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Dicke phase transition in a disordered emitter–graphene-plasmon system
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We study the Dicke phase transition in a disordered system of emitters coupled to the plasmonic modes of a
graphene monolayer. This system has unique properties associated with the tunable, dissipative, and broadband
characters of the graphene surface plasmons, as well as the disorder due to the random spatial distribution and
the inhomogeneous linewidth broadening of the emitters. We apply the Keldysh functional-integral approach
and identify a normal phase, a superradiant phase, and a spin-glass phase of the system. The conditions for these
phases and their experimental signatures are discussed.
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I. INTRODUCTION

The Dicke model [1], which describes the collective cou-
pling between an ensemble of emitters and a radiation field,
implies a superradiant (SR) phase [2,3] characterized by
a nonzero-electromagnetic-field excitation and a collective
atomic polarization [4]. While the validity of the theory
predicting the SR phase, especially the proper treatment
of A2 [5] and P 2 terms [6], is still a matter of debate
[7–13], the SR phase has now been observed experimen-
tally in cold-atom systems [14–19] where an effective Dicke
model is constructed via cavity-assisted Raman transitions
[20]. The Dicke model and its phase transitions have also
been extended to scenarios with multimode [21–25] and lossy
[25–27] cavities, time-dependent couplings [28], and other
systems such as superconducting circuits [29,30] and Dicke
lattice models [31]. These proposals display the richness of
phenomena associated with the collective and superradiant
light-matter interaction and stimulate studies of the relation
between critical behavior and quantum entanglement [32],
quantum chaos [33], and nonequilibrium dynamics [24] in a
variety of different physical systems.

In this article we investigate the possibility of observing
the Dicke SR phase transition within a system of emitters
coupled to surface plasmons (SPs). The SPs are evanescent
electromagnetic modes confined near conductor-dielectric in-
terfaces. Their compressed mode volumes enable strong near-
field light-emitter couplings [34,35], which make quantum
plasmonics a promising platform for quantum optical effects
[36,37]. The prediction of superradiance mediated by SPs
[38,39] and the recent developments of two-dimensional plas-
monic materials [40] and particularly graphene [41], which
can be tuned by means of a gate potential [41–43], motivate us
to study the Dicke phase transition in systems with graphene
SPs (cf. Fig. 1).

The extension of the Dicke model to quantum plasmonics
must take into account the broadband SP spectral density
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[44–46] and the intrinsic Ohmic losses in the graphene. Thus,
the quantization of SPs is more technical than that of optical
cavity modes [47–51]. Moreover, the fact that the graphene
SP wavelengths are shorter than those of free photons by two
orders of magnitudes [42] and could be much shorter than the
spatial extent of the emitter ensemble makes it impossible to
associate them with a uniform emitter-field coupling strength
as commonly used in the Dicke model. Finally, emitters such
as rare-earth ions doped in crystals have randomly distributed
positions and inhomogeneously broadened transition frequen-
cies. The intrinsic dissipation and disorder will seriously
affect the collective coupling to the SP modes, and hence the
conditions for the SR phase transition, and allow the presence
of a quantum spin-glass phase [52].

This article is organized as follows. In Sec. II we introduce
our theoretical approach based on Keldysh functional-integral
formalism. The phase diagrams are shown and discussed in
Sec. III. Further discussion and an outlook are presented in
Sec. IV.

FIG. 1. Emitter-graphene system. An ensemble of N emitters
with spontaneous-emission rate γ0 and transition frequency inhomo-
geneously broadened by � around a central transition frequency ωz

is distributed in a layer with horizontal dimension L at height z. The
Fermi energy EF of the graphene electrons can be tuned by gate
doping.
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II. THEORY AND METHODS

To describe the disordered emitter-graphene system illus-
trated in Fig. 1, we will establish a Keldysh functional-integral
approach, which takes the field losses due to the coupling with
medium into account [47].

A. Quantization of the dispersive and dissipative light field

A bosonic field f (r, ω̃), with three Cartesian components
fa , position r, and frequency ω̃, can be defined with the
commutators [fa (r1, ω̃1), f †

b (r2, ω̃2)] = δabδ(r1 − r2)δ(ω̃1 −
ω̃2), [fa, fb] = 0, and [f †

a , f
†
b ] = 0 such that the quantized

electric field can be written as [49–51]

E(r) = iμ0

√
h̄ε0

π

∫ ∞

0
dω̃

∫
d3r′ω̃2

√
Im ε(r′, ω̃)

× G(r, r′, ω̃) · f (r′, ω̃) + H.c., (1)

where G(r, r′, ω̃) is the dyadic Green’s tensor, μ0 and ε0 are
the vacuum susceptibility and permittivity, respectively, Im ε

stands for the imaginary part of the relative permittivity, and
H.c. is short for Hermitian conjugate. Equation (1) resembles
the particular solution to Maxwell’s equations associated with
a quantized current source ω̃

√
h̄ε0 Im ε(r′, ω̃)/π f (r′, ω̃).

The Hamiltonian of the system studied by us can be written
as

H = H0 +
N∑

i=1

[
1
2 h̄ωi,zσ

z
i − σx

i di · E(ri )
]
, (2)

where H0 = ∫
d3r′ ∫ ∞

0 dω̃ h̄ω̃f†(r′, ω̃)f (r′, ω̃) is the free-
field Hamiltonian and ωi,z, di , and ri are the transition fre-
quency, dipole, and position of the ith emitter, respectively.
We model the emitters as two-level systems with Pauli opera-
tors σ z

i and σx
i . Notice that here the rotating-wave approxima-

tion is not used.
The Hamiltonian in the form of Eq. (2) has been widely

used in the literature and should be interpreted within the
multipolar gauge and the term E(ri ) of Eq. (2) should be
understood as 1

ε(ri )ε0
D(ri ), where D(ri ) is the displacement

field [8–11]. Equation (2) further assumes that the distance
between any two emitters is larger than the size of the atoms,
since otherwise a residual instantaneous interatomic potential
must be included in the treatment [10,11]. Notice that the
experimental observations of the SR phase transitions are
based on effective Dicke models employing Raman processes
[14–20]. Our theory can be generalized straightforwardly to
the quantum plasmonic version of these models [53].

