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Resonant-state expansion of three-dimensional open optical systems: Light scattering
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A rigorous method of calculating the electromagnetic field, the scattering matrix, and scattering cross sections
of an arbitrary finite three-dimensional optical system described by its permittivity distribution is presented.
The method is based on the expansion of the Green’s function into the resonant states of the system. These can
be calculated by any means, including the popular finite-element and finite-difference time-domain methods.
However, using the resonant-state expansion with a spherically symmetric analytical basis, such as that of a
homogeneous sphere, allows to determine a complete set of the resonant states of the system within a given
frequency range. Furthermore, it enables to take full advantage of the expansion of the field outside the system
into vector spherical harmonics, resulting in simple analytic expressions. We verify and illustrate the developed
approach on an example of a dielectric sphere in vacuum, which has an exact analytic solution known as Mie
scattering.
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I. INTRODUCTION

Resonances are at the heart of many physical phenomena.
In particular, they determine features in optical spectra such as
the scattering and extinction cross sections. Mathematically,
resonances and their contribution to physical observables
can be elegantly and rigorously described using the concept
of resonant states (RSs) [1,2]. The wave functions of RSs
are generally not square integrable and therefore the usual
definitions of normalization and orthogonality cannot be ap-
plied to them. Several procedures for normalization of RSs
in quantum mechanics were suggested, which include the
Zel’dovich regularization [3], the use of the pole structure
of the Green’s function (GF) of the wave equation [2,4–6],
as well as introducing a non-Hermitian scalar product [7].
Notably, the correct normalization of electromagnetic RSs
was not known in the literature until recently, and normaliza-
tions used so far were approximate, as was clarified in [8,9].
The correct normalization of RSs in electrodynamics, which
takes into account the vectorial character of electromagnetic
waves, was proposed in [10], supplemented by a proof in
[11], and recently generalized to systems with dispersion [12]
and photonic crystal structures [13,14]. It has allowed to
formulate an exact theory of the Purcell effect [8]. This exact
normalization of RSs is at the heart of the resonant-state
expansion (RSE) method [10,11], which is extended in this
work to the calculation of the scattering properties of open
optical systems.

The concept of RSs is a powerful tool in treating open
systems. Similar to the standard Rayleigh-Schrödinger per-
turbation theory in Hermitian quantum mechanics [15], a
non-Hermitian perturbation theory, describing changes in RSs
due to small perturbations in the potential, can be constructed
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[4,5]. Furthermore, it has been shown that the RSs of an
open system form a complete set inside it [6,16] and there-
fore can be used as a basis for expansions. In particular,
by projecting the wave equation onto the space of the RSs
of a basis system, one can find RSs of a modified sys-
tem. This approach was suggested in nuclear physics [16],
though never applied. Recently, a similar idea has been im-
plemented in electrodynamics, leading to the formulation of
the RSE [10,11,13,17–19]. The RSE is capable of treating
accurately both small and large perturbations of an optical sys-
tem. Furthermore, the RSE has been recently extended [12] to
systems with an arbitrary frequency dispersion of the permit-
tivity described by a generalized Drude-Lorentz model [20].

A core quantity which contains the full information about
an optical system is its dyadic GF. This GF, being the solu-
tion of Maxwell’s wave equation with a delta source term,
describes the radiation of an oscillating point dipole, or a
quantum emitter in the weak coupling limit [21]. In general,
the GF provides access to all physical observables, including
the optical scattering matrix [22,23] (S matrix) and the scat-
tering cross section, the electromagnetic near- and far-field
distributions, as well as the total radiation intensity and the
Purcell factor [8,24,25].

While for specific systems the GF can be determined
analytically, finding the GF in a general case is a challenging
computational task. It has been recently shown [10,11] that
using the properly normalized RSs, the GF inside any optical
system can be constructed efficiently using its spectral repre-
sentation, also known as the Mittag-Leffler (ML) expansion.
On the other hand, it has been also demonstrated in numerous
publications (see, e.g., Ref. [26]) that the S matrix of an opti-
cal system has properties similar to those of the GF, namely,
the poles of the S matrix in the complex frequency plane are
also determined by the RSs. While the information on the GF
contained in the S matrix is partial, being limited to external
excitation, it completely describes the light scattered by the
system. Therefore, the problem of expressing the S matrix in
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terms of the RSs reduces to establishing the link between the
S matrix and the GF, which is a key point of this paper.

To the best of our knowledge, there has been only one
report in the literature establishing a link between the S

matrix and the GF of a wave equation [27]; in that work a
two-dimensional scalar Schrödinger wave equation is con-
sidered. Recently, a consistent phenomenological approach
to presenting the S matrix as a superposition of different
isolated resonances has been suggested [28]. This approach
is using the far-field information about the RSs of a system
and demonstrates a limited accuracy. A similar method has
been discussed earlier in [29]. Another approach, based on a
Weierstrass factorization, has been recently suggested [30]. It
is based on an elegant way of calculating the S matrix in a
spherically symmetric system using only the RS wave num-
bers, while the wave functions themselves are not required. It
is not clear, however, if this approach can be generalized to
scattering between different channels [22,31,32] which takes
place in nonspherical systems.

In this paper, we present a rigorous scattering theory based
on the concept of RSs, which determines the electromagnetic
field, the S matrix, and any scattering properties of an arbitrary
three-dimensional (3D) open optical system. The method is
based on the following steps: (i) establishing the link between
the S matrix and the dyadic GF of an arbitrary 3D system
and expressing them in the basis of vector spherical harmonics
(VSHs); (ii) using the ML expansion of the GF to represent the
S matrix in terms of the RSs of the system; (iii) calculating the
RSs via the RSE using a spherically symmetric basis system.
We illustrate this theory on the analytically solvable example
of a dielectric sphere in vacuum. We verify the approach by
comparing the results with the exact analytic solution known
as Mie theory [33], demonstrating the convergence of the S

matrix and the scattering cross sections to the exact solution.
We note that the approach to the light scattering developed in
this work is expected to be suited also for an open system in
the vicinity of a planar interface, by following the treatment
of flat boundaries suggested in [34].

We emphasize that the developed method can deal
with general finite 3D systems. This includes systems of
anisotropic shape [11] and of a permittivity with disper-
sion [12]. Recently, the RSE formulation was extended to
anisotropic, magnetic, chiral, and bianisotropic materials [19],
which includes the case of a biaxial sphere, solved previously
using an extended Mie scattering formalism [35]. This might
be useful for the understanding of nonreciprocity of magnetic
surface plasmon [36,37] and the design of plasmonic [38,39]
or chiral [40] metasurfaces.

The paper is organized as follows. Section II introduces
VSHs and their properties required for the subsequent deriva-
tions. Section III makes the connection between incoming and
outgoing fields and the GF of an open system. Section IV then
uses this result to establish a link between the S matrix and the
GF. In Sec. V we introduce the RSE and derive the normaliza-
tion of the perturbed RSs used in the GF and the S matrix. In
Sec. VI we illustrate and verify the method on the analytically
solvable example of a dielectric sphere in vacuum. Detailed
derivations of solutions of the wave equation in the basis of
the VSHs, as well as of the link between the GF and the S

matrix, are presented in the Appendices.

II. REPRESENTATION OF FIELDS IN VECTOR
SPHERICAL HARMONICS

In this work, the RSs and the GF of a 3D open optical
system are calculated using the RSE with a basis given
by the analytically known RSs of a homogeneous sphere.
Owing to the spherical symmetry, the resulting basis RSs
are characterized by their azimuthal and total angular mo-
mentum quantum numbers. In the subsequent derivations we
use VSHs to express the field outside of the system because
they form an orthogonal complete basis for expanding 3D
vector fields on a unit sphere and share the angular quan-
tum numbers with the basis RSs, thus allowing for compact
expressions. To prepare the use of VSHs, we provide here
their definition and the mapping of vectors, tensors, and
operators of the Cartesian coordinate space r = (x, y, z) =
(r sin(θ ) cos(ϕ), r sin(θ ) sin(ϕ), r cos(θ )), with the spherical
coordinates (r, θ, ϕ), onto the space of VSHs Yilm(�), where
� = (θ, ϕ). The VSHs are defined as

Y1lm(�) = 1√
l(l + 1)

r × ∇∇∇Ylm(�), (1)

Y2lm(�) = 1√
l(l + 1)

r∇∇∇Ylm(�), (2)

