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For light-intensity-correlation measurements, different methods are used in the high-photon-number or high-
intensity regime and in the single- and two-photon regime. Hence, there is an unfortunate measurement “gap”
primarily for multiphoton, quantum states. These states, for example, multiphoton Fock states, will be increasingly
important in the realization of quantum technologies and in exploring the boundaries between quantum and
classical optics. We show that a naive approach based on attenuation, state splitting, and two-detector correlation
can give the correct two-time intensity correlation for any state. We analyze how added losses decrease the
measurement systematic error. The price to be paid is that the losses increase the measurement statistical error or,
alternatively, increase the acquisition time for a given tolerable level of statistical error. We have experimentally
demonstrated the feasibility of the method for a coherent state and a quasithermal state. The method is easy to
implement in any laboratory and will simplify characterization of medium and highly excited nonclassical states

as they become experimentally available.
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I. INTRODUCTION

Photon-correlation measurements were pioneered in the
1950s by Hanbury Brown and Twiss, and described quantum
mechanically by Glauber a few years later [1,2]. Glauber did
not only explain the Hanbury-Brown—Twiss (HBT) effect, but
pointed out that the fourth-order (in field amplitude, however,
often referred to as second order, then referring to intensity)
autocorrelation function offers the possibility of observing the
uniquely quantum mechanical effect of antibunching. This
effect was first demonstrated experimentally in 1977, and has
since then been used to prove the “quantumness” of many
single- and two-photon sources [3-9]. In addition to Glauber’s
theory, semiclassical descriptions of the detection process con-
tributed to understanding the photon-correlation effects, and
to relate the correlation functions to quantities scientists could
actually measure in the laboratory [10,11]. For classical light,
the fourth-order correlation function g (t), defined in Eq. (2)
below, has a direct relation to the measurement of four fields
(or two intensities). For nonclassical light the relation is more
complicated because of the different possible ordering of the
correlation functions, and noncommutability of the associated
quantum operators. Normal ordering results in the correlation
function containing the term (/2%), suggesting measurement of
the operator A% with eigenvalues 1,4,9,16, ..., which is not
straightforward.

The standard way of measuring g¥(t) for weak light is by
splitting the light beam and detecting coincidences between
the two paths, either through a start-stop type measurement or
using a coincidence module. Some of the first experiments to
verify Glauber’s theory for coherent and Gaussian light used
a time-to-amplitude converter (TAC) [12]. The TAC method,
however, like other start-stop type measurements, gives the
probability of detecting one photon and then the next photon
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after a time interval t, rather than the probability of detecting
a photon after a time interval t. The former falls off exponen-
tially outside the time interval where (/i) < 1, while the latter
has a more direct relation with the fourth-order correlation
function [13,14]. Coincidence measurements correspond more
closely to the latter, but are limited by the time resolution
of the coincidence modules. Consequently, these methods
require that the measured light contains no more than one
photon, either within the time-resolved coincidence window
or within the time interval T under investigation. This has
limited the application of the fourth-order correlation function
to mainly single-photon states and other weakly excited light.
Atthe other end, the intensity-correlation function for classical,
highly excited light ({(n) 2 10) can be measured directly with
cameras [15] or pin-diodes [16], or by two-photon absorption
in semiconductors [17]. However, for “mesoscopic” states
lying in between these two extremes, suitable methods for
correlation measurements are lacking.

It is of increasing importance to find strategies to charac-
terize quantum mechanical states containing more than two
photons, as such states are interesting for numerous quantum
technology applications [18-20] and for exploring the bound-
aries between quantum and classical physics [21-23]. Since
efficient number resolving detectors are not readily available
(see, for example, [24,25]), the most common method used
today to measure high-n number states or their superpositions
is n-fold coincidence measurement [26-30]. This method
ensures that n photons are present, but not the presence of
an n-photon number state. Other measurement techniques
include those of higher order correlation functions by time or
spatial multiplexing [31,32], also combined with homodyne
detection [33]. The setups required for the above-mentioned
measurements increase in complexity with the size of the
number state measured.

It is also interesting to note that it used to be common
practice to specify under which conditions the results of
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fourth-order correlation measurement were accurate (see, for
example, [7,13]). This practice has been dropped by many
experimentalists, and it seems in some cases that the nondirect
relation between what is measured in the laboratory and the
theoretical g(4)(T) is either lost or ignored. As efficiencies of
detectors and experimental setups improve, it becomes impor-
tant to keep in mind that the result of HBT type measurements
resembles less and less the theoretical g™ (7).

