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Impact of fiber loss on two-soliton states: Substantial changes in eigenvalue spectrum

Alexander Hause, Christoph Mahnke, and Fedor Mitschke*

Universität Rostock, Institut für Physik, 18051 Rostock, Germany

(Received 5 June 2018; published 12 September 2018)

The impact of power loss on fiber-optic solitons and soliton compounds has regained interest recently, as
coding schemes employing inverse scattering eigenvalues are being discussed. Loss lifts the integrability of the
underlying nonlinear Schrödinger equation and has usually been treated by perturbation analysis. Our approach
uses localized loss of arbitrary strength. We investigate two-soliton compounds including the N = 2 soliton
and show that loss causes severe qualitative modifications of the eigenvalue spectrum. Peculiar features include
power redistribution between solitons so that one of them is actually enhanced by loss and conversion of solitons
at rest into a pair with outward velocities. Earlier reports of such features are put into context. We argue that
frequency splitting of soliton pairs requires a mechanism that renders the spectrum double-lobed (or multiply
lobed) and that the bifurcation is defined by a balance between dispersive and nonlinear forces. Implications for
eigenvalue-based communication formats are pointed out.
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I. INTRODUCTION

Optical transmission of telecommunication signals is enor-
mously successful and carries the bulk of worldwide data
traffic. However, due to relentless growth of traffic volume,
the data-carrying capacity of fibers is already pushed to the
limits [1]. Fiber production and deployment cannot keep
up with rising demand. All degrees of freedom in coding
(wavelength, polarization, amplitude, and phase multiplexing)
available in a linear system are exhausted. Some authors
suggest using spatial degrees of freedom [2], but those require
specialty fibers. In this situation another look into nonlinear
transmission schemes is warranted; while those have their
own challenges, to increase signal amplitudes seems to be the
only way to go. Fortunately, the soliton concept is quite robust
[3], and its extension to soliton molecules [4,5] demonstrates
that it is not restricted to the inefficient binary transmission
(on-off keying) format.

A central challenge to assess solitonic transmission sys-
tems is that while the underlying equation, the nonlinear
Schrödinger equation (see below), is integrable and there-
fore pleasant from a mathematical point of view, real-world
systems tend to be messy and are certainly not integrable.
For many years loss (and gain) have mostly been treated as
perturbations (see, e.g., Refs. [6–11]), which is applicable
only to small perturbations. We have recently described how
loss of arbitrary strength can be treated up to and including
the assessment of soliton annihilation [12]; and meanwhile we
have generalized this approach to amplifying fibers, including
the generation of new solitons [13].

An alternative approach to increased efficiency of data
transmission in a nonlinear channel was originally suggested
by Hasegawa and Nyu [14]. Based on the observation that
solitonic eigenvalues of the inverse scattering transform are
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more robust than pulse shape parameters under various per-
turbations, they suggested using the eigenvalues to code in-
formation. The suggestion lay almost dormant for about 20
years but has seen an enormous growth of attention recently
[15–22]. The use of both the discrete and the continuous
part [15,22] of the eigenvalue spectrum have been discussed,
and estimates for achievable spectral efficiencies have been
given [19]. In Ref. [19] propagation loss was considered to be
compensated by Raman gain (and effectively traded for noise
in the process).

We must point out, though, that very recently several
authors have studied this topic [23–28] under aspects of the
combined use of the continuous and discrete part [28] as well
as polarization multiplexing [25,27] and some adverse effects
[24]. Encouraging results have been obtained; in the experi-
ments reported in Refs. [23,27] in particular, fiber attenuation
and subsequent amplification were explicitly mentioned.

In the wider context of the fate of the eigenvalue spec-
trum outside the integrable limit, we here present a study
specifically of the impact of loss. We concentrate on the
discrete eigenvalue spectrum, because using the continuous
part carries limitations on signal power and resembles more
an analog system. The specific advantages of digital (but not
necessarily binary) systems can only be had from the discrete
spectrum (but see Ref. [28] for further discussion).

The discrete spectrum is trivial for a single soliton, and
so we consider cases of more than one, starting with the
well-known case of the N = 2 soliton, which has two discrete
eigenvalues. It was pointed out many years ago that the two
constituting solitons have zero binding energy [29,30] and
hence are easily perturbed, which renders them less useful
for communication purposes. That argument, however, applies
to the pulse shape (temporal and spectral) but not to their
eigenvalue structure.

