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Bending of light in a Coulomb gas
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Photons traveling in a background electromagnetic field may bend via the vacuum polarization effect with the
background field. The bending in a Coulomb field by a heavy nucleus is small even at a large atomic number,
rendering it difficult to detect experimentally. As an amplifying mechanism of the effect we consider the bending
of light traveling in a chamber of Coulomb gas. The Gaussian nature of the bending in the gas increases the total
bending angle in proportion to the square root of the photon travel distance. The enhancement can be orders
of magnitude over the bending by a single nucleus at a small impact parameter, which may help experimental
observation of the Coulombic bending.
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The vacuum polarization effect of the quantum electrody-
namics renders a photon traveling in a background electro-
magnetic field bend. For a photon moving in a slowly varying
background field, with energy smaller than the electron rest
mass, the bending may be described by a low-energy effective
Lagrangian that encodes the vacuum polarization effect. At
the leading order of the fine-structure constant the polarization
effect is given by a box diagram with four external photon
lines, which gives rise to the nonlinear interaction of Euler-
Heisenberg [1,2]:
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where h̄, c, α, and me are the Planck constant, the speed
of light, the fine-structure constant, and the electron mass,
respectively, and F̃μν denotes the dual of the field strength
tensor Fμν .

A linearization of the Euler-Heisenberg interaction in a
slowly varying background field yields a photon dispersion
relation in which the background field is encapsulated in an
index of refraction n [3–7]:

n = 1 + aα2h̄3
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where k̂ is the unit vector in the direction of photon propaga-
tion, and a is the birefringence constant that is either 8 or 14,
depending on the photon polarization.

Thus a photon moving in a background field behaves as if it
is traveling in a dielectric medium with a refractive index that
depends on the background field strength, and consequently
the photon bends when the field strength is nonuniform.

This light bending has been studied in relation to astro-
nomical objects with strong electromagnet fields, such as
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magnetars or black holes [8–10]. On the opposite scale, at
a microscopic level a particularly interesting problem is the
bending in a Coulomb field. Because the field-dependent
index of refraction becomes larger at a stronger field, the
incoming photon bends toward the charge, in a fashion remi-
niscent of the gravitational bending in general relativity.

The bending angle can be easily calculated in geometrical
optics. For a photon with the impact parameter b in the
Coulomb field by a nucleus of charge Ze, it is given by [11]

θ (b) = aZ2α3
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, (3)

where α is the fine-structure constant, and λ̄e = h̄/mec is the
reduced electron Compton length.

The impact parameter in Eq. (3) cannot be arbitrarily small,
putting a limit on the size of the bending angle. Requiring that
the Euler-Heisenberg interaction be a small perturbation to the
Maxwell theory places a constraint on the field strength [3]:
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where Fμν denotes the background field strength. For the
Coulomb field

E(r ) = Ze

4πr2
, (5)

the constraint requires the radius to satisfy

r � λ̄e
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where the fine-structure constant is given by α = e2/4πh̄c.
Even for a large Z, the radius satisfying the constraint can be
fairly small. For instance, at Z = 100,

r � 0.14λ̄e. (7)

Also the requirement that the background field be slowly
varying demands [3] the following:

|∂λFμν | � mec

h̄
|Fμν |,
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which, for the Coulomb field (5), is satisfied when

r � λ̄e . (8)

We also note that at a very small impact parameter where
the electric field becomes strong the corrections to the Euler-
Heisenberg interaction can be significant. The corrections
arise from the box diagrams with more than four external
photon lines. A simple dimensional analysis shows that these
give rise to effective interactions in powers of

αh̄3
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ec

5
|Fμν |2, (9)

relative to the Euler-Heisenberg term. For these corrections to
be small on the Coulomb field (5) the radius must satisfy

r �
√

Zαλ̄e. (10)

The combined constraints of Eq. (6), (8), and (10) on the
radius put a limit on the impact parameter in the bending angle
(3). For heavy nuclei with Zα ∼ 1, it requires

b � λ̄e. (11)

The bending angle under this constraint is quite small, even
at a large Z and a small impact parameter. For instance, for
Z = 100 and b = 10λ̄e, the bending is 34 nano rad.