In this paper we investigate the effect of loss on the fourth-
order correlation function of arbitrary states, when measured
in a Hanbury-Brown—Twiss type setup. It is well known that
g™(7) is robust under loss. Still, we find it surprising that the
fourth-order quantum correlations not only completely survive
the loss, so that the loss-affected state “remembers” the proper-
ties of the initial state, but that introducing loss even provides
access to information formerly hard to attain about a whole
set of states. Although excess attenuation has formerly been
used to extend the dynamic range of measurements [34,35],
the finding that the systematic error in g¥ measurements
can be reduced with attenuation has not to our knowledge
been exploited to address the difficulties in measuring the
fourth-order correlation function of medium and highly excited
states.

We show the somewhat counterintuitive result that the preci-
sion in g measurements can increase when loss is introduced
in the setup. This is true for any state, and for measurements
using ideal (photon number resolving) detectors as well as
ordinary “click” detectors. However, the cost of decreasing the
systematic error in g¥(7) is an increase in the statistical error.
We introduce the measured normalized coincidences y¥(7)
as a function of the total quantum efficiency of the setup,
and show that y*(0) — g®(0) as the quantum efficiency
approaches zero. The theoretical results are analyzed for
various states and experimentally supported by measurements
of the correlation function of coherent states and quasithermal
states. This finding leads us to propose excess attenuation as
a method to improve the accuracy in g measurement and
expand its use to a larger set of states.

II. FOURTH-ORDER CORRELATION FUNCTION

For a state p, the normally ordered, two-time, fourth-order
autocorrelation function is defined as [14]

GW(t,t) =Tr[pa’(a'(t + va¢ + na@)], (1)

or in normalized form

1.7y = _TLPADATG + DAl + D)A(W)]

= A — = N )
Tr{pat®a@)Tr[pat( + v)a + )]

where @ (a') is the annihilation (creation) operator. (Quite
often this coherence function is referred to as a second-
order correlation function because classically it represents the
correlation between two intensities.) For a stationary ensemble
of states, there is no time dependence in the above equation,
so g¥(t,7) = g¥ () at all times. It is well known that for
a single-mode number state |n) this function equals 1 — 1/n
at T = 0. For a coherent state the function equals unity at all
times, and for a single-mode thermal state the function equals
2 when 7 = 0. For sufficiently long times (much longer than
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FIG. 1. Proposed measurement setup to measure the fourth-order
correlation function of the state |). BS denotes the beam splitter.

the coherence time of the state) the normalized, fourth-order
correlation function tends to unity for any state.

III. SETUP

The setup, a standard HBT interferometer with attenuation
introduced, is outlined in Fig. 1. The state to be measured
is first attenuated so that a fraction 1 — €2 is absorbed and
€2 is transmitted. The attenuated state then impinges on a
50:50 beam splitter that divides the state into two equal halves.
Each half subsequently passes a linear absorber (e.g., a neutral
density filter) which transmits a fraction r}iz where i = 1,2
and absorbs the rest. The pre-beam-splitter attenuation is
intentional (but also includes any unintentional loss, e.g., due
to poor coupling between the generated and measured mode).
The post-beam-splitter loss models unintentional losses when
coupling the beam-splitter output to the respective detectors.
The transmitted photons are measured by two photodetectors
of the click-detector type. That is, the detectors will only
distinguish between no photons and one or more photons.
Moreover, we shall assume that they do not even do this task
perfectly.

The click detector is modeled through its single-photon
quantum efficiency 12 If two photons impinge on the detector,
three things can happen: no, one, or two photons may be
“lost” or “unseen” by the detector. The probability for the three
cases are u*, 2u2(1 — pu?), and (1 — u?)?. Itis only when both
photons are lost that the detector does not fire. Generalizing to
n photons, the probability P(n) to get the detector to fire is

n

|
PO) = 3 (o (L= ) = 1= (1=

m=1
3)
This probability will be used in the following.