Y3lm(�) = r
r
Ylm(�), (3)

where Ylm(�) are the real scalar spherical harmonics, defined
in Eq. (A1) of Appendix A with l and m being the orbital
and azimuthal quantum numbers, respectively. The VSHs are
defined by Eqs. (1)–(3) following Barrera et al. [41] as vector
functions that are independent of the radius r , in contrast to
their more traditional form given, e.g., in [33,42]. Different
from Barrera et al., we use here real VSHs, in order to satisfy
the orthogonality condition of RSs without using the complex
conjugate [11], and choose their normalization to obey the
orthonormality∫

Yilm(�) · Yi ′l′m′ (�)d� = δii ′δll′δmm′ , (4)

where d� = sin θ dθ dϕ and δnm is the Kronecker delta.
Using the completeness of the VSHs, an arbitrary vector

field, such as the electric field E(r), can be expanded as

E(r) =
∑
ilm

[Elm(r )]iYilm(�), (5)

where the radially dependent expansion coefficient Elm(r ) is
a vector in the space of VSHs with given l and m, and its
ith component [Elm(r )]i is the expansion coefficient corre-
sponding to the ith VSH Yilm(�). In other words, Eq. (5)
defines a mapping from real space to the VSH space, E(r) →
{Elm(r )}, where the curly brackets indicate the set of all
l, m components. This mapping is done in an equivalent
way for tensors [for example, for the dielectric permittiv-
ity tensor ε̂εε(r) → {ε̂εεl′m′

lm (r )} or the dyadic GF Ĝ(r, r′; k) →
{Ĝl′m′

lm (r, r ′; k)}, see Appendix A for details] and for vector
operators L̂(r; k) → {L̂l′m′

lm (r; k)}.
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Consider, for example, the Helmholtz operator, which gen-
erates the Maxwell wave equation

L̂(r; k) ≡ k2ε̂εε(r) − ∇∇∇ × ∇∇∇×, (6)

where k = ω/c is the wave vector of the electromagnetic field
in vacuum, which is given by the light frequency ω and speed
c. While the first term in Eq. (6) is a tensor determined by
the structure of the optical system, the second term is block
diagonal in the VSH basis,

(∇∇∇ × ∇∇∇×)l
′m′
lm = L̂lδll′δmm′ , (7)

where

L̂l =

⎛
⎜⎜⎜⎜⎝

l(l+1)
r2 − 1

r
d2

dr2 r 0 0

0 − 1
r

d2

dr2 r
√

l(l+1)
r

d
dr

0 −
√

l(l+1)
r2

d
dr

r l(l+1)
r2

⎞
⎟⎟⎟⎟⎠, (8)

as derived in Appendix A.

III. ILLUMINATED OPEN OPTICAL SYSTEM
WITH KNOWN GREEN’S FUNCTION

Let us consider an optical system which is confined inside
a sphere of radius R, surrounded by vacuum. The local time-
independent permittivity tensor ε̂εε(r) outside the system is then
ε̂εε(r) = 1̂ for |r| > R, where 1̂ is the unit tensor. Note that
systems embedded in a medium with an isotropic homoge-
neous real refractive index can be described in the same way,
by simply rescaling ε̂εε(r) and k.

Using the VSH representation, the Maxwell wave equation
for the electric field

L̂(r; k)E(r) = 0 (9)

is mapped to the matrix differential equation∑
l′m′

L̂l′m′
lm (r; k)El′m′ (r ) = 0 (10)

(see Appendix A). Here, L̂l′m′
lm (r; k) = k2ε̂εεl′m′

lm (r ) − L̂lδll′δmm′ ,
and L̂l is given by Eq. (8). Similarly, the wave equation for
the GF,

L̂(r; k)Ĝ(r, r′; k) = 1̂δ(r − r′), (11)

is mapped to∑
l′′m′′

L̂l′′m′′
lm (r; k)Ĝl′m′

l′′m′′ (r, r ′; k) = 1̂
δ(r − r ′)

r2
δll′δmm′ . (12)

Suppose now that we know the GF of the system with
outgoing boundary conditions and for sources within the
sphere, i.e., at r ′ � R, and we want to determine the system
response when it is illuminated by an electromagnetic wave
with frequency ω. In the exterior, i.e., for r > R, the propa-
gating light can be expanded into a superposition of incoming
and outgoing spherical electromagnetic waves [33], as derived
in Appendix B (for explicit expressions see Sec. IV). As
an example, the expansion of a plane electromagnetic wave
into the VSHs as well as into incoming and outgoing vector
spherical waves is given in Appendix E. The illumination

can thus be described in open space by a superposition of
incoming and outgoing waves of given l and m.

To make use of the known GF, which does not contain
incoming waves, we replace the incoming waves by sources
located exactly on the spherical boundary at r = R. This is the
only location we can use since for sources at r > R, the GF
is not known, and for r < R the incoming wave is generally
not the same as in free space. We present two alternative
derivations of this conversion.

In Appendices C and D, the conversion of an incoming
spherical wave into such a source at r = R is done explicitly,
and the field inside the sphere up to its boundary at r = R

is then expressed in terms of the GF with this source term.
The field on the boundary is equated to the field outside
expressed in terms of incoming and outgoing spherical waves,
thus determining the link between the GF and the S matrix.

Here, instead, we realize the conversion of the illumination
into a source on the surface of the sphere by splitting the
problem into two parts. In the first part, which contains the
given incoming waves in open space, we introduce a surface
current at r = R, which results in zero electric field inside
the system. This part can be solved using only incoming and
outgoing waves in open space, disregarding the complexity
inside the system, which is “screened” from the illumination
by the surface current. The second part contains the reverse
surface current, no illumination, and a field which can be
found using the GF. The sum of both parts then has the given
incoming waves and no surface currents, and thus provides the
required solution for the illuminated system.

To implement this idea, we split the electric field Elm(r )
into two terms:

Elm(r ) = E lm(r )�(r − R) + EG
lm(r ), (13)

where the first term E lm(r )�(r − R) is the solution of the first
part, and the second term EG

lm(r ) is the solution of the second
part. The surface current is created by the first derivative of
the Heaviside step function �(r − R) in the first term when
applying the Helmholtz operator (8), yielding the Dirac delta
function δ(r − R). As shown in Appendix F, requiring E lm(r )
to vanish on the surface,

[E lm(R)]1 = [E lm(R)]2 = 0 (14)

determines the first part completely, including its outgoing
waves, and leads to the surface current

Jlm = R

⎛
⎜⎝

R[E ′
lm(R)]1

R[E ′
lm(R)]2 − √

l(l + 1)[E lm(R)]3

0

⎞
⎟⎠, (15)

so that the second part EG
lm(r ) becomes the solution of the

inhomogeneous Maxwell wave equation∑
l′m′

L̂l′m′
lm (r; k)EG

l′m′ (r ) = −Jlm

δ(r − R)

r2
. (16)

Now, using Eq. (12) we find

EG
lm(r ) = −

∑
l′m′

Ĝl′m′

lm (r, R; k)Jl′m′ . (17)

Note that only the second part of the system described
by EG

lm(r ) can mix different l, m, which occurs in scattering,
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while in the first part of the system the incoming and outgoing
waves in E lm(r )�(r − R) have always the same l, m since
this part does not “see” what is inside the system, but only a
perfectly conducting sphere. The full solution of the illumina-
tion problem is then provided by the superposition of VSHs
[Eq. (5)] with Elm(r ) given by Eq. (13).

IV. S MATRIX

In the empty space outside of the system, the permittivity
in VSH representation is ε̂εεl′m′

lm (r ) = 1̂δll′δmm′ , and the solutions
of the wave equation (10) consist of two groups: incoming
(d = in) and outgoing (d = out) spherical electromagnetic
waves, each of which can be split into transverse-electric
(p = TE) and transverse-magnetic (p = TM) polarizations.
As derived in Appendix B, the solutions have the following
form:

Ed
l,TE(r, k) =

⎛
⎝h̃ld

0
0

⎞
⎠, (18)

Ed
l,TM(r, k) = R

r

⎛
⎝ 0

ξ̃ld√
l(l + 1)γld h̃ld

⎞
⎠. (19)

Here, we introduced the functions h̃ld (r, k) and ξ̃ld (r, k), as
well as the coefficients γld (k), defined as

h̃ld (r, k) = hld (kr )

hld (kR)
, ξ̃ld (r, k) = ξ ′

ld (kr )

ξ ′
ld (kR)

, (20)

γld (k) = hld (kR)

ξ ′
ld (kR)

, (21)

where hl,out (x) = h
(1)
l (x) and hl,in(x) = h

(2)
l (x) are the spher-

ical Hankel function of the first and second kind, respectively,
ξld (x) = xhld (x) is the Riccati-Bessel function [43], and the
prime indicates the derivative. Note that Eqs. (18)–(21) are
normalized in such a way that on the sphere surface r = R

their dominant VSH component is unity:[
Ed

l,TE(R, k)
]

1 = [
Ed

l,TM(R, k)
]

2 = 1. (22)

For any real frequency and for r � R, i.e., in homogeneous
space, the electric field can be expressed as a superposition
of incoming and outgoing spherical waves of TE and TM
polarizations:

Elm(r, k) =
∑

p

[
Ain

lmpEin
lp(r, k) + Aout

lmpEout
lp (r, k)

]
, (23)

where Ain
lmp and Aout

lmp are, respectively, the incoming and

outgoing amplitudes. The scattering matrix S
l′m′p′
lmp , which is

defined by

Aout
lmp =

∑
l′m′p′

S
l′m′p′
lmp Ain

l′m′p′ , (24)

links the incoming and outgoing amplitudes.