B. Keldysh functional-integral approach

The Keldysh functional-integral approach is convenient
for the analysis of open-system nonequilibrium dynamics

in disordered systems [24]. To apply it, the Pauli operators
representing the two-level emitters are replaced by a real
bosonic variable φi (t ) with unit length, i.e., φ2

i (t ) = 1 [24],

σx
i (t ) → φi (t ), σ z

i (t ) → 2

ω2
i,z

(∂tφi )
2 − 1. (3)

This mapping originates from the correspondence between
the energy gap of quantum models and the correlation length
along the time direction of their classical counterparts and
works well for phase transitions [23–26] (see Refs. [54–57]
for further details). The Keldysh action of the free emitters
derived from Eq. (2) is then expressed as (see Appendix A)

Se = −
N∑

i=1
a=±

∫
Ca

dt

[
1

ωi,z

(∂tφi,a )2 + λi,a (t )
(
φ2

i,a − 1
)]

, (4)

where λi,a is the Lagrange multiplier introduced for the
restriction φ2

i,a = 1 and the variables labeled by a = ± are
defined along the time-integral contours C± = ∓∞ → ±∞
(for steady states, we do not need to specify initial states [58]).

In the Keldysh functional-integral approach, we can for-
mally integrate out the degrees of freedom of f (r, ω̃) and get
the Keldysh action for the emitter-emitter coupling mediated
by them (see Appendix B)

S (p)
ee =

N∑
i,j=1

∫ ∞

−∞

dω

2π
(φi,c φi,q )−ω

×
(

0 h∗
ij (ω)

hij (ω) 2i Im hij (|ω|)
)(

φj,c

φj,q

)
ω

, (5)

where the ω-dependent coupling strength is

hij (ω) = ω2

2h̄ε0c2
di · G(ri , rj , ω) · dj . (6)

Note that we have passed to the Fourier domain with fre-
quency variable ω and have transformed to the so-called clas-
sical (quantum) fields φi,c(q ) by the Keldysh rotation φi,c(q ) =
[φi,+ + (−)φi,−]/

√
2 [24]. The corresponding transformation

of the Lagrange multipliers λi,c(q ) is λi,c(q ) = λi,+ + (−)λi,−.

C. Spatial disorders

To treat the disorder in the emitter system, we follow the
strategy of random-bond models widely used in the studies
of spin glasses [59]. That is, the real and imaginary parts
of the coupling strength {Re hij (ω), Im hij (ω)}i �=j , which are
functionals of the emitter positions and dipoles, are viewed
as random variables following a multicomponent Gaussian
distribution (neglecting higher-order moments) with the mean
and the covariance given by

h(2)(ω) =
∫

d3rad
3rbp(ra, rb )hab(ω), (7a)

M (ω,ω′) =
∫

d3rad
3rbp(ra, rb )

(
δ Re hab(ω)δ Re hab(ω′) δ Re hab(ω)δ Im hab(ω′)

δ Im hab(ω)δ Re hab(ω′) δ Im hab(ω)δ Im hab(ω′)

)
, (7b)
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where p(ra, rb ) denotes the probability distribution of the
positions of two emitters (the average over {di} is implic-
itly assumed) and δ denotes the difference with respect to
the mean value of the real and imaginary parts of h(2)(ω).
For the emitter-graphene system to be investigated later, the
individual terms hii (ω) are identical for all i, since they are
determined only by the height z of the emitter layer over the
graphene. We will denote their values by h(1)(ω).

D. Inhomogeneous broadening

Emitters such as rare-earth ions doped in crystals experi-
ence inhomogeneous broadening of their transition spectrum
(cf. Fig. 1). To take this into account, the conventional method
is to divide the ensemble into groups of emitters with the
same transition frequency [31,60]. Here we do not follow
this method but rather assume the transition frequency ωi,z

follows a Gaussian distribution centered at ωz with standard
deviation �. Thus, the broadening can be treated statistically
and contributes a new term to the Keldysh action of the system

S (b) = i
�2

2ω4
z

N∑
i=1

( ∫
dω ω2φi,c(−ω)φi,q (ω)

)2

. (8)

In Appendix E we show that the main effect of S (b) is to shift
the covariance M (ω,ω′) defined in Eq. (7b) by terms that
scale as (�ωω′

ω2
z

)2 and are negligible for a large N .

E. Order parameters

To distinguish the different phases of the system, we intro-
duce the order parameters [24–26,56,57,59]

Qαβ (ω,ω′) = −i
1

N

N∑
i=1

〈φi,α (ω)φi,β (ω′)〉,

ψα (ω) = − 1

N

N∑
i=1

〈φi,α (ω)〉,
(9)

where α, β ∈ {c, q}. In addition, Qcq , Qqc, and Qcc are the
retarded, advanced, and Keldysh Green’s functions of the
emitters [24], respectively. Further, ψc is the average polar-
ization of the emitters. For the steady state, we substitute
the ansatz that ψα (ω) = 2πδ(ω)ψα , λi,α (ω) = 2πδ(ω)λi,α ,
and Qαβ (ω,ω′) = 2πδ(ω + ω′)Qαβ (ω) and introduce the
Edward-Anderson order parameter qEA [23–25,52,55,59] to
pin down the spin-glass phase

Qcc(ω) = Qreg
cc (ω) − i2πqEAδ(ω), (10)

where reg labels the regular part. In the time domain, we have
qEA ∝ limt→∞ 1

N

∑
i〈σx

i (t )σx
i (0)〉. Thus a finite qEA implies

an infinite correlation time of the individual emitter dipoles.
The steady state of the system and the values of the

order parameters are determined by the saddle-point equations
of the Keldysh action (see Appendix D). This leads to the
identification of three different phases: the SR phase with
qEA �= 0 and ψc �= 0, the spin-glass (SG) phase [59] with
qEA �= 0 and ψc = 0, and the normal phase with qEA = 0 and
ψc = 0 where no symmetry of the Hamiltonian is broken. The
criterion in terms of the system parameters for the SR-SG

FIG. 2. Results for systems with ωz = 0.5 eV and EF = 0.1 eV:
(a) the N -L phase diagram for γ0 = 10−5 eV, with different normal-
SG and SG-SR boundaries for z = 20 nm (red lower dashed curves)
and z = 40 nm (upper dashed curves); (b) the value of Re h(1)(ω),
the energy shift induced by graphene; (c) the value of Im h(1)(ω), the
graphene-induced emitter damping, as a function of frequency and
different heights for z = 20 nm (red top curve), z = 30 nm (orange
curve), z = 40 nm (blue curve), z = 50 nm (green bottom curve);
and (d) the EF -L phase diagram for z = 50 nm, γ0 = 10−8 eV, and
different normal-SG and SG-SR boundaries for N = 104 (blue lower
dashed curves) and N = 105 (red upper dashed curves).

transition has an analytical solution while the other phase
boundaries are governed by integral equations that have to be
solved numerically.