IV. ARBITRARY STATE INPUT

Now we want to see if we can replicate the normalized,
fourth-order correlation function in Eq. (2) with the proposed
setup and two-click detectors. Consider a normalized, pure
state. The purity restriction will soon be seen to be irrelevant
for what follows. All pure states can be expanded in the number
state basis as

W) =) culn), €
n=0

where ¢, are complex probability amplitudes. According to
the definition the normally ordered, fourth-order, normalized
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correlation function at zero time difference for such a state is
S, leal?n(n — 1)
2
(Zi’;l |cn |2”)

We introduce the normalized coincidences y® and write the
expression for the measurement outcome for our proposed

8(4)(1’ =0)= &) measurement of g(4)(r =0)as

P(Coinc.)
P(Click;)P(Click,)’

where P(Coinc.) is the probability to record a coincidence detection, and P(Click;) the probability to get a click in detector j.
For the pure state in Eq. (4) the above function can be expressed as

302, leal* P(Coinc. |n) |
(302 leal? P(Clicky [m)][302 lea P P(Clicky n)]

Let us look at the n-photon term. If the input state is the number state |n), then after the first attenuator, modeling any linear
transmission or coupling loss, the probability of getting k photons through is

YO = 0) = (6)

yPr=0)= (7)

P(kln) = (1 — e2)nPek, (8)

n:.
(n —k)'k!
where 0 < k < n. After the 50:50 beam splitter (BS) the probability of getting k — m photons in one output, and m photons in
the other output, given that k photons entered the BS is
k!

2K(k —m)!m!’
where 0 < m < k. Moving on to the next step, we now have a state |k — m,m) incident on the two absorbers in Fig. 1. The
probability that / photons are transmitted through the absorber in the first path and g photons are transmitted in the second path is

(k—m—I) (m—q) 2
(L=nd)" " i (L= m)™ Ty (k — m)tm!
(k —m —DU(m — q)lq! ’
where 0 <! <k —mand 0 < g < m. If a state with / photons is incident on a click detector that has the single-photon quantum
efficiency u%, then the probability of not getting a click will be (1 — u?)[ , according to Eq. (3). Summing over all possibilities of

getting / and g photons given that m — k and m photons were impinging on attenuators n; and 7,, we get the probability for no
click as

Pk —m,m|k) = 9)

P,qlk —m,m) = (10)

k—m m
P(No clicklk —m.) = > 3" P(Lglk —mm)(1 — 1) (1 = p3)* = (1 = n2pd) ™" (1 = n2ud)". (11)
1=0 g=0

We can now figure the probability of getting a coincidence click given that k£ photons are incident on the 50:50 beam splitter by

summing over all possibilities that k — m photons take output 1 and m photons exit output 2 as

k

P(Coinc.Jk) = Y P(k —mmlk)(1 = [1 = 3] ") (1 = [1 = n3u3]")

m=0

2,2\ k 2,2\ k 2.2 N
:1_(1_%) _<1_%) +(1_W1_M). (12)

2 2

Finally, by summing over all possibilities to get k photons through the attenuator preceding the beam splitter we get

P(Coinc.|n) = Z P(k|n)P(Coinc.lk) =1 — <1 —
k=0

Note that this expression vanishes for n = 0,1. (If €? =
n% = n% = u% = ,u% = 1, then the last term on the right-hand
side reads 0", which strictly speaking is mathematically unde-
fined for n = 0. However, in this context the expression must
be interpreted or defined as unity for n = 0). When the input
state |n) is propagated through the whole setup in Fig. 1 it
gives rise to the following six-mode state, with the photons

62772/1/2 n 621’]2H/2 n 62 n
%) — (1 — %) + (1 — 7[nfu?+n§u§]> . (13)

(

in the first and second mode from the left modeling the (now
ideal) detector, and the rest of the photons divided between the
five loss modes: |/,q,k,m,o,n — (I + g + k + m + 0)), where
l,q,k,m,o are all non-negative integers and [ + g + k +m +
o < n. These two conditions ensure that all possible final
states are distinguishable, so that they do not interfere with
each other. Hence, the final result will be the same whether
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the state is mixed or pure, provided that the probabilities
|c,|> correspond to the diagonal elements p,, in a mixed
state, if the latter is expressed in the number basis. We can
therefore make the computation assuming a pure state input,
knowing that the result will be valid also for any mixed
state after making the substitution |c,|*> — p,,. To estimate
the normalized, fourth-order correlation function we should
also compute the probability of obtaining a click at either
detector, irrespective of whether the other detector clicks or
not. These probabilities can be obtained in the same manner
as the coincidence probability was obtained. They are