In this paper we pursue the following program: We subject
the N = 2 soliton compound to loss in the form of a localized
attenuation as it may occur, e.g., at a splice between fiber
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segments and check how the soliton content of the attenuated
pulse, as gauged by its eigenvalues, is modified. Then we
continue by considering some other states containing two
discrete eigenvalues to see how far our conclusions may be
generalized.

Several features encountered in the process have been
reported before in places scattered across the literature. This
includes shifting and splitting of solitonic eigenvalues in
certain sets of circumstances. We will discuss these sources
in Sec. V and clarify how we put those various observations
into a coherent context.

II. BASIC FACTS

We reiterate some established analytical results [31–33] for
the sake of self-containedness. In the nonlinear Schrödinger
equation (NLSE) in dimensionless form [33]

iuξ + 1
2uττ + |u|2u = 0, (1)

ξ is the spatial coordinate (propagation distance), and τ time
in a reference frame moving with the group velocity that
pertains to the optical carrier frequency; u = u(ξ, τ ) is the
field amplitude envelope.

Equation (1) is integrable, and solutions can be found
with the technique known as inverse scattering theory [31].
This method characterizes pulses by an eigenvalue spectrum,
where discrete eigenvalues stand for solitons, and a continu-
ous part for linear radiation. A soliton eigenvalue λ ∈ C has
a real part Re(λ) indicative of its relative velocity, and an
imaginary part so that 4Im(λ) is the energy of that soliton. By
virtue of integrability, eigenvalues are preserved: neither their
number nor their values can change. More recently, the inverse
scattering technique has also been known as the nonlinear
Fourier transform [17–21,29].

If centered in the comoving frame, the fundamental soliton
solution takes the form

u(ξ, τ ) = η sech (ητ ) exp

(
i
η2

2
ξ

)
(2)

with the scaling parameter η signifying at once the pulse
amplitude, the inverse pulse width, and one half of the soliton
energy.

Let us consider an initial condition in the form of a sech
pulse

u(0, τ ) = Nη sech (ητ ), (3)

where N ∈ R is an amplitude scaling parameter. In the special
cases when N ∈ N one has N pure solitons; otherwise there
is also linear radiation. In particular, for N = 2 one has
a compound known as the N = 2 soliton. It consists of a
nonlinear superposition of two fundamental solitons; their
energy ratio is η1/η2 = 1/3. The exponential factor in Eq. (2)
then dictates that their rates of phase evolution are in a 1:9
ratio.

During propagation the phase difference will grow; it will
complete one cycle of 2π (one beat period) after propagation
distance ξ0 = π/(2η2

1 ). In the normalized system the N = 2

soliton has the form

u(ξ, τ ) = cosh (3ητ ) + 3 cosh (ητ ) exp (i4η2ξ )

cosh (4ητ ) + 4 cosh (2ητ ) + 3 cos (4η2ξ )

× 4η exp

(
i
η2

2
ξ

)
, (4)

where η is again the scaling factor; the N = 2 soliton energy
is E = 8η. At ξ = 0 and again at ξ = ξ0 the temporal profile
has a real-valued sech shape. At half period ξ = ξ0/2, it
is also real-valued but consists of a central peak with a
symmetric pair of side lobes so that the temporal profile has
two nulls at positions τ0 = ±1.317/(2η) [the numerical factor
is i arccos(2)]. At the same point the spectrum consists of
two lobes with the same relative phase, peaking at positions
�p = ±1.504 η and a central null.

III. AN N = 2 SOLITON WITH LOCALIZED LOSS

Changes in eigenvalues of the inverse scattering technique
can occur only when integrability is violated, e.g., by loss—
but then the entire concept of eigenvalues becomes ques-
tionable. We consider a lossless fiber into which we insert a
localized loss at some specific point; beyond that the fiber is
considered lossless again. In this way the system is piecewise
integrable, and the effect of the loss is simply that of a scaling
factor of the entire pulse shape (and spectrum). We will refer
to the loss position as the splice position below because fiber
splices present a prominent example of localized loss, even
though sharp fiber bends and the like have a similar effect.

Consider an initial pulse as in Eq. (3) with N = 2 propa-
gating over a full soliton period ξ0. In Fig. 1(a) the evolution
of its spectral amplitude |̃u(�)| is shown; we specifically
point out its double-humped structure around the halfway
point. We now systematically investigate the effect of loss by
varying both its position and amount. The position is chosen in
0 � ξ � ξ0 (beyond would be redundant); the loss is written
as a factor 0 � M � 1 multiplying the amplitude (compare
Ref. [13]; in Ref. [12] the energy was attenuated by � so that
M = √

�).
For each ξ we vary M and apply numerical the direct

scattering transform [18] to calculate the soliton content of
the resulting pulse Mu(ξ, τ ). Its soliton content is shown in
Fig. 1(b). As one would expect, there are parameter regions
where the number of remaining solitons is two, one, or zero.
The labels designate the number of discrete eigenvalues, and
whether they are different in energy (e) or in velocity or,
equivalently, in frequency (f). Here (2e) denotes two solitons
with different energy, both with zero center frequency, while
(2f) denotes two solitons of the same energy, with symmet-
rically detuned center frequencies. If there is only a (1e) we
omit the (e); (0) means that no soliton exists.

