[iθl]|b′
l〉l , l = N − M + 1, . . . , N, (10)

where θl is the phase gained due to propagation from Q

to Q′ along bl . The pairs of beams (b1, b
′
1), (b2, b

′
2), . . . ,

(bN−M, b′
N−M ) are superposed by N − M beam splitters,

BS1, BS2, . . . , BSN−M . The outputs of the beam splitters
are detected at the pairs of detectors (d1, d

′
1), (d2, d

′
2), . . . ,

(dN−M, d ′
N−M ). The corresponding transformations of kets

are given by Eq. (3) with j = 1, 2, . . . , N − M . We measure
(N − M )-fold coincidences at a set of N − M detectors, each
placed at an output of a distinct beam splitter; an example of
a set of detectors is (d1, d2, . . . , dN−M ).

Applying transformations (3) and (17) to Eq. (9), we find
that the quantum states becomes

|ψN 〉 =
(

1√
2

)N−M+1
[

N−M∑
r=0

(ir + iN−M−r eiξ
(N )
M )|Dr〉N−M

]

⊗
M∏

j=1

|b′
N−M+j 〉N−M+j , (11)

where ξ
(N )
M = φ0 + ∑N−M

k=1 φk − ∑M
j=1 θN−M+j and the (N −

M)-particle state |Dr〉N−M is a Dicke state [21,22], i.e., a
sum of

(
N−M

r

)
terms (states), each being a product of r

primed states (|d ′
k〉k) and N − M − r unprimed states (|dk〉k);

in our notation, |D0〉N−M = ∏N−M
k=1 |dk〉k and |DN−M〉N−M =∏N−M

k=1 |d ′
k〉k have one term each.

It follows from Eq. (11) that when N − M � 1, the system
produced (N − M )-particle interference patterns. The fact
that the states |b′

N−M+j 〉N−M+j
factor out implies that in order

to observe these patterns one does not need to detect the M

particles used for path identity.
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The N − M particles emerging from the outputs of the
beam splitters will be in different entangled states depending
on the value of ξ

(N )
M . One can express these states in simplified

forms by considering the cases N − M = 4n, 4n + 1, 4n + 2,

4n + 3, where n = 0, 1, 2, . . . . It follows from Eq. (11)
that the forms are [dropping the normalization constant
(1/

√
2)N−M−1]:

(i) for N − M = 4n > 0, ξ
(N )
M = 2mπ ; and N − M =

4n + 2, ξ
(N )
M = (2m + 1)π :

|F1〉 =
(N−M )/2∑

r ′=0

(−1)r
′ |D2r ′ 〉N−M, (12)

(ii) for N − M = 4n > 0, ξ
(N )
M = (2m + 1)π ; and N −

M = 4n + 2, ξ
(N )
M = 2mπ :

|F2〉 =
(N−M−2)/2∑

r ′=0

(−1)r
′ |D2r ′+1〉N−M, (13)

(iii) for N − M = 4n + 1, ξ
(N )
M = (2m − 1/2)π ; and

N − M = 4n + 3, ξ
(N )
M = (2m + 1/2)π :

|F3〉 =
(N−M−1)/2∑

r ′=0

(−1)r
′ |D2r ′ 〉N−M, (14)

and
(iv) for N − M = 4n + 1, ξ (N )

M = (2m + 1/2)π ; and N −
M = 4n + 3, ξ

(N )
M = (2m − 1/2)π :

|F4〉 =
(N−M−1)/2∑

r ′=0

(−1)r
′ |D2r ′+1〉N−M, (15)

where m = 0,±1,±2, . . . . These entangled states
[Eqs. (12)–(15)] depend on the difference N − M , not
on individual values of N and M .

It is important to note that the particles emerging from
the beam splitters can be transformed from one entangled
state to other by changing the phase ξ

(N )
M . Since ξ

(N )
M contains

the phases θN−M+j , it can be varied without interacting with
the entangled particles. Therefore, the scheme allows us to
modify a many-particle entangled state in an interaction-free
way. Furthermore, each of these states is generated when a
maximum occurs in a corresponding set of many-particle in-
terference patterns. We made these observations in the special
cases I and II discussed above.

IV. GHZ-CLASS STATE

As another example let us consider the case in which
N − M = 3. It follows from Eq. (14) that the system produces
the states of the form (replacing the unprimed states by 0 and
primed states by 1)
1
2 (|0〉1|0〉2|0〉3 − |1〉1|1〉2|0〉3 − |1〉1|0〉2|1〉3 − |0〉1|1〉2|1〉3).