2n2u2\"
P(Click;|n) = 1 — (1 - "T’“’> , (14)

where j = 1,2 denotes the particular detector clicking. The
click probabilities in Eqgs. (13) and (14) complete the ex-
pression in Eq. (7). If we assume that the detectors have the
same effective quantum efficiencies, niu? = niu3 = n?, the
expression can be simplified to

0 feaP(1 = 2[1 — €202/21" + [1 — 2p*]")
(22, leaP[1 = {1 — e2n2/2)7])

y () =

5)

Equations (7) and (15) will asymptotically approach the
right-hand side of Eq. (5) for most states when the conditions
eniu; < 1/(f), j = 1,2, where (i) is the average photon
number of the state. In other words, adding additional atten-
uation leads to a higher resemblance between the measured
]/(4)(1') and the fourth-order correlation function for that state.
According to the above calculation, this is true for any state,
and the fourth-order coherence properties of quantum states
(as well as classical) are preserved, or even revealed, when
exposed to extensive loss. However, for some “exotic” states,
e.g., the state

V), =1 —lenl?0) + enN), (16)

for which (72) = |cy|>N, one needs to fulfill the more stringent
condition n% « 1/N, j = 1,2 before the measurement result at
7 = 0 converges to the correct value. However, experimentally
one only needs to increase the loss 1 — € until the measure-
ment result converges toward a fixed number to reach the
correct correlation-function value. Hence, there is no need to
have a priori knowledge of the measured state. Thus, we have
shown that our proposed experimental method will work for
any arbitrary state. In the coming sections we will look more
closely at Eq. (15) for some specific classes of states.

V. NUMBER STATE INPUT

Using the intermediate results in Sec. IV and letting €?
approach zero we get the lowest order term of the coincidence
and click probabilities for a number state:

4,222 2
€ ”1”2“1“2(n2_n
4

2,.2,,2
€N

2

), a7)

lim P(Coinc.|n) =
€20

lim P(Click;|n) = (18)
€20
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FIG. 2. Number states: calculated normalized coincidences
yn(‘” (0) for different n, as a function of attenuation [Eq. (20)]. Here we
assume n?u? = n3u3 and that they are included in €? for simplicity.

Thus, if one now adjusts the attenuation €2 so that ezn% u?n

is much smaller than unity for both detectors, then the ratio

between the coincidence probability and the product of the

individual detectors’ respective click probabilities approaches
P(Coinc.|n)

1
@(0) = - 1——. 19
v (O) P(Click, |n)P(Click|n) n (19)

This is the expected result when measuring g®(t = 0) for a
number state.

At the opposite end, when t — oo, we instead have
y®(r — o0) =1 for any state, because the correlation at
sufficiently long time is lost and the numerator therefore factors
and becomes identical to the denominator of g™ (7).

For a specific number state |n) as input and assuming equal
detector efficiencies and losses in the two paths, Eq. (15)
simplifies to
1=2(1 = ¥ /2y + (1 = *n°)"

(I — [ — 2y

Equation (20) is plotted for number states of different n in
Fig. 2. It shows a strong dependence on the quantum efficiency
of the setup, and allows an estimation of the efficiency required
for certain precision in g measurements. The nonzero dead
times of the detectors, as well as the resolution of the coin-
cidence circuit, are other factors that motivate a low quantum
efficiency, but these are separate from the effect in the result
obtained here. We can also show (although the full derivation
is omitted here) that photon number resolving detectors do
not improve the situation. Rather, using ordinary Avalanche
photo-diodes (APDs) or other nonideal detectors leads to a
more rapid convergence between y® and g™ then if ideal,
photon number resolving detectors are used, as can be seen for
two-photon number states in Fig. 3.

Y0 = (20)

VI. COHERENT STATE INPUT

The coherent state and its photon count statistics are the
result of a memoryless system. Hence, if a coherent state is
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FIG. 3. Number states: calculated normalized coincidences
¥ ¥ (0) when using ordinary “click” detectors (red) and photon number
resolving detectors (blue).

split in two, the output state is in a separable state of two
coherent states. Likewise, if a coherent state is subject to linear
loss, the transmitted state is a coherent state with reduced
field amplitude. Thus, even at T = 0, in this case there is no
correlation between the photons falling onto the two detectors,
so that we get P(Coinc.) = P(Click;)P(Click;). This means
that the ratio

P(Coinc.) _1
P(Click,)P(Clicky) ~

Y@@ =0)= 1)

which is agreement with g(z = 0) for coherent states.