For certain positions in Fig. 1(b) the relative energies of
solitons and radiation are known analytically for different loss
factors M: Trivially, at M = 1 there is the unperturbed N = 2
soliton for all ξ , and at M = 0 there is no light at all. Also, at
both ξ = 0 and ξ = ξ0 we know that M = 3/4 corresponds
to N = 3/2, the boundary between the single-soliton and
two-soliton regimes; M = 1/4 corresponds to N = 1/2, the
boundary between single-soliton and no-soliton regimes; and
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FIG. 1. (a) Evolution of the spectral amplitude |̃u(�)| of an
N = 2 soliton over a whole soliton period ξ0. Color indicates values
form zero (black) to maximum (white). (b) Corresponding soliton
regimes in the M-ξ plane for attenuation of amplitudes by M , local-
ized at ξ . Labels indicate the number of solitons: “e” indicates energy
splitting and “f” frequency splitting. The 2f regime is bounded by
points T = (1/2, 0.922) (top), B = (1/2, 0.485) (bottom), and Q =
(1/2 ± 0.170, 0.584) (quadruple points). Red dots mark predictions
of a lower soliton threshold Mmin; see at the end of Sec. III. Vertical
dashed lines mark regime of frequency splitting; see Sec. VI.

M = 1/2 corresponds to N = 1, the locus of the pure single
soliton. All these features are clearly confirmed in Fig. 1(b).
At positions other than ξ/ξ0 integer, the pulse is not sech
shaped, and distinct features arise.

We therefore compare the eigenvalues from the numerical
direct scattering transform (representing soliton energy and
frequency) for two splice locations, at ξ = 0 and at ξ = ξ0/2
for various M; see Fig. 2. For ξ = 0 (left column) data show
the well-known linear trend [32]: As M is increased, the first
soliton appears at M = 1/4, the second at M = 3/4, while
all frequencies remain at zero. All this, and the linear energy
growth in particular, is as expected [32].

If the splice occurs at ξ = ξ0/2 (right column), the sit-
uation is quite different: The threshold for solitons is at
M ≈ 0.485, but here a pair of solitons, split symmetrically in
frequency with �0 = ±1.54, is born. Increasing M and thus
amplitudes and powers, at M ≈ 0.922 the frequencies coa-
lesce, and the energies split. For M → 1 the familiar energy
values of EN=1 and 3EN=1 with EN=1 = 2η are approached.

This is a remarkable qualitative change: A mere attenuation
transforms two solitons of zero velocity into a pair with de-
generate energy but different center frequencies. For 0.485 �
M � 0.922 the attenuated pulse contains two solitons with
different velocities; upon further propagation it splits up in
the time domain into distinct solitons and some radiation. In
other words, a localized two-soliton structure does not persist.
The bifurcation between two frequency-degenerate and two

FIG. 2. Soliton eigenvalues when the splice position is at ξ = 0
(left column) or at ξ = ξ0/2 (right column). Upper row, energies in
units of EN=1; lower row, normalized frequencies.

energy-degenerate solitons thus marks the transition point
between a sustained and a destroyed localized two-soliton
structure.

To complete considerations of the bifurcation we pres-
elected M and varied the splice position over the span of
0 � ξ � ξ0; see Fig. 3. We find that at half span the “stronger”
soliton is attenuated while the “weaker” one receives a boost.
At the bifurcation point at M ≈ 0.922 both traces meet at a
common energy value of ≈ 1.688EN=1; this is the bifurcation
point alluded to above.
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FIG. 3. Soliton energies when M is constant and the splice
position ξ is varied. The lower-energy soliton peaks at 1.240 EN=1

(M = 0.950) and at 1.688 EN=1 (M = 0.922).
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FIG. 4. Energy budget for the N = 2 case with localized loss;
compare to Fig. 1(b). Shown is the radiation energy in units of the
N = 1 soliton energy.