III. RESULTS

We model the system depicted in Fig. 1 as a layer of N

emitters positioned at a distance z over the graphene mono-
layer. The emitter dipoles {di}i are aligned to be perpendicular
to the graphene layer and their magnitudes are quantified by
the spontaneous-emission rate γ0. The graphene is modeled as
a two-dimensional surface with conductivity σ (EF , τ ; ω) [61]
given in the local random-phase approximation [42], where
EF is the Fermi energy tunable by gate doping and τ is the
relaxation time accounting for the electron-phonon scattering
(we use τ = 1 ps as a characteristic value between 0.1 ns
predicted by theory [62] and 500 fs observed in experiments
[63]). The in-plane positions of the emitters are assumed to
follow independent Gaussian distributions with width L. Our
results thus depend on the set of parameters N , L, z, EF , ωz,
γ0, and �. To focus on the phase transitions associated with
the graphene SP, we will truncate the environment modes by
replacing the total dyadic Green’s function by its scattering
part, which contains the information of the graphene SP (see
Appendix F for more details). Other channels of emitter decay
and dephasing are not considered because their effects are
negligible when their rates are small compared with ωz [27].

Figure 2(a) shows the location of the phase transitions as
a function of the ensemble size and number of emitters. It
demonstrates that the SR phase favors higher emitter densi-
ties. We also find that the phase diagram changes only little
due to inhomogeneous broadening: For z = 20 nm and N =
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100 the normal-SG phase boundary shifts L downward by
only about 60 nm for a broadening as large as � = 0.1 eV
(here and throughout, h̄ = 1).

Although smaller z implies stronger emitter-graphene SP
couplings, Fig. 2(a) shows that when the emitters are moved
from the z = 40 nm to z = 20 nm distance to the graphene,
the normal-SG and SG-SR phase boundaries shift down-
ward, i.e., they occur for higher emitter densities. When z

is decreased, there is a complicated interplay between the
enhanced SP-induced energy shift [see Fig. 2(b)], leading
to the Dicke SR phase, and the increased damping of the
emitters, due to the same coupling [see Fig. 2(c)]. The com-
petition between these effects is the main cause for the shift
of the phase-transition boundaries. We note, however, that for
extremely small z, emitter-graphene bound states may form
[64–68], so different behavior, including polarization of the
emitters, should be expected.

One may try to understand the SR phase of our system by
comparing it with the Dicke model of a single-cavity mode,
where the effective emitter-emitter coupling Hamiltonian is
given by Heff = −∑

i,j J σ x
i · σx

j , J = g2ωc/(ω2
c − ω2) [23],

and the SR phase is reached when g2N > ωzωc/4. In our
model, Re hij (ω) plays the role of J and the mean Re h(2)(ω)
does not meet the equivalent SR criterion. However, smaller-
size subensembles of emitters might experience strong enough
mutual coupling. This fact is indicated by the large fluctu-
ations of Re hij (ω) resulting from the disorders, which are
shown in Figs. 4(e) and 4(f) of Appendix F. Such subensem-
bles would contribute significantly to the averaged polariza-
tion ψc of the system of emitters and lead to the SR phase. To
properly account for the role of such subensembles, a more
refined description than the current mean-field approach will
be required. A similar relaxation of the SR criterion on the
average coupling strength occurs for the Dicke models with
parameter fluctuations [23,69].

In the following we discuss the effect of tuning the Fermi
energy EF , a possibility unique to graphene. The SG-SR
phase boundary is insensitive to EF (see Appendix F). A
higher EF , however, leads to stronger graphene SP-induced
emitter-emitter coupling [42,43] and facilitates the normal-SG
phase transition as shown in the phase diagram of Fig. 2(d). It
also shows a triple point and the normal-SR phase boundary
which are absent in Fig. 2(a). However, there is also a subtle
SR to normal to SR transition with an increasing EF .

To understand it, we borrow ideas from the studies of
spin-boson models [44–46], which suggest that the follow-
ing three quantities might be pertinent: the emitter spectral
response yield from the emitter linear susceptibility ASR(ω) =
−2 Im Qcq , the spectral density Im h(1)(ω), and the many-
spin extension of the spectral density Im h(2)(ω). The spectral
density is the central concept of models where a single spin
couples to a continuum of bosons [44]. We note that only
ASR(ω) depends on ωz [23], while Im h(1)(ω) and Im h(2)(ω)
depend on the magnitude of the emitter dipoles quantified by
γ0/ω

3
z .

To look closer at the normal-SR transition, we depict
an EF -ωz phase diagram in Fig. 3 for different values of
γ0/ω

3
z . The frequency dependence of ASR, Im h(1), and Im h(2)

is shown in Fig. 3 for the four different Fermi energies

FIG. 3. The EF -ωz phase diagram for a system with z = 50 nm,
L = 103 nm, N = 2 × 104, and two different values of γ0/ω

3
z so

that when ωz = 0.5 eV, γ0 = 10−7 (blue lower dashed curve) or
10−6 eV (red upper dashed curve). For the case of ωz = 1 eV,
the spectral densities ASR = −2 Im Qcq (ω) (red shaded, darkest),
Im h(1) (blue shaded, peaks at the right-hand side), and Im h(2)

(gray shaded, lightest) are shown for different Fermi energies EF =
0.1, 0.032, 0.004, 0.001 eV. The values of Im h(1,2) are shown on the
right-hand vertical axes.

EF = 0.1, 0.032, 0.004, 0.001 eV. There are gaps between
the positions of the peaks of Im h(1)(ω) and those of
Im h(2)(ω) because the short-range modes, important for the
self-interaction term Im h(1)(ω), cannot propagate far enough
to affect the averaged emitter-emitter coupling. Changing EF

shifts the peaks of ASR, Im h(1), and Im h(2) and we observe
a closer overlap of ASR(ω) with Im h(1)(ω), reflecting the
influence of the SP-induced emitter decay, when the system
is closer to the regime of the normal phase. For the number
of emitters N applied here, Im h(1)(ω) and N Im h(2)(ω) are
comparable and suggest that the subtle EF dependence of the
phase transition observed in Figs. 2(d) and 3 is a finite-N
effect relevant to the graphene SP-induced emitter decay.