In order to satisfy Eq. (14), the electric field E lm(r ) must
be chosen as

E lm(r ) =
∑

p

Ain
lmp

[
Ein

lp(r ) − Eout
lp (r )

]
, (25)

considering the normalization equation (22). Substituting
Eqs. (18) and (19) into Eq. (25), the electric field E lm(r ) into
Eq. (15), and the result for Jlm into Eq. (17), we find EG

lm(r ).
Then, equating the fields given by Eqs. (13) and (23) at r =
R, we obtain a relation between the incoming and outgoing
amplitudes, expressed in terms of the GF. Comparing this
relation with Eq. (24), we find the scattering matrix

S
l′m′p′
lmp = G l′m′p′

lmp (R,R; k)σl′p′ − δpp′δll′δmm′ , (26)

where

σl,TE(k) = R
[
γ −1

l,out (k) − γ −1
l,in (k)

]
, (27)

σl,TM(k) = k2R3[γl,in(k) − γl,out (k)], (28)

G l′m′p′
lmp (R,R; k) = [

Ĝl′m′

lm (R,R; k)
]
pp′ . (29)

An alternative derivation of Eq. (26) is presented in
Appendix C. The derivation is based on a direct comparison
of the field inside the sphere, calculated using the GF, and the
field outside it, found from the S matrix. Inside the sphere,
the electric field is the solution of Maxwell’s wave equation
with a delta-source term at r = R exactly representing the
effect of an incoming spherical wave on the interior region
of the sphere. Owing to this delta source, the full electric field
within the sphere r � R is given by the GF which in turn can
be found using the ML expansion into RSs of the system and
applying the RSE. Outside the sphere, the electric field due
to the incoming spherical wave is fully determined by the S

matrix, as it is clear from Eqs. (23) and (24). Requiring the
continuity of the tangent component of the electric field across
the boundary r = R, we obtain in Appendix C the link (26)
between the GF and the S matrix.

V. MITTAG-LEFFLER EXPANSION OF THE GREEN’S
FUNCTION AND THE RESONANT-STATE EXPANSION

In this section, we derive the GF Ĝ(r, r′; k) of the optical
system of interest which we refer to as a new system, in
terms of the analytically known RSs En(r) of a basis system.
The derivation is built on the ML expansion of GFs [4,6,16],
which for optical systems results in the following spectral
representation of the GF:

Ĝ(r, r′; k) =
∑

ν

Eν (r) ⊗ Eν (r′)
2k(k − �ν )

, (30)

as shown in [10,11,44]. Here, ⊗ denotes the direct (dyadic)
product. We assume that the ML expansion (30) is valid within
the minimal sphere of radius R containing the system. The
electric-field eigenfunctions Eν (r) with the corresponding
wave numbers �ν satisfy Maxwell’s wave equation

L̂(r; �ν )Eν (r) = 0 (31)

and outgoing boundary conditions. Since the GF in Eq. (26)
is expanded into VSHs and projected onto waves of different
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polarization (TE or TM), it is natural to choose a basis
system of spherical symmetry. The simplest choice of such a
system is a homogeneous sphere in vacuum, having a constant
permittivity ε different from the one of vacuum, and the radius
R. This system has known analytic solutions, providing its
RSs wave function En(r) and the eigen wave numbers kn (see,
e.g., [11]). The RS wave functions Eν (r) of the new system
are then expanded into the RSs of the basis system,

Eν (r) =
∑

n

CnνEn(r). (32)

This expansion is valid for all points inside the sphere |r| �
R. The GF of the basis system Ĝ(r, r′; k) has a spectral
representation analog of Eq. (30):

Ĝ(r, r′; k) =
∑

n

En(r) ⊗ En(r′)
2k(k − kn)

, (33)

which is also valid within the sphere. The RS wave functions
En(r) satisfy the normalization condition [10,11]

1 =
∫
VR

εb(r)E2
n dr (34)

+ 1

2k2
n

∮
SR

[
En · ∂

∂r
r
∂En

∂r
− r

(
∂En

∂r

)2
]
dS

for nonstatic (kn �= 0) RSs, where VR is the volume and SR is
the surface area of the sphere, and

2 =
∫

εb(r)E2
n dr (35)

for static (kn = 0) RSs, where the integral is extended to the
full space. Here, εb(r) is the permittivity of the basis system,
which is ε for r � R and 1 elsewhere.

The GF Ĝ(r, r′; k) of the new system, described by the
permittivity tensor ε̂εε(r), is related to the GF Ĝ(r, r′; k) of the
basis system via the Dyson equation

Ĝ(r, r′; k) = Ĝ(r, r′; k)

− k2
∫
VR

Ĝ(r, r′′; k)�ε̂εε(r′′)Ĝ(r′′, r′; k)dr′′, (36)

where �ε̂εε(r) = ε̂εε(r) − 1̂εb(r) is the perturbation. Substituting
the expansions (30), (32), and (33) into Eq. (36), we obtain

∑
nn′

(∑
ν

[
k

∑
n′′

Mnn′′Cn′′ν − knCnν

]
Cn′ν

k − �ν

− δnn′

)

×En(r) ⊗ En′ (r′)
2k(k − kn)

= 0, (37)

where

Mnn′ = δnn′ + 1

2
Vnn′ (38)

and

Vnn′ =
∫
VR

En(r)�ε̂εε(r)En′ (r)dr (39)

are the matrix elements of the perturbation. To satisfy
Eq. (37), it is sufficient to require that

∑
ν

[
k

∑
n′′

Mnn′′Cn′′ν − knCnν

]
Cn′ν

k − �ν

= δnn′ . (40)

While the left-hand side of Eq. (40) is a function of com-
plex variable k having simple poles at k = �ν , the right-hand
side shows that this function is a constant. This requires that
the residues at all the poles are zero, leading to the linear
matrix eigenvalue problem of the RSE

knCnν = �ν

∑
n′

Mnn′Cn′ν, (41)

which was derived in [10]. Equation (41) determines the
eigenvalues �ν and eigenvectors Cnν of the new system.

Now, replacing the term knCnν in Eq. (40) by the sum from
Eq. (41), we obtain the orthonormality of eigenvectors∑

n′′ν

Mnn′′Cn′′νCn′ν = δnn′ . (42)

Treating Mnn′ and Cn′ν as square matrices, we find that
their product

∑
n′ Mnn′Cn′ν is also a square matrix, which,

according to Eq. (42), is the transposed inverse of the matrix
Cnν , so that the product of the matrices is an identity matrix.
Multiplying these matrices in reverse order also results in the
identity matrix, hence, we obtain the orthonormality condition∑

nn′
Mnn′CnνCn′ν ′ = δνν ′ , (43)

which is equivalent to Eq. (42). Using the RSE equation (41)
again, the orthonormality (43) can be simplified to∑

n

knCnνCnν ′ = �νδνν ′ . (44)

The generalized matrix eigenvalue problem (41) of the
RSE can be reduced to diagonalizing a complex symmetric
matrix, as it was shown in [10,11]. Indeed, by making a trans-
formation Cnν = C̃nν

√
�ν/kn, the RSE equation (41) becomes

a symmetric eigenvalue problem∑
n′

M̃nn′C̃n′ν = λνC̃nν (45)

with the complex symmetric matrix

M̃nn′ = δnn′

kn

+ Vnn′

2
√

kn

√
kn′

(46)

and the eigenvalues λν = 1/�ν . Naturally, the orthonormality
conditions (42) and (43) are also simplified to∑

ν

C̃nνC̃n′ν = δnn′ ,
∑

n

C̃nνC̃nν ′ = δνν ′ , (47)

as expected for the standard eigenvalue problem. Note that
using static (kn = 0) modes makes Eq. (46) ill defined. For
numerical calculations, however, one can use small finite
values of kn for static modes, with negligible impact on
accuracy, while allowing to use the symmetric eigenvalue
problem, which can be solved two to three times faster [11]
than the generalized eigenvalue problem (41).
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FIG. 1. Complex reflection coefficient S
lmp

lmp (k) for TE polariza-
tion (p = TE) and l = 3 for a dielectric sphere of ε = 9 in vacuum.
The exact analytic result (normal line) is compared with the ML
expansion using the exact RSs for ε = 9 (thin line) and with the RSE
calculation using a basis sphere of ε = 4 (thick line), both computed
for a basis size of N = 65. 3D representation with the phase given
by the line color.