These results may be wrapped up as follows: When an
N = 2 soliton—a two-soliton compound—is attenuated, there
may be two, one, or zero solitons left depending on the amount
of loss. At the same time, some of the energy is converted
into linear radiation. In the regime where two solitons survive
there is a highly counterintuitive finding: The weaker soliton
can receive a net enhancement of energy at the expense of
the other, and that is no small effect: At M = 0.922, the
overall energy loss is 1 − M2 ≈ 15%, but the energy of the
weaker soliton grows by ≈ 69%. This peculiar result warrants
a closer look into the energy budget. Figure 4 color-codes
the parameter map of Fig. 1(b) to reveal the partition of
energy to radiation. The analytically known cases at ξ = 0
are reproduced: 100% of the pulse energy resides in two
solitons for M = 1, and in a single soliton at M = 0.5; in
these positions the radiation vanishes. Radiation takes maxima
at M = 1/4 and M = 3/4.

For ξ �= 0, radiation is most prominent near the lower edge
of the (2f) regime. In absolute terms, the maximum occurs
near the “quadruple points” where the regions (2e), (2f), (1),
and (0) meet at ξ/ξ0 = 0.5 ± 0.170.

If one of the quadruple points is horizontally transected by
shifting the splice position ξ , a single soliton is rendered into
a pair of frequency-split solitons. This is quite peculiar.

As a final sanity check, we discuss the lower threshold of
Mmin for any soliton to exist. We make use of the fact that there
is a characteristic value of the peak spectral amplitude for
any fundamental soliton, ũsol,p = π (see the Appendix). Mmin

can then be found by attenuating the spectrum until its peak
ũp(ξ,�) is reduced to one half of that characteristic value.
This leads to Mmin = π (2ũp)−1. Note, however, that this is
only a lower bound because if some radiation is also created,
the energy requirement must be higher. As this prediction
for Mmin in Fig. 1(b) (red dots) shows, the general trend is
reproduced very well, but there is a deviation precisely where
radiative energy is maximal, i.e., near the quadruple points Q.

IV. EIGENVALUE SPLITTING OF TEMPORALLY AND
SPECTRALLY SHIFTED SOLITON COMPOUNDS

As shown above, power loss alters the eigenvalues of
an N = 2 soliton well beyond quantitative correction: it

FIG. 5. Propagation of an in-phase double soliton amplitude
|u(τ )| with an included local loss at ξ = 0. Three solitons are formed
after loss: a blue-shifted soliton Sbl, a red-shifted soliton Srd, and the
most powerful center soliton Sc. Parameters of the initial soliton pair:
η = 1, σ = 8; loss: M = 0.6.

profoundly changes the nature of the eigenvalue spectrum. We
will now proceed to discuss other two-soliton compounds to
show that the qualitative modification is a general feature. It
will emerge that whenever frequency splitting arises, we con-
sistently see that the spectral shape of the soliton compound
displays isolated humps. We argue that these seed the splitting
process.

A. Copropagating solitons

The more pulses are attenuated, the more does their prop-
agation resemble linear (dispersive) propagation. In Fig. 5 we
show, as an example, a numerical simulation of the propaga-
tion of two sech pulses with identical parameters which are
temporally separated by σ as in

u(τ ) = η sech [η(τ − σ/2)]

+ η sech [η(τ + σ/2)] exp [iϕ]. (5)

We use σ = 8 and ϕ = 0 (in-phase pulses). At the marked
position (ξ = 0) a loss with M = 0.6 is inserted. Thereafter,
both pulses broaden, and once they develop sufficient overlap,
an interference pattern appears. Each hump of that pattern
can form an individual soliton under circumstances to be
discussed now.

The Fourier spectrum of the pair of equal sech pulses
has an overall sech-shaped envelope; underneath it there is
a fringe pattern with spacing 2π/σ so that each fringe has a
half width of about π/σ . Given that each fundamental soliton
requires the same characteristic peak spectral amplitude ũsol,p

(see the Appendix), we need to assess the spectral power
in each fringe in comparison to this characteristic value.
As power is raised, more and more fringes will reach the
characteristic value in the process.

As details also depend on their relative phases, we consider
the cases of in-phase and opposite-phase pulses. In the former
case, the spectrum will always have a central maximum, in the
latter, a central zero, and in either case fringe positions and
spectral amplitudes are symmetric. We illustrate this and the
successive generation of solitons and soliton pairs in Fig. 6. It
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FIG. 6. Spectral amplitudes |̃u(�)| of two copropagating sech
pulses with different separations σ and relative phases ϕ, normalized
to twice the value of a single soliton as specified in the Appendix.
Spectral fringes above the soliton threshold (gray region) correspond
to individual solitons (marked by blue dots). The soliton content is
given in the form (x · e + y · f ) with x solitons at center frequency
and y frequency-split solitons with same energy. The spectral shape
is crucial for the soliton content.

shows the spectral fringes of the double pulse from Eq. (5) for
various constellations, in-phase (ϕ = 0) and opposite-phase
(ϕ = π ), wide (σ = 15), and narrow (σ = 5) separation.