Additionally, the peaks of ASR and Im h(1,2) shown in
Fig. 3 generally occur far from the emitter resonance ωz. This
indicates that the influence of the inhomogeneous broadening,
which scales as (�ωω′

ω2
z

)2, is small. Moreover, their marked
frequency dependence invalidates the Markov approximation,
which would replace Im h1,2(ω) by a constant taken at the
emitter transition energy [67,68,70,71]. Indeed, our formalism
considers the full spectral dependences and does not apply the
Markov approximation.

IV. SUMMARY AND OUTLOOK

To summarize, applying the Keldysh functional-integral
approach, we have studied the Dicke phase transitions be-
tween the superradiance phase, the spin-glass phase, and
the normal phase in a disordered emitter–graphene-surface-
plasmon system. Our formalism is a generalization of the
spin-boson model [44] to the many-spin system and is valid
for general plasmonic systems. The variety of nanoscale plas-

033821-4



DICKE PHASE TRANSITION IN A DISORDERED … PHYSICAL REVIEW A 98, 033821 (2018)

monic systems, and especially two-dimensional materials like
the graphene monolayer, constitute excellent platforms to test
the fundamental collective phenomena of the Dicke model
and its effects in quantum optics, nonequilibrium dynamics of
driven dissipative system, and condensed matter physics. The
presence of the spin-glass phase indicates interesting relations
with the Hopfield neural network and associative memory
[72,73].

The superradiant phase is characterized by the emitter
polarization. The spin-glass phase behaves differently from
the superradiant phase at the low-frequency regime of the
emitter spectral response −2 Im Qcq (ω) [24–26]. Thus they
may be distinguished by observing their radio-frequency spec-
tral response [74,75]. By employing an optical cavity, it may
be possible to observe a hybrid coupling of the emitters to
both surface plasmons and a cavity mode and to use the
cavity response and transmission spectrum as a signature of
the surface plasmon Dicke phase transition [20,25].

As in most treatments of the superradiant phase transition
(for exceptions, see, e.g., Refs. [7,13,76]), the effect of the
Coulomb dipole-dipole couplings is omitted due to inclusion
of only the scattering part of the total dyadic Green’s func-
tion. To properly include the variations in the dipole-dipole
coupling strengths within the emitter ensemble [77] and
short-range instantaneous interaction relevant at high densities
[10,11], it is necessary to go beyond the Gaussian distribution
assumed in this article.
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APPENDIX A: ACTION OF THE FREE EMITTERS

The Keldysh action of a system with Hamiltonian H is
formulated by representing the dynamical variables by ψ

according to [24]

S =
∫

dt[ψ∗
+i∂tψ+ − ψ∗

−i∂tψ− − (H+ − H−)]. (A1)

We employ two sets of bosonic variables, φi for the emitters
and f (r′, ω̃) for the electromagnetic environment.

The Keldysh action for the free emitters is given as Eq. (4)
and is derived from Eq. (A1) with the mapping

σx
i (t ) → φi (t ), σ z

i (t ) → 2

ω2
z

(∂tφi )
2 − 1, (A2)

where we have omitted the effect of inhomogeneous broad-
ening. Discussion on that is deferred to Appendix E. Then we
substitute φi (t ) into Eq. (A1). Since φi (t ) is a real variable, the
first two terms of Eq. (A1) are time-derivative terms, that is,
φ∗

±i∂tφ± = φ±i∂tφ± = 1
2 i∂t (φ2

±). These terms are negligible
because they have no effect on the action after the integral
over time.

The restriction φ2(t ) = 1 is imposed by multiplying the
Keldysh partition function by the δ functions

∏
t δ(φ2

±(t ) −

1). This process brings Lagrange multipliers λ±(t ) to the
action according to the relation that

∏
t

δ(φ2
±(t ) − 1) =

∫
Dλ±(t ) exp

(
i

∫
dt λ±(t )[φ2

±(t ) − 1]

)
.

(A3)
Then we perform the Keldysh rotation, a unitary transforma-
tion of the contour index

φc = 1√
2

(φ+ + φ−), φq = 1√
2

(φ+ − φ−),

λc = λ+ + λ−, λq = λ+ − λ−,

(A4)

where the subscripts c and q stand for classical and quantum,
respectively [24]. The constraint equation then amounts to
inclusion of the Lagrange multiplier term

2
∫

t

λc(t )φc(t )φq (t ) + λq (t )
[
φ2

c (t ) + φ2
q (t ) − 2

]
(A5)

in the action, where
∫
t

is shorthand for
∫

dt . Retaining only
its static contribution, we use the ansatz that

λi,α (ω) = 2πλi,αδ(ω) (A6)

in the Fourier domain, where α ∈ {c, q}. Finally, the Keldysh
action of the free emitters is written as

Se =
N∑

i=1

∫
w

(φi,c, φi,q )−ω

(
λi,q λi,c − ω2

ωz

λi,c − ω2

ωz
λi,q

)

×
(

φi,c

φi,q

)
ω

− 2
N∑

i=1

λi,q2πδ(0), (A7)

where
∫
w

is shorthand for
∫

dω
2π

.