(16)

This state is a three-particle Greenberger-Horne-Zeilinger-
class state (see, for example, [23]). It has highest (unit) “three-
tangle” or “residual entanglement” (proposed by Coffman,
Kundu, and Wooters [24]): the concurrence [25,26] of each

FIG. 4. The general scheme (notations are analogous to Figs. 2
and 3). Two identical N -particle sources emit particles (1, 2, . . . , N)
into beams (b1, b2, . . . , bN ) and (b′

1, b
′
2, . . . , b

′
N ), respectively. Paths

of M particles (N − M + 1, . . . , N) are made identical by aligning
the corresponding beams and these particles are not detected. Rest
of the particles (1, 2, . . . , N − M) produce N − M-particle interfer-
ence patterns and entangled states when the corresponding beams are
superposed.

qubit with the rest of the system is 1, and all the pairwise
concurrences are 0. A three-particle GHZ-class state is also
obtained from Eq. (15).

V. CONTROLLING THE AMOUNT OF ENTANGLEMENT

In an actual experiment, the path identity can be partially
(or fully) lost. Importantly, the loss of path identity can be
controlled by inserting an attenuator (neutral density filter
for photons) in the path of aligned particles between the two
sources. We now analyze such a situation and show that it
is possible to control the amount of entanglement without
interacting with the entangled particles.

We consider the general scheme (Fig. 4) and in addition we
assume that attenuators are placed between Q and Q′ in each
of the beams bl , where l = N − M + 1, . . . , N . The quantum
state generated by the two N -particle sources is again given
by Eq. (9). However, the transformation of the states due to
alignment of particle paths is now given by [27]

|bl〉l → exp[iθl]

(
Tl|b′

l〉l +
√

1 − T 2
l |v〉l

)
, (17)

where 0 � Tl � 1 is the amplitude transmission coefficient of
an attenuator (1 − T 2

l is the probability of particle l getting
lost before arriving at Q′), |v〉l represents the state of a lost
particle, and l = N − M + 1, . . . , N . Clearly Tl = 1 implies
no loss of path identity (for particle l) and Tl = 0 implies
complete loss of path identity.

The transformations of the states due to beam splitters are
given by Eq. (3), where j = 1, 2, . . . , N − M . The many-
particle interference patterns and the many-particle entangled
states are obtained by applying Eqs. (3), (9), and (17). It is to
be noted that the particles emerging from the beam splitters
are in a mixed state when Tl �= 1 for any l. The density
operator representing this state is obtained by taking partial
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trace over the undetected modes and the loss modes. Below
we illustrate the method by an example.

Let us consider the situation illustrated by Fig. 2(a) with the
additional assumption that an attenuator is placed in beam b3

between Q and Q′. In this case, N = 3 and M = 1. Applying
Eqs. (3), (9), and (17), we find that

|ψ0〉 → |ψ〉 = 1

2

[(
T3 − eiζ

(3)
1

)|b′
3〉3 +

√
1 − T 2

3 |v〉3

]
|�−〉

+ i

2

[(
T3 + eiζ

(3)
1

)|b′
3〉3 +

√
1 − T 2

3 |v〉3

]
|�+〉,

(18)

where ζ
(3)
1 = φ0 + φ1 + φ2 − θ3; and |�+〉 and |�−〉 are

given by Eq. (6). The density operator, ρ̂, representing the
quantum state of the particles emerging from the beam split-
ters is obtained by taking the partial trace of |ψ〉〈ψ | over |b′

3〉3
and |v〉3. We thus have

ρ̂ = tr{|ψ〉〈ψ |}b′
3,v

= 1
2

(
1 − T3 cos ζ

(3)
1

)|�−〉〈�−|
+ 1

2

(
1 + T3 cos ζ

(3)
1

)|�+〉〈�+|. (19)

It follows from Eqs. (6) and (19) that the rate of coin-
cidence detection rate of particles 1 and 2 at the pairs of
detectors (d1, d2), (d1, d

′
2), (d ′

1, d2), and (d ′
1, d

′
2) are given by

Pd1d2 = Pd ′
1d

′
2
= 1

4 [1 − T3 cos ζ
(3)
1 ], (20a)

Pd1d
′
2
= Pd ′

1d2 = 1
4 [1 + T3 cos ζ

(3)
1 ]. (20b)

These two-particle interference patterns are similar to the ones
given by Eq. (5), except they no longer have unit visibility.
The visibility is now given by

V = T3. (21)

If we choose ζ
(3)
1 = 2mπ , Eq. (19) reduces to

ρ̂even = 1
2 (1 − T3)|�−〉〈�−| + 1

2 (1 + T3)|�+〉〈�+|, (22)

and for ζ
(3)
1 = (2m + 1)π , we get

ρ̂odd = 1
2 (1 + T3)|�−〉〈�−| + 1

2 (1 − T3)|�+〉〈�+|. (23)

Clearly when the coincidence detection rates at (d1, d
′
2) and

(d ′
1, d2) maximize, the state given by Eq. (22) is obtained.

Similarly, when the coincidence detection rates at (d1, d2) and
(d ′

1, d
′
2) maximize, the state given by Eq. (23) is obtained.