To summarize, the GF Ĝ(r, r′; k) of the new system is
found in the following way. We first find the RSs of the basis
system, such as a homogeneous sphere in vacuum, calculating
analytically their wave numbers kn and the wave functions
En(r). The basis system must be chosen in such a way that
the new system is included in its volume. Then, we calculate
the matrix elements (39) of the difference in the permittivity
�ε̂εε(r) between the new and the basis systems. Then, we
solve the generalized matrix eigenvalue problem (41) of the
RSE, finding the wave numbers �ν of the new RSs, and the
expansion coefficients Cnν , which we normalize according to
Eq. (43). Finally, we use the normalized coefficients Cnν in the
expansion (32), along with the analytic wave functions En(r),
and then substitute the wave functions Eν (r) found in this way
into the ML expansion (30) of the GF.

VI. RESULTS

The link (26) between the S matrix and the GF, and the ML
expansion (30) of the GF, in combination with the RSE using
a spherically symmetric system as basis, provides a rigorous
method of calculating the S matrix of an arbitrary 3D open
optical system.

To demonstrate the validity and convergence of this
method, we consider a system which has an exact solution,
i.e., a spherically symmetric system. In particular, in all
illustrations below we take a homogeneous dielectric sphere
with ε = 4 in vacuum as basis system and a sphere with equal
radius and ε = 9 as new system, for which we calculate, the
nonzero diagonal S-matrix components S

lmp

lmp (k) as well as
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FIG. 2. (a) Complex reflection coefficient S
lmp

lmp (k) for TE po-
larization (p = TE) and l = 3 for a dielectric sphere of ε = 9 in
vacuum. Re(S ) in black, Im(S ) in red. The analytical result (solid
line) is compared with the ML expansion using the exact RSs for
ε = 9 (dashed line) and with the RSE calculation using a basis sphere
of ε = 4 (dashed-dotted line), both calculated for a RS basis size
of N = 65, and a refined RSE calculation including a first-order
correction of the RS fields (dotted line). The RS wave numbers kn are
given as crosses. (b) Absolute error |S − S (exact)| of the ML (black
solid line), the RSE (green solid line), and the refined RSE results
(blue line). Results for basis sizes N = 65 and 1025 as labeled. The
dotted lines show asymptotic power-law dependencies as labeled.

the resulting partial and the total scattering cross sections. As
finite basis, we use all RSs with |kn| < kmax, with a suitably
chosen cutoff kmax. The results of this method are called
“RSE” results. We compare these with the exact analytic
solution S

(exact)
lmp (k) provided in Appendix I and the cross

sections following from it, which is known as Mie theory [33].
In addition to this, we use the exact analytic eigenmodes

E (exact)
ν of the new system in the ML expansion (30), to

calculate the corresponding S-matrix components and the
scattering cross sections. The results of this method are called
below “ML” results. Technically, this method is equivalent
to using a dielectric sphere with permittivity ε = 9 as basis
structure in the RSE.
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FIG. 3. As Fig. 2, but for l = 6. The inset in (b) is a zoom around
the fundamental WG RS.

A. Reflection coefficients

The complex reflection coefficient S
lmp

lmp (k) for TE polar-
ization (p = TE) and l = 3 is given in Fig. 1. The analytical
solution S

(exact)
lmp (k) (see Appendix I) is compared with the

RSE result S
lmp

lmp (k) and with the ML result, both calculated
for a RS basis size of N = 65. Note that in the case of
spherical symmetry, S

lmp

lmp (k) does not depend on m, as can
be seen explicitly from Eq. (26), in which the diagonal GF
G lmp

lmp (R,R; k) is independent of m, as it satisfies Eq. (12) with

the operator L̂lm
lm(r; k) being independent of m [see Eq. (8)].

Equally, the analytic solution is also independent of m.
We can observe the typical rotation in complex space

across the resonances which get broader in kR with increasing
kR as they change from whispering gallery (WG) to Fabry-
Pérot (FP) character. This can be traced in the increasing
imaginary part of the RS wave numbers kn shown in Fig. 2(a).
Since the sphere is nonabsorbing, the analytical reflection
coefficient has unity magnitude, as is clearly visible in the
(Re(S), Im(S)) projection. Both expansions of the GF are
deviating from the analytic result in a similar manner, with
the error being dominated by a positive shift in Im(S). In the
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FIG. 4. As Fig. 2, but for TM polarization (p = TM).

RSE results, which are using approximate RSs, this deviation
is a few times larger than in the ML results which are using
the exact RSs instead.

In Fig. 2(a) the data given in Fig. 1 are shown separated
into real and imaginary parts. Figure 2(b) shows the absolute
error |S − S (exact)| of the RSE and ML results for different
basis sizes N . We can observe that the error is scaling as N−1.
Furthermore, the error scales as k for kR 	 l, and as k2l+1 for
kR 
 l. The former is consistent with the above-mentioned
N−1 scaling since the error scales as k/kmax, with kmax ∝ N .
The latter is due to the low-frequency asymptotic behavior of
the illumination field.

Notably, the error of the ML results does not show any
resonant features since this error is due to the missing high-
frequency RSs. The error of the RSE calculation instead
shows peaks at the resonances, scaling as N−1. This could
be due to either the error in the RS frequencies �ν , or due
to the error in the RS fields Eν . However, the error in �ν

scales as N−3 [11], which is inconsistent with the observed
scaling. We therefore conclude that this error is determined
by the error in the fields Eν , as has been observed already in
the one-dimensional case for which the scattering problem is
simpler to treat [45].
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FIG. 5. As Fig. 3, but for TM polarization (p = TM).

To improve the error of the fields, we have added a first-
order correction of the fields, extending the basis size from
N to N + L and treating the additional L modes in first
perturbation order, as described in Appendix H. The size of
the basis is chosen such that L ≈ N2. Using this correction,
the error due to the fields becomes insignificant, and the
remaining error is dominated by the missing high-frequency
RSs, both in the RSE and the ML results. Interestingly, the
error of these “refined” RSE results can be even lower than
the ML results, as is specifically evident for N = 1025. This
indicates that the remaining error in the RSs can partially
compensate the contribution of the missing RSs.

Moving to l = 6, shown in Fig. 3, we find a behavior
consistent with the previous discussion. The high angular
momentum supports sharper WG RSs, such as the first two
modes, at kR ∼ 3.1 and kR ∼ 4.3 (Q factors are about 4500
and 340, respectively). For the sharp WG RSs, we find that
the error in the RS wave number is significant for N = 64, as
can be seen in the inset of Fig. 3(b). We note that the error of
the wave numbers can be improved by one to two orders of
magnitude by extrapolation [45].

Switching to TM modes, we show the corresponding re-
sults in Fig. 4 for l = 3 and in Fig. 5 for l = 6. The behavior
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FIG. 6. (a) Partial scattering cross section σ sca
l (k) for TE polar-

ization and l = 3 for a dielectric sphere of ε = 9 in vacuum. The
analytical result (black) is compared with the ML expansion for a
basis size of N = 33, using the exact RSs for ε = 9 (red line), and the
RSs determined by the RSE with refinement, using as basis a sphere
with ε = 4 (blue line). (b) Absolute error |σ sca

l (k) − σ
sca(exact)
l (k)| for

ML (red line) and RSE calculation (blue line). Results for a basis
size N = 33 are given as thick lines, and for N = 1025 as thin lines.
Inset in (a): absolute error averaged over the range of 0 � kR � 10,
as function of the basis size N . The dotted line gives N−1.

is similar to the TE polarization. However, the asymptotics of
the error for kR 
 l is now k2l+3, again due to the scaling
of the illumination field. The somewhat different behavior of
TE and TM fields around kR ∼ l can be understood consid-
ering the Fresnel reflection at the sphere surface; while TE
fields correspond to s-polarized light and therefore show a
monotonous increase of Fresnel reflection with incident angle,
the TM fields correspond to p polarization and exhibit a
reduced reflection around Brewster’s angle. The linewidths of
the TM RSs in this region, which occur around kR = l, are
therefore much larger than for the TE RSs, as can be seen in
the data.