APPENDIX B: ACTION FOR THE
PLASMONIC ENVIRONMENT

The plasmonic electromagnetic environment is quantized
through the complex field f (r′, ω̃). Here we denote it by fa,r,ω̃,
where a labels the three Cartesian directions. The Keldysh
action of the free plasmonic environment and its coupling to
the emitters is

Sf,ef =
∑

a

∫
ω̃,r,ω

(f ∗
a,r,ω̃;c f ∗

a,r,ω̃;q )
ω
Dω̃(ω)

(
fa,r,ω̃;c

fa,r,ω̃;q

)
ω

−
N∑

i=1

∑
a

∫
ω̃,r′,ω

gia (r′, ω̃)

× [φi,−ω;cfa,r′,ω̃;q (ω) + φi,−ω;qfa,r,ω̃;c(ω)]

+ g∗
ia (r′, ω̃)[φi,ω;cf

∗
a,r′,ω̃;q (ω) + φi,ω;qf

∗
a,r′,ω̃;c(ω)],

(B1)

where
∫
ω̃

is shorthand for
∫ ∞

0
dω̃
2π

,
∫

r′ is shorthand for
∫

d3r′,
the matrix Dω̃(ω) is defined as

Dω̃(ω) =
(

0 ω − ω̃ − iε

ω − ω̃ + iε 2iε

)
, (B2)
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and ε stands for an infinitesimal positive constant; the cou-
pling strength is

gia (r′, ω̃) = −i

√
εI (r′, ω̃)

h̄πε0

ω̃2

c2

∑
b

di bGba (ri , r′, ω̃). (B3)

In Eq. (B1) all terms with identical indices of ω̃ and ω share
the same matrix Dω̃(ω). Therefore, after integrating out the
field of f (r, ω̃), Sf,ef turns out to be an effective emitter-
emitter coupling action

S (p)
ee = −

N∑
i,j=1

∫
ω̃,ω

g̃ij (ω̃)(φi,c φi,q )−ω
σxD

−1
ω̃ σx

(
φj,c

φj,q

)
ω

,

(B4)

where the coupling strength g̃ij (ω̃) is

g̃ij (ω̃) =
∑

a

∫
r′

gia (r′, ω̃)g∗
ja (r′, ω̃)

= 1

πε0h̄c2
ω̃2di · Im G(ri , rj , ω̃) · dj (B5)

and σx is the matrix (0 1
1 0). In the derivation of g̃ij , we have

used the relation∑
b

ω2

c2

∫
r′

εI (r′, ω)Gab(ri , r′, ω)G∗
cb(rj , r′, ω)

= Im Gac(ri , rj , ω). (B6)

The inverse of Dω̃(ω) is expressed as

D−1
ω̃ (ω) =

( −2iε
(ω−ω̃)2+ε2

1
ω−ω̃+iε

1
ω−ω̃−iε

0

)
. (B7)

Then, using the relations

lim
ε→0+

ε

(ω − ωμ)2 + ε2
= πδ(ω − ωμ),

lim
ε→0+

1

ω − ωμ ± iε
= P 1

ω − ωμ

∓ iπδ(ω − ωμ),
(B8)

we can implement the integral of ω̃ in S
(p)
ee , i.e.,

�(ω) =
∫

ω̃

g̃ij (ω̃)σxD
−1
ω̃ (ω)σx. (B9)

The result is

�(ω) =
(

0 Fij (ω) + iπ�ij (ω)

Fij (ω) − iπ�ij (ω) −2iπ�ij (ω)

)
,

(B10)

where the elements of the matrix are

Fij (ω) =
∫

ω̃

ω̃2

πε0h̄c2
di · Im G(ri , rj , ω̃) · dj P 1

ω − ω̃
,

(B11a)

�ij (ω) =
∫

ω̃

ω̃2

πε0h̄c2
di · Im G(ri , rj , ω̃) · dj δ(ω − ω̃).

(B11b)

Due to the symmetry of the indices, we reshape �(ω) by

�(ω) → 1
2 [�(ω) + �T(−ω)], (B12)

where T stands for matrix transposition. Then the elements of
�(ω) are modified to

�22 → −iπ [�ij (ω) + �ij (−ω)]

= −iω2

h̄ε0c2
di · Im G(ri , rj , |ω|) · dj

= sgn(ω)
−iω2

h̄ε0c2
di · Im G(ri , rj , ω) · dj , (B13)

where we have used the relation G(ω) = G∗(−ω) and

�21 → 1
2 [Fij (ω) + iπ�ij (ω) + Fij (−ω) − iπ�ij (−ω)].

(B14)

To evaluate the expressions, we will use the Kramers-Kronig
relation. For a function χ (ω) which is analytic in the closed
upper half plane of ω and vanishes like 1/|ω| or faster as
|ω| → ∞ and χ (ω) = χ∗(−ω), we have

Re χ (ω) = 2

π

∫ ∞

0
dω′P ω′ Im χ (ω′)

ω′2 − ω2
. (B15)

Applying this to ω2G(ω), we obtain

Fij (ω) + Fij (−ω) = −ω2

h̄ε0c2
di · Re G(ri , rj , ω) · dj , (B16)

which finally gives

�21 → −ω2

2h̄ε0c2
di · G(ri , rj , ω) · dj ≡ −hij , (B17a)

�12 → −ω2

2h̄ε0c2
di · G∗(ri , rj , ω) · dj = −h∗

ij . (B17b)

Together with �11 = 0, this yields the graphene-induced
emitter-emitter coupling action S

(p)
ee given in Eq. (5). Note that

the derivation of S
(p)
ee does not discard counterrotating-wave

terms or apply the Markov approximation, which treats the ω

dependence of the spectrum as a constant.

APPENDIX C: SPATIAL DISORDER

We define two matrices

V 1 = σx =
(

0 1

1 0

)
, V 2 = i

(
0 −1

1 2 sgn(ω)

)
. (C1)

Then S
(p)
ee can be put in the form

S (p)
ee =

N∑
i,j=1

∫
ω

Re hij (ω)v(1)
ij (ω) + Im hij (ω)v(2)

ij (ω), (C2)

where

v
(a)
ij (ω) = (φi,c φi,q )−ω

· V a ·
(

φj,c

φj,q

)
ω

. (C3)

This form will facilitate the Gaussian averaging over the
coupling strengths Re hij (ω) and Im hij (ω). For terms with
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subscript i �= j , we assume a multicomponent Gaussian dis-
tribution (7a) and (7b). Different from the emitter-emitter cou-
pling strength, the values of the graphene-induced individual
terms Re hii (ω) and Im hii (ω) depend only on the distance
from the emitter to the graphene. Since we have assumed that
the layer of emitters is parallel to the graphene monolayer, all
the hii (ω) are fixed and identical. In Appendix F we present
figures showing these coupling strengths and the elements of
the covariance matrix.