The largest possible spectral amplitude ũmax, for fully con-
structive interference and zero relative velocity, is twice that of
the fundamental soliton. Then for generation of a soliton each
pulse must have a spectral amplitude of at least ũmax/4. For
an in-phase pulse pair, the largest spectral peak is the one at
center; it will reach threshold first [Fig. 6(a), marked by a dot].
The same argument then applies to the first pair of spectral
“sidebands,” i.e., the fringes next to the center: once they
exceed threshold, a pair of new solitons will appear which are
equal in all properties except their center frequencies which
are ±2π/σ [Fig. 6(b), pair of dots]. This reflects the splitting
of the eigenvalues so that there are symmetric real parts. As a
consequence, these solitons have velocities away from center,
like in Fig. 5. The same logic is then repeated for further pairs
of sidebands, giving rise to further pairs of frequency-split
solitons. In Fig. 6(c) the temporal separation is reduced, which
lets the spectral sidebands become wider and move outward.
Then, fewer fringes under the spectral envelope remain above
the power threshold.

For an opposite-phase pulse pair, the argument is similar
except that there is no central peak. We therefore expect
again that pairs of frequency-split solitons arise, with the sole
distinction that the first soliton of the sequence, correspond-
ing to a purely imaginary eigenvalue, does not materialize
[Figs. 6(d)–6(f)].
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FIG. 7. Soliton content of two copropagating sech-pulses with
relative phase ϕ = 0 depending on the separation σ and the ampli-
tude scaling M . Below M = 1/4 there are no solitons; above M =
3/4 there are always two energy-split solitons. In between the content
depends on the spectral fringes above the soliton threshold. Labels
in black circles identify parameters for corresponding examples in
Fig. 6.

Upon further increase of power, another threshold value
occurs when the spectral amplitude reaches 3ũmax/4. Once
it is exceeded (for any of the humps), we expect a two-
soliton compound. We will call the region between the two
thresholds, i.e., 1/4 � M � 3/4 the splitting regime; it is
indicated by shading. Below, the number of solitons is zero;
above, there are two with different energies (two imaginary
eigenvalues). Humps that form solitons are marked by dots.
Codes for soliton numbers are as above; e.g., (1e+2f) stands
for one soliton at center frequency and two frequency-shifted
solitons (one pair). Inside the splitting region, with increasing
separation soliton compounds are therefore generated sequen-
tially as (1), (1e+2f), (1e+4f), ....

If we consider in-phase pulse pairs, their spectrum will
have equal-amplitude in-phase sidelobe pairs. This resembles
the situation of an N = 2 soliton which around ξ = ξ0/2 also
has two symmetric spectral sidelobes. In the splitting regime,
raising M can render a frequency-split soliton pair into an
energy-split soliton pair. Figure 7 illustrates the eigenvalue
content as a function of the scaling parameter and the separa-
tion. Data were obtained by direct scattering transform [18] as
above. Here (1e+4f) can be converted to (3e+2f) by moving
upward in the figure.

If, however, we start with opposite-phase pulse pairs, the
spectrum has a central null, and symmetric pairs of humps are
in opposite phase to each other. In this situation no energy-
split pairs, but only frequency-shifted soliton pairs, can be
generated. Consequently, Fig. 8 shows regimes of (2f), (4f),
(6f), etc., when the separation is increased. At very small
separation, destructive interference precludes the formation of
any soliton.

B. Solitons with relative velocities

Adjacent channels in wavelength division multiplexing
have different dispersion, and thus interchannel collisions
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FIG. 8. Soliton content of two copropagating out-of-phase sech-
pulses. Plot style corresponding to Fig. 7. Only frequency-split
soliton pairs exist. Below M = 1/4 there are no solitons; above M =
3/4 and σ = 2 there are always two frequency-split solitons. Labels
in black circles identify parameters for corresponding examples in
Fig. 6.

occur at some relative velocity defined by ��. The temporal
field of two frequency-shifted sech pulses is constructed by

u(τ ) = η sech
[
η
(
τ − σ

2

)]
exp

[
−i��

(
τ − σ

2

)]
+ η sech

[
η
(
τ + σ

2

)]
exp

[
i��

(
τ + σ

2

)
+ iϕ

]
.