We now investigate the amount of entanglement in these
mixed states. For simplicity of notation we represent the
unprimed state by 0 and primed states by 1. In this notation
we have |d1〉1|d2〉2 ≡ |0, 0〉, |d1〉1|d ′

2〉2 ≡ |0, 1〉, |d ′
1〉1|d2〉2 ≡

|1, 0〉, and |d ′
1〉1|d ′

2〉2 ≡ |1, 1〉. In this basis, the mixed states
given by Eqs. (22) and (23) take the following matrix forms:

[ρ̂even] =

⎛⎜⎜⎜⎜⎜⎝
1−T3

4 0 0 − 1−T3
4

0 1+T3
4

1+T3
4 0

0 1+T3
4

1+T3
4 0

− 1−T3
4 0 0 1−T3

4

⎞⎟⎟⎟⎟⎟⎠, (24a)

FIG. 5. Controlling the amount of entanglement. Two-particle
entangled states are produced using the setup illustrated by Fig. 2(a).
The concurrence is equal to the visibility of the two-particle in-
terference pattern. Both concurrence and visibility are equal to the
amplitude transmission coefficient of the attenuator (when there is
no experimental loss).

[ρ̂odd] =

⎛⎜⎜⎜⎜⎜⎝
1+T3

4 0 0 − 1+T3
4

0 1−T3
4

1−T3
4 0

0 1−T3
4

1−T3
4 0

− 1+T3
4 0 0 1+T3

4

⎞⎟⎟⎟⎟⎟⎠. (24b)

We determine the concurrence using the standard proce-
dure [26] and find that both states have the same concurrence

C(ρ̂) = T3. (25)

Comparing Eqs. (21) and (25), it becomes clear that

C(ρ̂) = V, (26)

i.e., in this case the concurrence is equal to the visibility of
the two-particle interference pattern (Fig. 5). We note that one
can change both the concurrence and the visibility by varying
T3. Since the attenuator never interacts with the entangled
particles, the scheme allows us to control the amount of
entanglement in an interaction-free way.

The method also applies when the number of entangled
particles is more than two. This is because for any number
of particles, the placement of the attenuators results in the
conversion of a pure output state to a mixed one.

VI. FIDELITY

Finally, we briefly discuss the fidelity for the output states.
Determining fidelity is relevant when the loss of path identity
is unintended and due to experimental imperfections. Equa-
tion (17) again applies in this case but Tl now signifies the
quality of alignment or other experimental losses.

Let us once again consider the situation illustrated by
Fig. 2(a). Without any experimental imperfections, one would
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FIG. 6. Fidelity and loss of path identity. We consider the case
illustrated by Fig. 2(a). The fidelity varies linearly with the visibility
of the two-particle interference pattern. No path identity results in
zero visibility and perfect path identity results in highest possible
visibility.

expect the output state to be |�+〉 for ζ
(3)
1 = 2mπ . However,

when there is a loss of path identity, the output state is
represented by ρ̂even [Eq. (22)]. The fidelity is, therefore, given
by [28]

F ≡ 〈�+|ρ̂even|�+〉 = 1
2 (1 + V ), (27)

where we have used Eq. (21). Similarly, for ζ
(3)
1 = (2m +

1)π , the fidelity is again equal to (1 + V )/2. Clearly the
fidelity is directly related to the visibility of the two-particle
interference pattern (Fig. 6).

The loss of path identity results in the conversion of
a pure output state into a mixed one for any number of
particles. We therefore expect that a relationship between
fidelity and visibility also exists when the number of particle
increases.

VII. CONCLUSIONS

We have introduced a novel scheme of many-particle in-
terferometry that can be used for producing many-particle

entangled states. In contrast to a series of notable studies (see,
for example, [13,14,20,29–32]) that have already emphasized
the connection between entanglement and interference, our
work uses the concept of path identity.

In our scheme, path identity is a result of the fact that
both sources can emit a certain number (M) of particles into
the same modes of the associated quantum field. Therefore,
the scheme is applicable to any quantum system (e.g., atoms,
fundamental particles) that can be treated in the framework of
quantum field theory [33].

Our scheme produces many-particle entangled states that
are superpositions of different Dicke states. We have also
shown that using this scheme, maximally entangled two-
qubit states (Bell states) and maximally three-tangled quan-
tum states (Greenberger-Horne-Zeilinger-class states) can be
produced. We expect that further investigations regarding the
states produced by our scheme will lead to promising results.

An important feature of our scheme is that the generated
entangled states can be manipulated without interacting with
the entangled particles. Furthermore, the scheme also allows
us to control the amount of entanglement in a quantum state.
We hope that this type of quantum state control and engi-
neering will have a significant impact in quantum information
science.

Finally, our scheme can be further generalized by including
other degrees of freedom, for example, polarization, orbital
angular momentum, etc., for the photonic cases. Another
generalization will be the use of multiport beam splitters
[34] instead of the standard two-port beam splitters. It will
also be interesting to investigate whether our scheme can
be represented and further analyzed by the graph theoretical
technique that has recently been introduced by Krenn, Gu, and
Zeilinger [35].
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