B. Partial scattering cross sections

The scattering cross section σ sca can be determined from
the S matrix as detailed in Appendix G. The total cross
section is a sum over all partial contributions σ sca

l from each
angular momentum l. For a spherically symmetric system,
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FIG. 7. As Fig. 6 but for TM polarization (p = TM).

each partial cross section σ sca
l can be found using the spectral

representation of the GF, as a sum over the RSs for the given
l. Also, the analytic form of σ sca

l for a dielectric sphere in
vacuum is known [33] (see Appendix I). The corresponding
σ sca

l for p = TE, l = 3, and N = 33 is given in Fig. 6(a).
The typical spectral structure consisting of sharp WG RSs,
which are getting broader with increasing kR, is visible. The
results for both GF expansions (ML and RSE refined) show a
similar error, which is given in Fig. 6(b), and compared with
a larger basis size N = 1025. To investigate the convergence,
we show in the inset of Fig. 6(a) the error averaged over
the displayed range of kR, for increasing basis size N . We
find an error scaling as N−1, the same as for the reflection
coefficients. Notably, while the scaling is well defined for the
ML calculation, the refined RSE results are showing some
fluctuations. This indicates that the first-order correction of
the fields, while generally sufficient for an error limited by
the cutoff of the expansion, contains additional influences,
consistent with the discussion concerning the reflection
coefficients. A similar qualitative behavior is found for the
TM modes, as shown in Fig. 7.

Moving to TE, l = 6, shown in Fig. 8, the first WG RS
has a rather narrow linewidth, which is smaller than the error
in the RS wave numbers for N = 32. This leads to a large
error close to this resonance. We note that, generally, the
linewidth of the fundamental WG RS decreases exponentially
with increasing l, so it quickly becomes less than the RS
wave-number error, which in turn scales as a power law,
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FIG. 8. As Fig. 6 but for l = 6, and basis sizes N = 32 and 1024
as labeled.

namely, N−3. In typical realistic systems, however, the mode
linewidth is limited by absorption and surface roughness,
rendering this issue less relevant for practical applications.
Again, similar results are observed for the TM modes, as
shown in Fig. 9.

C. Total scattering cross section

Summing over all partial scattering cross sections for
l � 20, for a given N used for each l, we arrive at the total scat-
tering cross section presented in Fig. 10. The spectrum shows
a large number of peaks, having an exponentially decreasing
minimum width with increasing kR, as discussed above. For
kR 	 1, twice the geometrical cross section is approached,
as expected considering diffraction, which is known as the
extinction paradox [33]. In the limit kR 
 1, the well-known
scaling in the Rayleigh scattering regime σ sca ∝ R6 is seen.

The error averaged over the displayed range of kR is given
in the inset versus N . We find again an error scaling as N−1,
both for the exact RSs and the ones calculated via the RSE,
using the refinement. Notably, the remaining error is due to
the missing high-frequency RSs in the GF expansion. It is
conceivable that one can approximate the contribution of these
RSs using the high-frequency behavior of the GF. This will
be of relevance for applications of the RSE to scattering and
absorption of nonspherical objects, which do not allow using
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FIG. 9. As Fig. 8 but for TM polarization (p = TM).

symmetry to factorize the problem and require all RSs within
k < kmax to be taken into account in the RSE.

We can thus see that the RSE is well suited to determine
RSs for scattering calculations, providing errors comparable
to those coming from using the exact RSs. The observed N−1

convergence of σ sca leads to errors in the 1% range for about
N = 100 RSs in the spherically symmetric case treated in the
example shown.

VII. SUMMARY AND CONCLUSIONS

In summary, we have presented and verified an ex-
act method to determine the scattering matrix of a finite
three-dimensional system using its resonant states. This was
achieved by expressing incoming and outgoing waves in the
basis of vector spherical harmonics, expanding the Green’s
function into resonant states, and determining the resonant
states using the resonant-state expansion with a spherically
symmetric basis. The accuracy of the method is limited only
by the basis size used, which is determined by the wave-
number cutoff. We have demonstrated the convergence of the
calculation of the scattering matrix and the scattering cross
section with an error scaling as the inverse basis size. It is
conceivable that this convergence can be improved in future
work, e.g., by introducing approximate treatments of the states
with frequencies above the cutoff, which are not included in
the basis.

This paper establishes a method, based on the resonant-
state expansion, for calculating the response of finite three-
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FIG. 10. Total scattering cross section σ sca (k) for a dielectric
sphere of ε = 9 in vacuum. The analytical result using using Mie
theory [33] (black) is compared with ML expansion for a basis size
of N = 64, using the exact RSs for ε = 9 (red line), and the RSs
determined by the RSE with refinement, using as basis a sphere with
ε = 4 (blue line). Inset: absolute error averaged over 0 � kR � 10,
as function of the basis size N . The dotted line gives N−1.

dimensional open optical systems, which might have signifi-
cant practical applications in the future.

The data presented in this work are available from the
Cardiff University data archive [46].
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APPENDIX A: VSH REPRESENTATION OF VECTORS,
TENSORS, AND OPERATORS

We define VSHs according to Eqs. (1)–(3), in which

Ylm(�) =
√

2l + 1

2

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ )χm(ϕ) (A1)

are the real spherical harmonics, P m
l (x) are the associated

Legendre polynomials, l (l = 1, 2, . . .) and m (−l � m � l)
are the spherical quantum numbers, and the azimuthal func-
tions are defined as

χm(ϕ) =
⎧⎨
⎩

π−1/2 sin(mϕ) for m < 0,

(2π )−1/2 for m = 0,

π−1/2 cos(mϕ) for m > 0,

(A2)

i.e., in the same way as in [11].
The VSHs constitute a complete set of vector functions on

a unit sphere. Therefore, any vector field can be expanded into
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VSHs, as given by Eq. (5), in which the radially dependent
expansion coefficients are

[Elm(r )]i =
∫

Yilm(�) · E(r)d�. (A3)

Equations (5) and (A3) determine the mapping of a vector
field E(r) in real space into vector fields Elm(r ) in the space
of VSHs. Similarly, a tensor ε̂εε(r) in real space is mapped into
a tensor ε̂εεl′m′

lm (r ) in VSH space,

[
ε̂εεl′m′

lm (r )
]
ij

=
∫

Yilm(�) · ε̂εε(r)Yj l′m′ (�)d�, (A4)

and a dyadic GF Ĝ(r, r′; k) into Ĝl′m′

lm (r, r ′; k) given by

[
Ĝl′m′

lm (r, r ′; k)
]
ij

=
∫∫

Yilm(�) · Ĝ(r, r′; k)Yj l′m′ (�′)d� d�′. (A5)

To transform the operator L̂(r) in Eq. (9) to L̂l′m′
lm (r ) in

Eq. (10), we first consider the curl operator. To find its
mapping onto the VSH space, we note that it is diagonal in
l and m. Indeed,

r∇ × Y1lm(�) = −Y2lm(�) − αlY3lm(�),

r∇ × Y2lm(�) = Y1lm(�),

r∇ × Y3lm(�) = −αlY1lm(�), (A6)

where αl = √
l(l + 1), and also

r × Y1lm(�) = −rY2lm(�),

r × Y2lm(�) = rY1lm(�),

r × Y3lm(�) = 0, (A7)

showing that the operators ∇× and r× when acting on the
VSHs do not alter their angular quantum numbers. Now,
taking the VSH expansion of an arbitrary vector function f (r)
with fixed l and m,

f (r) =
∑

i

fi (r )Yilm(�), (A8)

and using the fact that

∇×fi (r )Yilm(�) = fi (r )∇×Yilm(�) + f ′
i (r )

r
r×Yilm(�),

(A9)

where the prime indicates the differentiation with respect to r ,
we find

∇ × f (r) =
∑

i

gi (r )Yilm(�) (A10)

with

g1 = 1

r
(rf2)′ − αl

r
f3 , g2 = −1

r
(rf1)′, g3 = −αl

r
f1.

(A11)

Applying the curl operator again, we find the mapping of the
double curl operator ∇ × ∇× → L̂l (r ), which is given by

∇ × ∇ × fi (r )Yilm(�) =
∑

j

[L̂l (r )]ij fj (r )Yj lm(�).

(A12)

The matrix L̂l (r ) is found by using Eq. (A11) twice, yielding

L̂l (r ) =

⎛
⎜⎜⎜⎝

− 1
r

d2

dr2 r + α2
l

r2 0 0

0 − 1
r

d2

dr2 r
αl

r
d
dr

0 − αl

r2
d
dr

r
α2

l

r2

⎞
⎟⎟⎟⎠, (A13)

and is shown in Eq. (8) resubstituting αl .