A. Measuring the fourth-order correlation function
for a coherent state

The correlation function was measured for a coherent
state by coupling a 632-nm HeNe laser into a single-mode
fiber, connected to a fiber beam splitter with splitting ratio
close to 50:50 at 632 nm. The two outputs were detected by
two APDs. Attenuation in the form of neutral density filters
(with transmission in the range €? = 0.16-1) were inserted
before the laser was coupled into the fiber. The normalized
coincidences y ¥ (r) were measured for different attenuation
strengths as a function of the time delay t between the arrival
times at the two detectors, shown in Fig. 4.

The result shows no correlation in time, or as a function of
attenuation, as expected. Error bars represent statistical errors.
The x axis in Fig. 4 is scaled to include losses in the fiber and
at the detector, as well as the variable part of €2. Since () and
the quantum efficiency occur together in the formulas (a loss
in one is a gain in the other) only an approximate value of the
total quantum efficiency can be found by estimating the total
loss in the setup.

VII. THERMAL STATE INPUT

To compute the probabilities P(Coinc.) and P(Click;) for
a thermal input state we use the fact that the thermal state,

2
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FIG. 4. Coherent state: Measured normalized coincidences
y @ (1), for several attenuations € (different colored dots, T = 0.16—
1), as a function of delay time show no correlations. The inset shows
measured y®(t = 0) for different attenuations €2. The red line is the
theoretically expected value. Bars represent the statistical error.

expressed in the number state basis, is simply an exponential
statistical distribution of number states. Hence, if the thermal-
state mean photon number is denoted (1), then

S B = A (R ey
P(Coinc.) = ) nX(;(l n (ﬁ)) P(Coinc.|n)
o 1 B 1
S L+ Meniui/2 1+ (@en3u3/2
1
+ , 22
T (R T Bi) 2 .
and
P(Click;) = : )" (ﬁ)A P(Click;|n)
T+ (1) =\ 1+ (A)
N (23)

L+ (A)e2niut/2

The lowest order expansion terms of these two functions as
€ — 0 are

P(Coinc.) — (A)2e*niniuius/2 (24)
and
P(Click;) — (A)e*n;u5/2. (25)
Hence, when €2 — 0, the estimated normalized, fourth-order
correlation function at t = 0 for a thermal state approaches
P(Coinc.
Y =0) = ——LCA)___ (g
P(Click;) P(Clicky)

which also is the expected value for a thermal state. We have
plotted yt(:)(O) = P(Coinc.)/ P(Click;) P(Click,) in Fig. 6 for
different average photon numbers, calculated from the expres-
sions in Eqgs. (22) and (23).
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FIG. 5. Setup to generate and detect y(z) for a quasithermal
state. vy = 105 rad/s, the average diffuser film grain size is 5 pum.

Diffuser film I

Motor

A. Measuring the fourth-order correlation function
for a quasithermal state

A setup as in Fig. 5 was constructed to measure the fourth-
order correlation function of a quasithermal state. The state
was generated by focusing a HeNe laser with A = 632 nm
(the same laser generating the coherent state above) onto a
diffuser film with average grain size d =5 um, rotating at
around 105 rad/s. Part of the light generated was collected in a
fiber, and split in two paths by a fiber beam splitter with splitting
ratio close to 50:50, before being detected by two APDs. The
same delay generator and coincidence module as before was
used to vary the delay time 7 and detect coincidences. The
attenuation € was introduced as neutral density filters with
varying transmittance, before the light was coupled into the
fiber.

The result y®(0) is shown in Fig. 6, together with the
theoretical curves for different average photon numbers (7).
The measured data is normalized to y(4)(r > 1.) with 7, the
coherence time of the quasithermal light. A quasithermal state
generated in the laboratory, by letting a laser transmit through

261 (n

2.4

— (n)=10 1
i Measured data

22 —— Fitted curve

-
-
-
-
-
-

-
- - -
-
. - .

FIG. 6. Thermal state: calculated normalized coincidences y ¥ (0)
for thermal states with varying (/7). Measured data from a quasither-
mal state (black squares, bars represent statistical errors), and the best
fit to a rational (red, details in text). Here we assume n?u? = n3u3
bunched into the expression €2 for simplicity.