(6)

The velocity precludes full modulation contrast of the spec-
tral fringes and can introduce spectral chirp to the individual
fringes. Then the threshold for soliton generation at ũmax/4
discussed above does no longer apply: the threshold is raised.
In contrast, the upper threshold for single soliton generation
at 3ũmax/4 is lowered: consider well-separated spectra; then
for each the threshold becomes ũmax/2. All told, the splitting
regime shrinks from both sides. Below it, there are no solitons;
above, there is always a frequency-split pair (2f) due to the
initial frequency shift of colliding solitons.

For opposite-phase pulses the situation is not much dif-
ferent from that shown in Fig. 8 except that the vertical
extent of the (4f), (6f) regimes is reduced. For in-phase pulse
pairs, however, the situation is more complex. An exam-
ple for moderate relative velocity is shown in Fig. 9. On
the one hand, in the core-splitting region at M ≈ (0.5 ± 0.1)
the soliton content is comparable to the case of copropagating
solitons as shown in Fig. 7 with a central frequency soliton
and additional frequency split soliton pairs. On the other
hand, velocity affects the spectral amplitudes; taking also
spectral chirp into account, it can happen that a pair of side
lobes becomes solitonic before the central lobe does. Then a
frequency-split soliton pair appears first, before any soliton at
center frequency. This explains the narrow stripe of (2f) near
σ = 15, M = 0.38. At large M there is a closed (2f) region
due to the relative velocity in contrast to a (2e) region of
copropagating solitons.

Figure 10 shows what happens when the relative velocity is
increased even more. The splitting region is further narrowed
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FIG. 9. Soliton content of an in-phase pair of pulses at a rel-
ative velocity of �� = 0.5. The splitting region is reduced to ca.
0.38 � M � 0.63. In this regime, a central soliton is always present,
while with increasing σ more and more frequency-split soliton pairs
appear. For more details see text.

from above and below. The central soliton disappears first;
this is due to the increasing spectral chirp of the central
spectral fringe. Then the remaining frequency-split soliton
pairs survive only in “islands” each of which shrinks when the
velocity is further increased, until they eventually vanish. Note
that the border between (0) and (2f) regions undulates with
periodicity 2π/(��); this is due to temporal fringes induced
through the relative motion. For �� � 1, the border at M =
1/2 marks the transition between no-soliton and two-soliton
(2f) regimes.
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FIG. 10. Soliton content of in-phase pairs of pulses at relative
velocities of �� = 0.60, 0.75 and 1.5. With increasing velocity the
splitting region (see Fig. 9) narrows, leaving islands of frequency-
split soliton pairs. The islands themselves shrink and eventually
disappear with growing velocity, as set by ��.
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V. COMPARISON TO LITERATURE

A. Pulses and soliton number

In one of the first studies of higher-order soliton, Sat-
suma and Yajima [32] solved the initial value problem for
the hyperbolic-secant shaped pulse. They showed that with
increasing amplitude the pulse contains a growing number
of solitons, each with a purely imaginary eigenvalue. This
is a general rule not just for sech-shaped pulses [34]. In a
pulse there may be linear radiation which corresponds to a
continuous part of the eigenvalue spectrum; together with
solitonic energies it completes the energy budget of the pulse.
As the NLSE is integrable, conservation of all eigenvalues is
guaranteed.

A pulse containing a soliton and no radiation is called a
pure soliton; it has a flat phase. Comparing to a pulse of
the same envelope but with a chirp, the latter will contain
some radiation and thus has less energy for the solitonic part
[35–37]. It follows for pulses with more than one soliton
that, if one considers increasing chirp, the soliton count will
be reduced. This was first pointed out in Ref. [35], and
later studied in Ref. [38] for a somewhat artificial simplified
situation, and in Ref. [39].

B. Imaginary eigenvalues can move up and down

Introduction of a loss term into the NLSE lifts integrability,
and eigenvalues are no longer preserved: the soliton content
may change during propagation. Loss leads to changes of both
the number of eigenvalues and their numerical values. This
has mostly been considered for distributed (continuous) loss,
see Refs. [15,40–42], but in Ref. [30] an asymmetrically tuned
spectral filter was considered.

One might naively expect that when a pulse containing
several solitons is attenuated, all solitons will undergo a
proportional attenuation. This is not what one observes. Ref-
erence [32] shows that eigenvalues can all decrease at the
same absolute rate, but even that turns out to be a special
case. In general, one finds that during attenuation, some of
the eigenvalues actually can gain energy at the cost of the
others, as reported, e.g., in Refs. [35,39,42–44]. We have
here quantified this phenomenon to show that the paradoxical
enhancement of the weaker soliton by attenuation is no small
effect.