APPENDIX B: SOLUTIONS OF THE WAVE
EQUATION IN FREE SPACE

In empty space, the operator L̂l′m′
lm (r ) in the wave equation

(10) becomes

L̂l′m′
lm (r ) = [−L̂l (r ) + k2]δll′δmm′ , (B1)

and thus Eq. (10) reduces to

−L̂l (r )E(r ) + k2E(r ) = 0, (B2)

where E(r ) is the electric field in VSH space, having com-
ponents Ei (r ) = [E(r )]i (i = 1 , 2 , 3), with indices l and m

omitted for brevity. Due to the block-diagonal form of the
L̂l (r ) [see Eq. (A13)], the wave equation (B2) splits into TE
and TM polarizations.

The TE polarization is given by a single scalar differential
equation

d2

dr2
rE1 − α2

l

r
E1 + k2rE1 = 0, (B3)

which is a spherical Bessel equation for E1, having solutions
in a form of spherical Hankel functions

E1(r ) = h̃ld (r, k), (B4)

here normalized in such a way that E1(R) = 1 [see Eq. (20)
for the definition of h̃ld ]. The resulting full electric field in the
TE polarization is then given by Eq. (18).

The TM polarization is described by a pair of coupled
differential equations following from Eq. (B2):

d2

dr2
rE2 − αl

d

dr
E3 + k2rE2 = 0. (B5)

d

dr
rE2 − αlE3 + k2r2

αl

E3 = 0. (B6)

Excluding E2, we again obtain a spherical Bessel equation

d2

dr2
r2E3 − α2

l

r
E3 + k2r2E3 = 0, (B7)

this time for rE3. Choosing the normalization of the field in
such a way that E2(R) = 1 (see below), we obtain

rE3(r ) = Rαlγld h̃ld (r, k), (B8)
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where γld is defined in Eq. (21). Finally, combining Eqs. (B5)
and (B6), we find

E2(r ) = 1

αlr

d

dr
r2E3(r ) = R

r
ξ̃ld (r, k), (B9)

where ξ̃ld is given by Eq. (20), which provides the normal-
ization E2(R) = 1 used above. Together with Eq. (B8), this
yields the full electric field in the TM polarization given by
Eq. (19).

Note that, according to the chosen normalization, the VSH
fields of the TE and TM spherical waves on the surface of the
sphere r = R are given by

Ed
l,TE(R, k) =

⎛
⎝1

0
0

⎞
⎠, Ed

l,TM(R, k) =
⎛
⎝ 0

1
αlγld (k)

⎞
⎠, (B10)

in agreement with Eq. (22)

APPENDIX C: LINK BETWEEN THE S MATRIX
AND THE GREEN’S FUNCTION: AN ALTERNATIVE

DERIVATION OF EQ. (26)

Owing to the linearity of Eq. (9), the electric field for an
arbitrary excitation of the system is a linear combination of
spherical waves. For a single incoming spherical wave with
given spherical quantum numbers l′ and m′ and polarization
p′, where either p′ = TE or p′ = TM, we have the incoming
amplitudes Ain

lmp = δll′δmm′δpp′ in Eq. (23). Using this excita-
tion condition and the S matrix defined by Eq. (24), we obtain
the full electric field in the VSH representation,

Elm(r ) = δll′δmm′Ein
lp′ (r, k) +

∑
p

S
l′m′p′
lmp (k)Eout

lp (r, k), (C1)

which is valid for r � R. At the same time, for r � R, i.e.,
inside the basis sphere containing the system, the electric field
Elm(r ) can be determined via the RSE using the GF and a
suitable excitation source. The GF is expressed as the ML
expansion into the RSs of the new system, which are in turn
found from the RSs of the basis system, applying the RSE
(see Sec. V). Since the GF satisfies the wave equation with a
δ-source term (12), it is necessary to represent the effect of the
incoming spherical wave on the region r � R by a spherical
δ-source term at r = R. The electric field Elm(r ) for r � R

then becomes the solution of the inhomogeneous Maxwell
wave equation∑

l′′m′′
L̂l′′m′′

lm (r; k)El′′m′′ (r ) = σ l′p′
δ(r − R)

R2
δll′δmm′ (C2)

with the source vectors σ lp given by

σ lp = σlpep , eTE =
⎛
⎝1

0
0

⎞
⎠, eTM =

⎛
⎝0

1
0

⎞
⎠, (C3)

as derived in Appendix D. Here, σlp are defined by Eqs. (27)
and (28). Solving Eq. (C2) with the help of the GF satisfying
Eq. (12), we find

Elm(r ) = Ĝl′m′

lm (r, R; k)σ l′p′ . (C4)

Finally, we equate the two forms of the electric field, Eqs. (C1)
and (C4), at the point r = R. Strictly speaking, we equate
only their tangent components, in accordance with Maxwell’s
boundary conditions, which is equivalent to equating their
projections onto the polarization vectors ep:

δll′δmm′ep · Ein
lp′ (R, k) +

∑
p′′

S
l′m′p′
lmp′′ (k)ep · Eout

lp′′ (R, k)

= σl′p′ep · Ĝl′m′

lm (R,R; k)ep′ . (C5)

Introducing projections of the GF onto TE and TM polariza-
tions,

G l′m′p′
lmp (k) = ep · Ĝl′m′

lm (R,R; k)ep′ , (C6)

and using the explicit form Eq. (B10) of the electric field
components at r = R, which gives ep · Ed

lp′ = δpp′ , we arrive
at Eq. (26). This provides the link between the GF and the S

matrix.
We note that the established link between the GF and

the S matrix actually allows us to find, via Eq. (C1), the
full electromagnetic field outside the basis sphere, from just
knowing the GF on the sphere boundary. This includes both
near and far fields. Inside the sphere, the field can be found
from Eq. (C4) using the GF inside the sphere. Therefore, this
approach allows us to determine the electromagnetic field due
to a spherical wave excitation of the system at all points of
space.

APPENDIX D: DERIVATION OF THE DELTA-SOURCE
TERMS REPLACING INCOMING SPHERICAL WAVES

In order to determine the source terms σ lp in Eq. (C2),
rigorously representing the effect of the incoming spherical
wave on the interior region of the sphere r � R, we consider
these sources in free space and require that the electric field
inside the sphere r � R is the same as that produced by an
incoming wave in vacuum, which is given by Eq. (18) or (19),
with d = in. This electric field is therefore the solution of the
wave equation

−L̂l (r )E(r ) + k2E(r ) = σ

R2
δ(R − r ), (D1)

in which we omitted, for brevity, the indices l and p. Below
we solve this equation for both TE and TM polarizations, find-
ing the source σ from the known field E(r ) inside the sphere.
As in Appendix B, we deal here explicitly with the three com-
ponents of the vectors of the electric field and the source in
VSH space, which are given by Ei (r ) = [E(r )]i and σi =
[σ ]i , respectively, with i = 1 , 2 , 3.

For a TE-polarized wave, having only the component E1,
we obtain σ2 = σ3 = 0 and from Eq. (D1)

1

r

d2

dr2
rE1 − α2

l

r2
E1 + k2E1 = σ1

R2
δ(R − r ), (D2)

which, according to Eq. (18), should have the following
solution:

E1(r ) =
{
h̃l,in(r, k), r � R

h̃l,out (r, k), r > R
(D3)

continuous at r = R and representing an incoming wave
inside and an outgoing wave outside the sphere. Here, the
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functions h̃ld (r, k) are defined in Eq. (20). The discontinuity
of the derivative of E1 at r = R determines the source term
imitating the incoming wave. This can be found by integrating
Eq. (D2), which leads to

dE1

dr

∣∣∣∣
R+0+

R−0+
= σ1

R2
, (D4)

where 0+ is a positive infinitesimal. From this we find

σ1 = R2[h̃′
l,out (R, k) − h̃′

l,in(R, k)]

= R
[
γ −1

l,out − γ −1
l,in

] = σl,TE, (D5)

using Rh̃′
ld (R, k) = γ −1

ld − 1 and h̃′
ld (r, k) ≡ d

dr
h̃ld (r, k).