2.4

Attenuation
22+ |—T=0.16
- = T=0.32

T=0.40
—--=-T=0.50
—T=0.83

T=0.91
------ T=1

0
T [S] x10®

FIG. 7. Quasithermal state: Measured y ¥ (), for several atten-
uation strengths (7=transmission through filter). Inset: enlargement
around 7 = 0.

or scatter from a diffuser, does not in general have the exact
exponential distribution over number states as described in the
previous section, and thus the fourth-order correlation function
can differ from 2. In our case the generated state is “super-
thermal,” i.e., g(4)(0) > 2, as can be seen in Fig. 6. The extra
bunching cannot be explained by excess noise in the HeNe
laser, this has been checked. Because of the super-thermal
statistics we cannot map the measured data directly to the
theoretical curves. However, we can see the expected trend:
y®(0) increases with increased attenuation. A curve with a
best fit to the data can be made if we assume a similar €
dependency as for a thermal state, and thus apply a rational
of the form y = (p1x + p2)/(x + q1) as indicated by the ratio
of Eq. (22) to (23). This provides a “correction term” to the
theoretical expression of y® for a thermal state, accounting
for the non-Gaussianity of the generated, super-thermal state.
The best fit is plotted in Fig. 6 (red, solid curve), and indicates
a correct value for g(0) ~ 2.36. Thus, applying the method
of varying the attenuation of the source while keeping all other
factors constant allows us to determine a more accurate value
for g(0) compared to a single measurement.

In Fig. 7, the correlation function is plotted versus the
difference t in arrival time of photons, for different attenuation
strengths. As for the coherent state, the x axis € in Fig. 6 is
scaled to include estimated losses in the fiber, at the detector,
and from the added attenuation. (7i), as it is presented in the
plot, thus represents the average photon number of the mode
after coupling the light into the fiber (before attenuation). The
average photon number for the mode generated at the diffuser
can be estimated to be in the range 100-1000 photons per
mode (based on diffuser, beam, and fiber properties), but is
spatially filtered to ensure coupling of one single mode into the
fiber.

VIII. SYSTEMATIC VS STATISTICAL ERRORS

In the above measurements the measurement time was fixed,
leading to increased statistical errors for higher attenuation.
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That is, the proposed method decreases the systematic error
Y@ (e?) — g™®(0) at the cost of an increased statistical error.
In some measurements, statistical errors pose a significant
problem, but in many cases it is manageable by increasing
the measurement time, and preferred in relation to systematic
errors.

For a fixed measurement time or number of measurements
M of a pulsed source, there is a tradeoff between systematic
and statistical errors. The latter can be derived from Eqgs. (13)
and (14) and are (v/Me2n)™! for a number state |n) and
Z(W €2(f))~! for a coherent state or a thermal state, under
the assumption of equal losses in both arms, and where we are
in agreement with Figs. 2—4 and 6 we have collected all losses
into the factor 2. These error estimates should be compared to
the systematic errors that are ([1 — 1/n1€?)/2, 0, and —e>(#),
for the respective states. Thus, it takes, e.g., M ~ 4/(e3(i)*)
measurements to make the two error terms of a pulsed, thermal
source equal.

IX. CONCLUSION

The fourth-order correlation function is an important tool
for characterizing nonclassical and classical light sources. It
has long been a challenge to measure the characteristics of
especially quantum light-source emitting states with more
than one or two photons. The performance of current photon
number resolving detectors is not satisfying, and setups for

spacial or time multiplexing quickly become unpractical. As
the efficiencies of detectors and setups improve, it is also
important to keep in mind that what is normally measured in
the laboratory is not the g function, but an approximation
only true under certain experimental conditions, notably low
quantum efficiencies. Here, we have attempted to clarify how
a measurement of the fourth-order correlation function is
affected by experimental conditions, and specifically linear
loss. We have shown that introducing and varying an excess
attenuation can be a powerful and simple strategy to acquire
information about the fourth-order correlation function g™ (7)
of any state. Attenuation can decrease a troubling systematic er-
ror in correlation measurements, at the expense of an increased
statistical error, which may be easier to handle. Furthermore,
we have experimentally demonstrated the feasibility of the
method for a coherent state and a quasithermal state. The
method is easy to implement and can simplify characterization
of, for example, multiphoton Fock states as they become
experimentally available. Future work includes experimentally
verifying the method for a larger set of states.
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