To explore the phase transition at N → ∞, we define

hd
i = N × hii, ho = N × h̄(2), Mo = N × M, (C4)

so after averaging over hij (i �= j ) as described in the main
text we have

S̄ (p)
ee = 1

N

N∑
i=1

∫
ω

(
hd

i − ho
)
a
(ω)v(a)

ii (ω)

+ 1

N

N∑
i,j=1

∫
ω

ho
a (ω)v(a)

ij (ω)

+ i
1

N

N∑
i �=j=1

∫
ω,ω′

v
(a)
ij (ω)Mo

ab(ω,ω′)v(b)
ij (ω′), (C5)

where the summation over replicated indices a and b is
implicitly assumed and we have written hd(o) in the vector
form of (Re hd(o), Im hd(o) ). While in the third line of Eq. (C5)
terms with i = j are excluded, in the limit of large N , we may
release this exclusion (see more discussion in Appendix E)
and define

�α (ω) =
N∑

i=1

φi,α (ω),

�αβ (ω,ω′) =
N∑

i=1

φi,α (ω)φi,β (ω′).

(C6)

Now the Keldysh action can be expressed in terms of �α and
�αβ ,

S = 1

N

N∑
i=1

∫
ω

φi,α (−ω)φi,β (ω)�e
i,αβ (ω) − 2

N∑
i=1

λi,q2πδ(0)

+ 1

N

∫
ω

�α (−ω)�β (ω)�ce
αβ (ω)

+ i
1

N

∫
ω,ω′

�αβ (−ω,−ω′)M̃αβ,α′β ′ (ω,ω′)�α′β ′ (ω,ω′),

(C7)

where the new matrices are defined as

�e
i = N

(
λi,q λi,c − ω2

ωi

λi,c − ω2

ωi
λi,q

)
+ (

hd
i − ho

)
a
V a,

�ce = ho
aV

a,

M̃αβ,α′β ′ (ω,ω′) =
∑
s,t

V s
αα′ (ω)Mo

st (ω,ω′)V t
ββ ′ (ω′).

(C8)

Then we apply the Hubbard-Stratonovich transformation
based on the formula that∫

D[ψα] exp

(
−iN

∫
ω

ψα (−ω)�ce
αβ (ω)ψβ (ω)

− 2i

∫
ω

ψα (−ω)�ce
αβ (ω)φβ (ω)

)

∝ exp

(
i

1

N

∫
ω

φα (−ω)�ce
αβ (ω)φβ (ω)

)
. (C9)

The coefficient of proportionality in this formula is a constant,
which is irrelevant to the dynamical variables. The Hubbard-
Stratonovich transformation of �αβ is based on a similar
formula of the Gaussian integral∫

D[Qa] exp

(
−N

∫
q

Qa (−q )M̃ab(q )Qb(q )

− 2i

∫
q

Qα (−q )M̃ab(q )�b(q )

)

∝ exp

(
− 1

N

∫
q

�a (−q )M̃ab(q )�b(q )

)
, (C10)

where a and b denote the subscripts (αβ ) and (α′β ′), and q is
used to abbreviate (ω,ω′).

After the transformations, the Keldysh action has some
residual φi terms of order less than or equal to 2. We can
eliminate these terms by Gaussian integrals.

Then the Keldysh action becomes a functional of the
Lagrange multiplier λi,α and the two new dynamical variables
ψα and Qαβ , which are introduced in Eq. (9). Substituting the
static ansatz at the mean-field level

ψα (ω) = 2πψαδ(0),

Qαβ (ω,ω′) = Qαβ (ω)2πδ(ω + ω′),
(C11)

this finally yields the action in terms of ψα , Qαβ , and λi ,

S = i

2

N∑
i=1

tr ln(2Li ) − 2
N∑

i=1

πδ(0)(�ceψ )TL−1
i (0)(�ceψ )

+ i2πδ(0)N
∫

ω

Qαβ (−ω)M̃αβ,α′β ′ (ω,−ω)Qα′β ′ (ω)

− 2πδ(0)Nψα�ce
αα′ (0)ψα′ − 4πδ(0)

N∑
i=1

λi,q , (C12)

where the matrix Li is defined as

Li (ω,ω′) = L(ω)2πδ(ω + ω′),

Li,αβ (ω) = 1

N
�e

i,αβ (−ω)

− 2Qα′β ′ (−ω)M̃α′β ′,αβ (ω,−ω). (C13)

APPENDIX D: SADDLE-POINT EQUATIONS

We now turn to the solution of the saddle-point equations

δ

δq
S

!= 0, q ∈ {λi,α, ψα,Qαβ}, (D1)
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which is restricted by the causality conditions λq = Qqq =
ψq = 0.

1. Equations for λi,α

We assume λi,α = λα and replace the summation in
Eq. (C12) with a factor of N . The saddle-point equation with
respect to the Lagrangian multiplier λq is

i

2

∫
ω

tr
[
L−1

reg(ω)
] − 1

det L(0)

[
ψ2

c

(
�ce

cq

)2

+ qEAM̃cc,qq (0)
] − 2 = 0, (D2)

which confirms the restriction φ2
i = 1. In Eq. (D2), Lreg refers

to the part defined with Q
reg
cc . The equation with respect to the

Lagrangian multiplier λc is

− i

2

∫
ω

1

det L(ω)
tr[σxL(ω)] = 0. (D3)

This equation is a statement of the universal property of the
Keldysh Green’s function that

QR (t, t ) + QA(t, t ) = 0, (D4)

where QR = Qcq and QA = Qqc.

2. Equations for ψα

For ψc, the saddle-point equation is trivial because

(�ce )cc = 0, (�ceL−1�ce )cc = 0, (L−1)qq = 0, (D5)

when λq = ψq = Qqq = 0. For ψq , the saddle-point equation
gives

ψc

[
�ce

qc(L−1)cq + 1
] = 0, (D6)

which gauges the relation between λc and Qcq , in the SR
phase where ψc �= 0.

3. Equations for Qreg
αβ

The Edwards-Anderson order parameter qEA is introduced
as the singular part of Qcc(ω),

Qcc(ω) = Qreg
cc (ω) − 2πiqEAδ(ω), (D7)

and the saddle-point equation for the regular component reads

2Q
reg
αβ (ω) = [L(ω)]−1

reg,βα + 4iπ

(
ψ2

c

(
�ce

cq

)2

det L(0)

+ qEA + qEA
M̃cc,qq (0)

det L(0)

)
δαcδβcδ(ω). (D8)

Note that this equation can be separated into the regular part
and the singular part at ω = 0:

2Q
reg
αβ = [L(ω)]−1

reg,βα, (D9a)(
�ce

cq

)2
ψ2

c = −qEA[M̃cc,qq + det L(0)]. (D9b)

For the regular part, implementing the substitution of
Eq. (C13) for the cq component gives

1

2Qcq

= λc − ω2

ωz

+ h̄(1) − h̄(2) − 2QcqM̃qc,cq (ω,−ω),

(D10)
where we have assumed λi,α = λα for every emitter.