C. Imaginary eigenvalues can collide and then have a real part

In an integrable situation, conservation of eigenvalues dic-
tates that chirp can provoke frequency components to split
only when this splitting exists in the initial condition in the
form of eigenvalues with real parts. Indeed, in Ref. [39] “for
certain phase functions and chirp strengths” such splitting is
observed, but “another scenario is also possible” where the
soliton content vanishes entirely. Similar eigenvalue splitting
was found for single pulses with nonlinear temporal phases
[35,38,39] as well as for real-valued signals with more than
one temporal hump [43–45]. The same logic is applicable to
spatial solitons [46].

In the presence of loss, eigenvalues evolve during prop-
agation, so that imaginary eigenvalues approach each other
and eventually collide. Beyond the collision point they acquire

real parts, one of which mirrors the other; this corresponds to
a symmetrical frequency splitting. In Ref. [42] the splitting
point is found in the limit of weak loss by a perturbation
method, but it is stated that “in the case of strong nonadiabatic
loss the evolution of the Zakharov-Shabat eigenvalues can be
quite nontrivial.” In Ref. [44] a simplified situation (double
box potential) was considered, and the same kind of frequency
splitting was reported.

Our observation of frequency splitting seems to be con-
nected to the spectral shape of some signal: eigenvalues with
nonzero velocities can be connected to distinct humps in the
optical spectrum. They may appear as soon as the spectral
lobes are lifted above the critical value (see the Appendix),
which can happen due to amplitude scaling or, e.g., due to the
variation of pulse separation. When the spectrum is symmet-
rical, these solitons emerge as soliton pairs. We checked our
observations for the examples shown in Refs. [35,38,39,45–
47] and find quantitative agreement with our theory.

VI. DISCUSSION AND CONCLUSIONS

As it is difficult to treat continuous loss beyond the pertur-
bation regime, we decided to consider localized loss. This in-
vokes one more parameter: beyond the cumulated loss amount
over fiber length, there is also the position at which the loss
occurs. However, this kind of treatment has the advantage that
the system is “piecewise integrable” so that it is accessible;
also, the way loss affects the pulse when applied at different
positions allows additional insight.

We have first looked into a well-known example, the N = 2
soliton. Our results show that the same energy loss may
or may not lead to frequency splitting, depending on the
location within the soliton period where it acts. Obviously the
evolution, which is periodic with ξ0, affects parameters that
are decisive.

The unchirped sech pulse shape at integer ξ/ξ0 is favorable
for conversion of the energy of the attenuated pulse into
a new soliton (or new solitons): As little as 1/16 (6.25%)
of the initial energy suffices to create a soliton, whereas
at half-integer ξ/ξ0, ≈ 85% of the initial energy must be
retained to create a soliton pair. In the entire range ξ =
(0.500 ± 0.170)ξ0 (between the quadruple points) there is
no obvious way to generate a single soliton. And we point
out a remarkable coincidence: The beating between its two
fundamental solitons leads to spectral side lobes in a section
of the propagation distance, marked in Fig. 1 by the vertical
dashed lines across Fig. 1(a) and Fig. 1(b). At the same
time these markers are delimiters for the regime of frequency
splitting (between the quadruple points). This demonstrates
that a frequency-split pair is created if and only if the power
is lowered (by a sufficient amount) where the spectrum is not
single-lobed. We argue that this is not the case in this example
alone but constitutes a general rule.

Various circumstances can cause the spectrum of a pulse
structure to develop two humps, symmetrically displaced from
the center frequency by ±��. In a linear (purely dispersive)
system, fields corresponding to these humps would subse-
quently move away temporally from the center with relative
velocities of ±��. If there is sufficient nonlinearity (i.e.,
sufficient power level), however, the opposite may happen:
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Both lobes are pulled into place and remain as part of a
compound structure.

In other words, nonlinearity can thwart dispersive walk-off,
just as it prevents dispersive spreading in a standard soliton.
This is the explanation why below some threshold power a
structure with side lobes turns into a structure with pulses
walking off symmetrically. We identify the threshold as the
point of equilibrium between dispersive and nonlinear effects.

We went on to show other examples of side lobe pairs
created by interference between two solitons, either with or
without initial relative velocity. The former case is relevant
for considerations of eigenvalue communication, the latter
becomes relevant when wavelength division multiplexing is
taken into consideration. Again a frequency-split pair walks
off when the power level is reduced below a certain threshold.
Several observations reported in the literature about soliton
behavior in the presence of loss were thus put into a unified
context.