Clearly, Eq. (D5) defining σl,TE coincides with Eq. (27).
A TM-polarized wave has two nonvanishing components

of the field, E2 and E3. Therefore, in this polarization, σ1 =
0, and the other two components of the source, σ2 and σ3,
are found from Eq. (D1), which in this case reduces to the
following pair of coupled equations:

1

r

d2

dr2
rE2 − αl

r

d

dr
E3 + k2E2 = σ2

R2
δ(R − r ), (D6)

αl

r2

d

dr
rE2 − α2

l

r2
E3 + k2E3 = σ3

R2
δ(R − r ). (D7)

Its solution should be a TM wave in vacuum, which, according
to Eq. (19), is given by

r

R
E2(r ) =

{
ξ̃l,in(r, k), r � R

ξ̃l,out (r, k), r > R
(D8)

and

r

Rαl

E3(r ) =
{
γl,inh̃l,in(r, k), r � R

γl,outh̃l,out (r, k), r > R
(D9)

where the functions ξ̃ld (r, k) are defined in Eq. (20) and the
coefficients γld are given by Eq. (21). Again, the obtained
solution describes an incoming wave inside the sphere and
an outgoing wave outside it. Note that the component E2

is continuous, but E3 is not, as it corresponds to the part
of the electric field which is normal to the sphere surface
where the δ-like source with a virtual electric current is
placed. Using the continuity of E2 and integrating Eqs. (D6)
and (D7) results in

1

R

(
d

dr
rE2 − αlE3

)∣∣∣∣
R+0+

R−0+
= σ2

R2
(D10)

and σ3 = 0, respectively. Equation (D10) can be further
simplified, using Eqs. (B6) and (D9) and the fact that
h̃l,in(R, k) = h̃l,out (R, k) = 1. Then, we obtain

σ2 = k2R3

αl

E3

∣∣R+0+
R−0+

= k2R3(γl,in − γl,out ) = σl,TM, (D11)

which is the same as Eq. (28).
Equations (D5) and (D11) thus determine the nonvanishing

components of the source terms at r = R which exactly

produce the incoming spherical waves in TE and TM polariza-
tions, respectively, normalized according to Eq. (B10). This
result is presented in a compact form by Eq. (C3).

APPENDIX E: EXPANSION OF A PLANE WAVE
INTO VECTOR SPHERICAL HARMONICS

Consider a linearly polarized plane wave propagating in
free space in z direction. In spherical coordinates, the electric
field of a plane wave polarized in x and y directions is given
by

Ex (r) = [cos ϕ(sin θer + cos θeθ ) − sin ϕeϕ]eikr cos θ , (E1)

Ey (r) = [sin ϕ(sin θer + cos θeθ ) + cos ϕeϕ]eikr cos θ , (E2)

respectively, where er , eθ , and eϕ are the unit vectors in
spherical coordinates. The corresponding fields Ex

lm(r ) and
Ey

lm(r ) in the VSH basis can be found using the general
definition (A3), the well-known expansion of a scalar plane
wave into scalar spherical harmonics [15],

eikr cos θ =
∞∑
l=0

il
√

4π (2l + 1)jl (kr )Yl0(�), (E3)

and the following explicit form of the VSHs:

Y1lm(�) = 1

αl

(
− m

sin θ
Yl,−meθ + ∂Ylm

∂θ
eϕ

)
, (E4)

Y2lm(�) = 1

αl

(
∂Ylm

∂θ
eθ + m

sin θ
Yl,−meϕ

)
, (E5)

Y3lm(�) = Ylmer , (E6)

where αl = √
l(l + 1). In particular, we calculate all three

components of the field in each polarization one by one.
Consider [Ex

lm(r )]1 for illustration:

[
Ex

lm(r )
]

1 =
∫

Y1lm(�) · Ex (r)d�

= 1

αl

∞∑
l′=0

il
′√

4π (2l′ + 1)jl′ (kr )Jm
l′l , (E7)

where

Jm
l′l =

∫
Yl′0

(
−m cos ϕ

cos θ

sin θ
Yl,−m − sin ϕ

∂Ylm

∂θ

)
d�

= δm,−1

√
2l′ + 1

2

√
2l + 1

2αl

Il′l (E8)

and

Il′l =
∫ π

0
P 0

l′ (cos θ )

[
cos θ

sin θ
P 1

l (cos θ ) + ∂P 1
l (cos θ )

∂θ

]
sin θ dθ

= − 2α2
l

2l + 1
δll′ . (E9)

In calculating the last integral, we have used the orthogonality
of Legendre polynomials P m

l (cos θ ) and recursive relations
involving their derivatives. Repeating this exercise for the
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other components, we obtain

Ex,y

lm (r ) = −δm,∓1ηl

⎛
⎝jl (kr )

0
0

⎞
⎠ ± δm,±1

ηl

kr

⎛
⎝ 0

ζ ′
l (kr )

αljl (kr )

⎞
⎠
(E10)

with

ηl = il
√

2π (2l + 1) (E11)

and ζl (x) = xjl (x). The upper (lower) sign in Eq. (E10)
corresponds to the x (y) polarization of the plane wave.

Now, we note that the two vector functions which appear
in Eq. (E10) can be obtained by combining the incoming
and outgoing spherical waves in free space, which are given
by Eqs. (18) and (19), respectively, for the TE and TM
polarizations. Being represented by the Hankel functions of
the first and second kind, these solutions are divergent at the
origin but their combinations leading to the spherical Bessel
functions are regular at r = 0, as it should be for the plane
wave. These unique combinations have the following form:

∑
d=in,out

βd
l,TEEd

l,TE(r, k) =
⎛
⎝jl (kr )

0
0

⎞
⎠, (E12)

∑
d=in,out

βd
l,TMEd

l,TM(r, k) = 1

kr

⎛
⎝ 0

ζ ′
l (kr )

αljl (kr )

⎞
⎠ (E13)

for TE and TM polarizations, respectively, with

βd
l,TE = 1

2
hd

l (kR), βd
l,TM = 1

2

1

kR
ξ ′
ld (kR), (E14)

ξld (x) = xhd
l (x), and the fields Ed

lp(r ) defined by Eqs. (18)
and (19). This allows us to apply the expansion (23) to a
polarized plane wave. Denoting the expansion coefficients
Ad

lmp in the case of a plane wave as B
dj

lmp, where j = x, y,
we obtain from Eq. (23)

Ej

lm(r ) =
∑
pd

B
dj

lmpEd
lp(r, k). (E15)

Comparing Eq. (E15) with Eq. (E10) and using Eqs. (E12)–
(E14), we arrive at

B
dj

lmp = τ j
mpηlβ

d
lp, (E16)

where

τ x
m,TE = −δm,−1, τ x

m,TM = iδm,+1, (E17)

τ
y

m,TE = −δm,+1, τ
y

m,TM = −iδm,−1, (E18)

and ηl and βd
lp are given by Eqs. (E11) and (E14), respectively.

APPENDIX F: DERIVATION OF THE EQUIVALENT
SURFACE CURRENT

Applying the Helmholtz operator to the electric field
E lm(r )�(r − R) of the first part of the system introduced
in Sec. III, using the explicit expression for the double curl
operator (8), and noting that E lm(r ) is a solution of Eq. (10)

in the region |r| > R, we obtain∑
l′m′

L̂l′m′
lm (r; k)E l′m′ (r )�(r − R)

= (k2 − L̂l )E lm(r )�(r − R)

= �(r − R)(k2 − L̂l )E lm(r )

+ Jlm

δ(r − R)

r2
+ Qilmδ′(r − R), (F1)

where

Jlm

R
=

⎛
⎜⎝

R[E ′
lm(R)]1 + 2[E lm(R)]1

R[E ′
lm(R)]2 + 2[E lm(R)]2 − √

l(l + 1)[E lm(R)]3√
l(l + 1)[E lm(R)]2

⎞
⎟⎠

(F2)

and

Qlm =
⎛
⎝[E lm(R)]1

[E lm(R)]2

0

⎞
⎠. (F3)

Qlm vanishes under the condition (14), and using Eqs. (F1)
and (13) we find that the second part of the electric field
EG

lm(r ) satisfies Eq. (16).
Note that the first and the second components of the electric

field Elm(r ) are continuous functions of the coordinate r at
the surface r = R. Indeed, since the first and the second
components of the field E lm(r ) are continuous and vanish at
r = R due to Eq. (14), multiplying them with the Heaviside
step function �(r − R) retains their continuity. The first
two components of the field EG

lm(r ) are continuous as well
since otherwise their second derivatives [see the explicit form
Eq. (8) of the operator L̂l] would result in the derivative of
the Dirac delta function δ′(r ), which is not present in the
right-hand side of Eq. (16).