We find that this equation does not have a unique solution
except in the absence of randomness, M → 0, where the
second line of Eq. (C12) vanishes and the Keldysh action
attains the value given in Ref. [26]. We select the solution that
is continuously connected to the unique solution to Eq. (D10)
with M̃ = 0, under the variation of λM̃ , λ : 1 → 0.

The regular part of Qcc turns out to be

Qreg
cc = 4|Qcq |2

1 − 4|Qcq |2M̃cc,qq (ω,−ω)
[QqcM̃cq,qq (ω,−ω)

+QcqM̃qc,qq (ω,−ω)

− i sgn(ω)(Im h̄(1) − Im h̄(2) )]. (D11)

The causality condition of the Keldysh formalism implies
Qqq = λi,q = ψq = 0 and Qcq (ω) = Q∗

qc(ω) [24].
Since the Edward-Anderson order parameter qEA is non-

negative, it follows from Eq. (D9b) that to have ψ2
c > 0 we

must have

M̃cc,qq (0, 0) + det L(0) < 0. (D12)

This relation helps to distinguish the SR phase and the SG
phase.

4. Determination of λc and the three phases

In the SR phase, ψc �= 0, so Eq. (D6) determines the value
of λSR

c ,

λSR
c = −h̄(1)(0) + h̄(2)(0) − �qc − N

�qc

M11(0, 0), (D13)

where M11 is the real-real element of M and �qc =
N Re h(2)(0). In the SG phase, we have qEA > 0 and ψc = 0.
Therefore, the singular part of Eq. (D9) yields

M̃cc,qq (0, 0) + det L(0) = 0. (D14)

Note that det L(0) = 1
4QcqQqc (0) . Corresponding to the cases

1
2Qcq (0) = ±

√
M̃qc,cq (0, 0), we have

λSG
c = − 1

N
[hd (0) − ho(0)] ± 2

√
N × M11(0). (D15)

The possibility of λSR
c = λSG

c corresponds to the minus sign of
(D15). Thus we get

λSG
c = −h̄(1)(0) + h̄(2)(0) − 2

√
N × M11(0, 0). (D16)
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It turns out that the system is in the SR phase rather than
the SG phase only if

[h(2)(0)]2 >
1

N
M11(0, 0). (D17)

This expression also gives the analytical result of the SG-SR
phase boundary. In Appendix F we will elaborate on the
calculation for the emitter-graphene system. We find that the
values of h(2)(0) and M11(0, 0) are insensitive to the graphene
Fermi energy EF .

For the normal phase, λc should be determined from the
equality

i

4π

∫ ∞

−∞
dω Qreg

cc (ω) = 2. (D18)

The boundaries between the normal phase and the other
phases are obtained by matching their values of λc. The
determination of qEA and ψc, which are present in the singular
part of Qcc(ω), are obtained from the equality

i

4π

∫ ∞

−∞
dω Qcc(ω) = 2. (D19)

APPENDIX E: INHOMOGENEOUS BROADENING

We suppose the emitters suffer from inhomogeneous
broadening, so the transition frequency follows a Gaussian
distribution

ρ(ωi,z) = 1√
2π�

exp

(
− (ωi,z − ωz)2

2�2

)
, (E1)

where � is the standard deviation of ωi,z. The corresponding
probability distribution of 1

ωi,z
is

p

(
1

ωi,z

)
= ω2

i,zρ(ωi,z)

= 1√
2π�

exp

(
2 ln ωi,z − (ωi,z − ωz)2

2�2

)
. (E2)

The condition � � ωz implies that ln ωi,z ≈ ln ωz +
ωi,z/ωz − 1. Thus, 1/ωi,z has a Gaussian distribution with
variance �

ω2
z
,

p

(
1

ωi,z

)
≈ ω2

z√
2π�

exp

(
− (1/ωi,z − 1/ωz)2

2
(
�/ω2

z

)2

)
. (E3)

We will average functions of ωi,z according to this distribu-
tion. Let us rewrite the Keldysh action of the free emitters (4),
but replace ωz with ωi,z:

Se = −
N∑

i=1

∑
a=±

a

∫
dt

1

ωi,z

(∂tφi,a )2 + λi,a (t )
(
φ2

i,a − 1
)
.

(E4)
Compared with the Keldysh action without inhomogeneous
broadening, an additional term is obtained from the average
of ωi,z, that is,

S (b) = i
�2

2ω4
z

N∑
i=1

∫
ω,ω′

ω2ω′2φi,c

× (−ω)φi,q (ω)φi,c(−ω′)φi,q (ω′). (E5)

Note that the integrals over ω and ω′ are independent and
factor into a product. We recall that in Eq. (C5) we made

an approximation and released the restriction that i �= j . We
can reintroduce the restriction by incorporating the individual
terms with i = j and obtain the action

S (b) − i
1

N

N∑
i=1

∫
ω,ω′

v
(a)
ii (ω)Mo

ab(ω,ω′)v(b)
ii (ω′). (E6)

To cope with the fourth-order terms, we will apply the
Hubbard-Stratonovich transformation.