There is an interesting connection to the “single lobe
theorem” by Klaus and Shaw [34], which states the follow-
ing: If the temporal pulse shape is single-humped and real,
eigenvalues are confined to purely imaginary values. This
implies a negation: for pulse shapes that fail to be real, or to be
single lobed, or both, there is a possibility of eigenvalues with
nonzero real part, i.e., frequency splitting. A few examples
for this were provided both by Klaus and Shaw [34,47] and,
as discussed above, by other authors too [35,38,39,45,46].

We note that negation of the theorem’s conditions usu-
ally implies multiple (two or more) humps in the spectrum.
Nonreal shapes can have more-than-single-humped spectra;
consider the chirped rectangular temporal shape described in
Ref. [47]. Non-single-lobed temporal profiles correspond to
non-single-lobed spectral profiles due to interference fringes.
Our conclusion is that multiple (two or more) humps in the
spectrum can give rise to frequency splitting, provided that a
certain condition applies. We showed what that condition is:
Dispersion and nonlinearity are antagonists; the bifurcation
from energy-split to frequency-split eigenvalues occurs at the
point of balance between both. Their relative strength in a
given fiber (fixed dispersion coefficient) can be adjusted by
tuning the power level, so that variation of attenuation allows
to scan across the bifurcation point. In this sense our results
complement the single lobe theorem.

Outlook

Future research will have to consider these conclusions. As
concerns eigenvalue communication, we already pointed out
above that we find use of the continuous part of the eigenvalue
spectrum less attractive than use of the discrete part. For that
case we find that even for just two such eigenvalues, mild loss
can already lead to unexpected and certainly undesired conse-
quences. We demonstrated that for an N = 2 soliton splitting
occurs at M = 0.922 corresponding to an energy loss of 15%
or −0.7 dB. This indicates that eigenvalue communication is
particularly vulnerable to power loss, compared to individual
solitons which survive a localized loss of −6 dB. It must
be assumed, until further investigation, that with increasing
number of eigenvalues involved such challenges will only
become increasingly harder to address.

Real-world systems use optical gain to compensate the
loss. The question is whether with restoration of energy, a
restoration of eigenvalues is also obtained. This is certainly
the case for localized loss and gain when they are back to
back, but with increasing distance between both the phase
evolution in between will reduce the fidelity of restoration.
With distributed loss there is always some distance involved,
and a full restoration appears to be not possible. We have
preliminary data indicating that in situations with two discrete
eigenvalues as discussed in Refs. [23,27], the phase between
the two solitons also has a large impact on the quality of
restoration. In the worst case a frequency splitting by loss
as described here cannot be undone by subsequent gain, and
a severe transmission error occurs. The complexity of the
situation will require further research, to find guidance in
designing future experiments so that such problems hopefully
can be safely avoided.

As concerns wavelength division multiplexed formats, the
necessity to avoid eigenvalue splitting by interchannel in-
teraction is one more good reason to keep WDM channels
spectrally well separated. But even in single channel, to avoid
collisions by intrachannel interaction confirms the need for
sufficient temporal separation. None of this is favorable in
terms of spectral efficiency and data rate.

A quarter century after the first proposal [14] it is not
yet clear whether an eigenvalue-based transmission scheme
can outperform the established transmission techniques but
ongoing research is encouraging.
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APPENDIX

It is a little noted phenomenon that all solitons in a given
fiber, regardless of their scaling, have the same peak value of
their spectral energy density. The peak amplitude is η, the
peak power is η2, the inverse duration is also η. The energy
then is E = 2η. According to the power theorem of Fourier
transform (a.k.a. Parseval’s theorem; see, e.g., Ref. [48]), the
spectral energy must be 2η, but the natural spectral width is
�0 = 2η/π . The peak of the spectral amplitude ũsol,p = π

is therefore fixed, and the pertaining spectral energy density
equals π2.

In real world units, the familiar scaling of peak power
and energy of a fundamental soliton with its natural tempo-
ral width T0 is like P̂ ∝ T −2

0 and E ∝ T −1
0 . In the Fourier

domain, the natural width of the spectrum scales as ω0 =
2/(πT0). Then the spectral energy density at peak is inde-
pendent of T0 and is indeed given by P̃ = π2|β2|/γ with
β2 and γ being the group velocity dispersion parameter and
nonlinearity parameter, respectively.

This means that in a given fiber, any soliton has the
same characteristic value of spectral energy density, P̃ —a
feature that can help identify them as it constitutes a nec-
essary (but not sufficient in the presence of spectral chirp)
condition.
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