APPENDIX G: SCATTERING
AND ABSORPTION CROSS SECTIONS

The scattering cross section is defined as the area orthog-
onal to the propagation direction of the plane-wave excitation
transmitting the same power as is scattered by the system
under this excitation. Therefore, we start by considering an
open system illuminated by a plane wave. The incoming
amplitudes Ain

lmp [see Eqs. (23) and (24)] are then given by the
incoming plane-wave expansion coefficients (E11) for linear
or circular polarization:

Ain
lmp = B in

lmp. (G1)

In particular, Eq. (E16) in Appendix E gives the explicit
form of the expansion coefficients B

dj

lmp for linear polarized
plane waves (here j = x or y). The outgoing amplitudes
Aout

lmp instead are given by the outgoing plane-wave expansion
coefficients Bout

lmp plus the plane-wave scattering amplitudes
Asca

lmp of the system

Aout
lmp = Bout

lmp + Asca
lmp. (G2)

Using the scattering matrix, which is connecting incoming
and outgoing amplitudes, by substituting Eqs. (G1) and (G2)
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into Eq. (24), we find the plane-wave scattering amplitudes as

Asca
lmp =

∑
l′m′p′

S
l′m′p′
lmp B in

l′m′p′ − Bout
lmp. (G3)

To determine the scattering cross section σ sca, we then
calculate the electromagnetic power scattered by the system in
the far field, normalizing it to the power flux S0 = c/(8π ) of
the incoming plane wave (note that we use here a unity plane-
wave field amplitude for brevity, as the result is independent
of this amplitude):

σ sca = 1

S0
lim
r→∞ r2

∫
er · Ssca (r,�)d�. (G4)

Here, Ssca (r,�) is the Poynting vector of the scattered field

Ssca = c

8π
Re[Esca × (Hsca )∗]. (G5)

Using Maxwell’s equations, one can show that the mag-
netic field of the spherical electromagnetic waves [Eqs. (18)
and (19)] is given by

Hd
l,TE(r ) = ikRγldEd

l,TM(r ), (G6)

Hd
l,TM(r ) = i(kRγld )−1Ed

l,TE(r ). (G7)

Both the electric and magnetic fields of the outgoing
spherical electromagnetic waves contain spherical Hankel
functions of the first kind, which for a real argument x have
the asymptotic behavior

h
(1)
l (x) ≈ (−i)l+1 eix

x
for x 	 l. (G8)

Using this asymptotics in Eqs. (18) and (19) and Eqs. (G6)
and (G7), substituting the electric and magnetic fields into the
Poynting vector Eq. (G5), and the result into Eq. (G4), we
obtain the total scattering cross section

σ sca =
∑
lmp

�lmp

∣∣Asca
lmp

∣∣2
, (G9)

where

�lm,TE = ∣∣kh
(1)
l (kR)

∣∣−2
, (G10)

�lm,TM = k2R2|γl,out|2�lm,TE. (G11)

In deriving this expression, we have used the fact that all
Y3lm(�) are parallel to er [see Eq. (3)], so that their cross
product with any VSH has vanishing projection along er . Fur-
thermore, using the relation [a × (b × c)] = b(a · c) − c(a ·
b), and the definition of the VSHs [Eqs. (1)–(3)], we find∫

Y2lm(�) × Y1l′m′ (�)d� = er δll′δmm′ , (G12)

leading to the simple diagonal expression in Eq. (G9).
The absorption cross section σ abs, which is defined equiv-

alently to the scattering cross section, but for the power
absorbed by the system, can be calculated as the difference
between the power flowing inwards and outwards, normalized
to the power flux density of the plane wave, yielding

σ abs =
∑
lmp

�lmp

(∣∣B in
lmp

∣∣2 − ∣∣Aout
lmp

∣∣2)
, (G13)

which is derived similar to Eq. (G9).

APPENDIX H: FIRST-ORDER TREATMENT
OF BASIS EXTENSION

Here, we show how an extended basis of the RSE can
be taken into account in first order with a reduced numeri-
cal complexity. Suppose that in order to find the RS wave
numbers �ν of the new system, as well as the expansion
coefficients Cnν of the RS fields [see Eq. (32)], we truncate the
infinite matrix eigenvalue problem (41) of the RSE, keeping
a finite number N + L of RSs in the basis. Here, N is the
number of RSs taken into account exactly and having the wave
numbers |kn| < kmax, while L is the number of additional
RSs with higher wave numbers kmax � |kn| < k′

max, giving
the basis extension, which will be taken into account in first
order. To discuss the method, we write Eq. (41) in matrix form
with (N + L)-dimensional square matrices k and M and an
(N + L)-dimensional eigenvector cν :

kcν = �νMcν . (H1)

Here, k is a diagonal matrix containing the wave numbers
of the basis RSs sorted in ascending order. We now split the
notation explicitly into the N and L RSs, so that the matrices k
and M split into four submatrices, with N -dimensional square
top-left submatrices k0 and M00, and the vector cν splits into
two subvectors, with an N -dimensional top subvector c0ν . The
matrix equation (H1) accordingly reads as(

k0 0
0 k1

)(
c0ν

c1ν

)
= �ν

(
M00 M01

M10 M11

)(
c0ν

c1ν

)
, (H2)

where M00 and M11 are symmetric matrices, and M01 is the
transpose of M10. Neglecting the L RSs, Eq. (H2) reduces to
the N × N matrix equation

k0c0ν = �νM00c0ν . (H3)

Its solution is the RSE result presented in Sec. VI. Since the
time required for solving an eigenvalue problem scales with
the third power of its size, the computational complexity of
Eq. (H3) is (1 + L/N )3 times lower than Eq. (H2).

We now find the lowest-order approximation for the eigen-
vector component c1ν for the given state ν. This correction
to the RS fields is proportional to the perturbation matrix
M10. Indeed, neglecting all off-diagonal elements of M11, we
obtain from Eq. (H2)

(k1 − �νD11)c1ν = �νM10c0ν, (H4)

where D11 is the diagonal part of M11, and c0ν and �ν are
the solutions of Eq. (H3). The computational complexity of
Eq. (H4) is of order LN2, with a prefactor which we found to
be about 10 times lower than the matrix diagonalization used
for solving Eq. (H3). The first-order treatment thus allows us,
for the same compute time, to extend the basis about 10-fold,
which, if used directly in Eq. (H3), would require a 1000-fold
increased compute time.

In the refined RSE, we include in the expansion of the RS
fields Eν given by Eq. (32) the components of the second part
of the basis RSs, with the expansion coefficients c1ν given by
Eq. (H4).

We now evaluate the lowest-order correction −δ�ν to the
eigenvalues �ν of the first subgroup, given by Eq. (H3), due to
the basis extension and the coefficients c1ν determined in first
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order via Eq. (H4). We find from Eq. (H2)

k0c0ν = (�ν − δ�ν )(M00c0ν + M01c1ν ), (H5)

and using Eq. (H3) obtain

δ�νM00c0ν = �M01c1ν, (H6)

where we have neglected the higher-order term δ�νM01c1ν .
Finally, taking the dot product of the above equation with c0ν ,
and using the normalization given by Eq. (43), c0ν · M00c0ν =
1, valid up to first order in M01, we arrive at the second-order
correction to the wave numbers:

δ�ν = �ν (c1ν · M10c0ν ), (H7)

where c0ν and c1ν are approximated by Eqs. (H3) and (H4),
respectively. In numerical calculations, we used this equation
only for estimation of the eigenvalues error due to the follow-
ing reason. After solving Eq. (H3), one can find that some
wave-number eigenvalues can have the absolute value of the
imaginary part smaller than the error given by Eq. (H7) or can
even have a positive imaginary part, which is not physical.
In our calculation, the wave numbers �ν for such modes

are replaced by Re�ν − i|δ�ν |, where |δ�| is determined by
Eq. (H7).

APPENDIX I: ANALYTICAL SOLUTION FOR THE
SCATTERING MATRIX OF A DIELECTRIC SPHERE

The elements of the scattering matrix are found by using
Maxwell’s boundary conditions for the analytic solutions (18)
and (19) on the sphere boundary, leading to

S
(exact)
lm,TE (k) = − j̃ ′

l (R, k) − h̃′
l,in(R, k)

j̃ ′
l (R, k) − h̃′

l,out (R, k)
, (I1)

S
(exact)
lm,TM(k) = − εγ̃l (k) − γl,in(k)

εγ̃l (k) − γl,out (k)
, (I2)

where the prime means the first derivative with respect to the
first argument. The functions h̃′

ld (r, k) and γld (k) are defined
by Eqs. (20) and (21), and

j̃l (r, k) = jl (nkr )

jl (nkR)
, γ̃l (k) = jl (nkR)

ζ ′
l (nkR)

. (I3)

Here, jl (x) is the spherical Bessel function and ζl (x) =
xjl (x).

The above equations for the S matrix yield the scatter-
ing cross sections of the Mie theory, which can be found,
e.g., in [33].
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