Let us define �i
αβ (ω,ω′) = φi,α (ω)φi,β (ω′). Then Eq. (E6)

can be rewritten as

i

N∑
i=1

∫
ω,ω′

�i
αβ (−ω,−ω′)δM̃αβ,α′β ′ (ω,ω′)�i

α′β ′ (ω,ω′),

(E7)
where the matrix δM̃αβ,α′β ′ (ω,ω′) is defined as

δM̃αβ,α′β ′ (ω,ω′)

= − 1

N
M̃αβ,α′β ′ (ω,ω′) + ω2ω′2 �2

8ω4
z

(δαβ,cqδα′β ′,qc

+ δαβ,qcδα′β ′,cq + δαβ,ccδα′β ′,qq + δαβ,qqδα′β ′,cc ). (E8)

We can implement the Hubbard-Stratonovich transformation
of Eq. (E7) in a way similar to Eq. (C10),∫

D
[
Qi

a

]
exp

(
−N

∫
q

Qi
a (−q )M̃ab(q )Qi

b(q )

− 2i

∫
q

Qi
α (−q )M̃ab(q )�b(q )

)

∝ exp

(
− 1

N

∫
q

�i
a (−q )M̃ab(q )�i

b(q )

)
, (E9)

where the conventions of notation are the same as in
Eq. (C10). In the sense of saddle-point equations, the physical
meaning of Qi

αβ is

Qi
αβ = 〈φi,αφi,β〉. (E10)

By the further assumption of the homogeneous mean-field
ansatz that for all i,

〈φi,αφi,β〉 = 1

N

N∑
k=1

〈φk,αφk,β〉, (E11)

we can replace the new variable Qi
αβ with Qαβ , which is

defined in the context of spatial disorders.
The result of all the above steps can also be obtained by

rewriting Eq. (E6) as

i
1

N

∫
ω,ω′

�αβ (−ω,−ω′)δM̃αβ,α′β ′ (ω,ω′)�α′β ′ (ω,ω′)

(E12)
followed by the Hubbard-Stratonovich transformation in a
way similar to Eq. (C10). It means that the effect of inho-
mogeneous broadening can be seen as a modification of the
matrix M̃ defined in Eq. (C7) by a term δM̃ given in Eq. (E8).

Note that the first term of Eq. (E7) comes from the addi-
tional term mentioned in Eq. (E6) and contributes only little
when N � 1, thus justifying the approximation made for
Eq. (C7). Since M̃ is defined with a factor of N [see Eq. (C4)],
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the correction made by inhomogeneous broadening [Eq. (E8)]
is also negligible when N is large.

APPENDIX F: THE SPECIFIC EXAMPLE
OF THE EMITTER-GRAPHENE SYSTEM

The surface conductivity of the graphene monolayer is

σ (EF , τ ; ω) = e2EF

πh̄2

i

ω + iτ−1
+ e2

4h̄

(
�(h̄ω − 2EF )

+ i

π
ln

∣∣∣∣ h̄ω − 2EF

h̄ω + 2EF

∣∣∣∣
)

. (F1)

When the emitter dipoles are aligned perpendicular to the
graphene monolayer, the relevant element of the dyadic
Green’s tensor is G0

zz + Gs
zz, where G0

zz is the vacuum dyadic
Green’s function for free propagation modes and Gs

zz is the
so-called scattering part accounting for the surface plasmon
modes of the graphene monolayer

ω2

c2
Gs

zz(r, r′; z) =
∫

d2k‖
(2π )2

i

2ε1k1,z

k2
‖rpeik‖·δr+2ik1,zz

=
∫

dk‖
2π

i

2ε1k1,z

k3
‖rpJ0(k‖δr ), e2ik1,zz,

(F2)

where δr = r − r′ and δr is its length; J0 is the zeroth-
order Bessel function; ε1 (2) is the relative permittivity of
the dielectric above (below) the graphene monolayer, and rp

is the Fresnel coefficient of reflection of the p modes from
above the graphene layer

rp = −ε1k2,z + ε2k1,z + σ (ω)
ωε0

k1,zk2,z

ε1k2,z + ε2k1,z + σ (ω)
ωε0

k1,zk2,z

, (F3)

where k1 (2),z =
√

ω2

c2 ε1 (2) − k2
‖ . Note that in the limit ω → 0,

rp equals 1 and does not depend on the Fermi energy. As
a result, the Fermi energy EF is irrelevant to the SG-SR
boundary.

In the numerical calculation, it is convenient to normalize
k‖ and δr in the above expressions by ωz/c. That is, define

k‖ = ω

c
k̃‖, δr = c

ωz

δr̃, z = c

ωz

z̃ (F4)

and then Eq. (F2) is recast as(
ωz

c

)3 ∫ ∞

0

dk̃‖
2π

i

2ε1k̃1,z

k̃3
‖rpJ0(k̃‖δr̃ )e2ik̃1,z z̃. (F5)

The factor ( ωz

c
)3 can then be combined with the length of di

and absorbed into the expression for the vacuum spontaneous-
emission rate γ0. The surface-plasmons have the dispersion
relation

ε1k
sp

2,z + ε2k
sp

1,z + σ (ωsp )

ωspε0
k

sp

1,zk
sp

2,z = 0, (F6)

where k1 (2),z =
√

ω2

c2 ε1(2) − k2
sp, and ωsp and ksp represent the

frequency and wave vector of the surface-plasmon, respec-
tively.

FIG. 4. Coefficients of the emitter–graphene-surface-plasmon
coupling for systems with ωz = 0.5 eV, EF = 0.1 eV, and L =
103 nm. From the top to the bottom in the figures we show results
for the different heights z = 20 (red top curve), z = 30 (orange
curve), z = 40 (blue curve), and z = 50 (green bottom curve) nm.
The dimensionless values are normalized by the emitter spontaneous-
emission rate γ0.

The horizontal coordinates {(xi, yi )}i of the emitters are
assumed to follow the identical Gaussian distribution

p(x, y) = 1

2πL2
exp

(
−x2 + y2

2L2

)
(F7)

and the distance between any two emitters follows the distri-
bution

pL(δr ) = δr

2L2
exp

(
− (δr )2

4L2

)
. (F8)

To calculate the mean values and covariances h(1)(ω), h(2)(ω),
and M̃ (ω,ω′) required in our formalism, the use of the Gaus-
sian distribution permits analytical handling of the oscillating
integrants related to the Bessel function J0(kδr ),∫ ∞

0
dr

r

2L2
J0(kr ) exp

(−r2

4L2

)
= exp(−k2L2),

∫ ∞

0
dr

r

2L2
J0(kr )J0(k′r ) exp

(
− r2

4L2

)

= I0(2L2kk′) exp[−L2(k2 + k′2)], (F9)
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where I0 is the modified Bessel function. By use of these for-
mulas, the remaining integrals are numerically well behaved.

Finally, to have an impression of the numerical results, we
illustrate the z dependence of the averaged coupling strength
and the elements of the covariance matrix in Fig. 4. It shows

that by decreasing z, the graphene SP-induced self-interaction
terms and the elements of the covariance matrix are increased
significantly, while the SP-induced emitter-emitter coupling
strength changes little. This confirms our argument about the
z dependence made in the main text.
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