Because of the smallness of the effect detecting the bend-
ing experimentally may be challenging. It may thus be inter-
esting to study an amplifying mechanism for the effect. As
such a mechanism we consider in this paper a photon (in a
collimated beam) traveling in a chamber of Coulomb gas that
comprises heavy nuclei.

As the photon travels in the chamber it will bend off each
nuclei in the gas, and because the bendings are random in
the impact parameter as well as in the azimuthal angle to
the beam axis, the distribution of the total bending angles
will be Gaussian and the root-mean-square (rms) angle be
proportional to the square root of the number of nuclei in the
gas. An experimental consequence of this Gaussian bending
will be a broadening of the photon beam as it travels through
the gas.

Though securing the Coulomb gas is beyond the scope of
this paper, we could imagine obtaining it by blowing off the
valence electrons of the heavy atoms through an illumination
of x rays or γ rays, perhaps as well with the help of an electric
field applied to the chamber to separate the electrons from
the nuclei. Further, it may not be necessary to separate the
electrons from the ionized nuclei, because the bendings off
the electrons would be ignorable compared to those off the
heavy nuclei. In this case ionization of the heavy atoms alone
would suffice for the purpose. Furthermore, even ionization
may not be necessary with high-energy photons (x ray or
γ ray), as in experiments for the Delbrück scattering [12],
because the Coulombic interactions of the photons with the
nuclei would occur deep inside the atoms near the nuclei.
In this case the Rayleigh scattering off the electrons must be
accurately subtracted.

Now to compute the rms angle we consider a cylindrical
chamber of length L and radius R filled with a Coulomb gas
and assume the photon travels along the axis of the chamber.

Although we start with this particular form of chamber the
final result will be independent of the chamber geometry.

To be specific, for a photon with incoming velocity �c = cn̂,
where n̂ denotes the unit vector in the beam direction, the exit
velocity �ve off the chamber can be written as

�ve ≈ �c +
N∑

i=1

�vi
⊥, (12)

where N is the number of nuclei in the Coulomb gas, and
�vi
⊥ denotes the perpendicular component of the beam axis of

the deflected velocity vector off the ith nucleus. The total rms
angle �̄ is then given by
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is the rms angle of the bending off a single nucleus. Noticing
that ∣∣∣∣ �vi

⊥
c

∣∣∣∣
is nothing but the bending angle θ (b) in Eq. (3), the θ̄ (b) can
be computed by

θ̄ =
√

〈θ2〉, (15)

where

〈θ2〉 =
∫ R

�

〈θ (b)2〉spinP (b)db. (16)

Here the averaging over spins is over the photon polarizations,
which applies to the birefringence constant, � is the lower
cutoff in the impact parameter, and P (b) denotes the prob-
ability density for a particular nucleus to fall at the impact
parameter b with the photon. The cutoff � should be subject
to the bound on the impact parameter (11). Because in a
uniformly distributed gas P (b) should be proportional to b,
the normalized density is given by

P (b) = 2

R2
b, (17)

which satisfies ∫ R

0
P (b)db = 1. (18)

Then we get

θ̄ = āZ2α3
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where

ā =
√

(82 + 142)/2 =
√

130 (20)
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is the rms of the birefringence constant. The total rms angle is
then given by

�̄ = Z2α3
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where L0 = 1/ρN�2, with ρN = N/V denoting the number
density of the gas in volume V = πR2L.

Now to estimate the amplification effect of this result we
need to express the number density in terms of temperature
and pressure using the equation of state of the Coulomb gas,
which at high density is not known. However, this problem
can be avoided if we assume that the Coulomb gas was
obtained in the manner described before, by stripping the
electrons off neutral heavy atoms. Then the number density
of the Coulomb gas is identical to that of the atomic gas, for
which we may assume the ideal gas law ρN = P/kBT , with T

and P denoting the temperature and the pressure of the atomic
gas and kB being the Boltzmann constant. We then have

�̄ = Z2α3
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where

L0(P, T ,�) = kBT

P�2
.

The result shows that at a given temperature and pres-
sure the bending angle increases in proportion to the square
root of the photon travel distance. As asserted, the result is
independent of the geometry of the chamber, as there is no
geometry-dependent parameter except for L, which, however,
being the distance of the photon traveled, is not particular to
the geometry.

To see the amplifying effect at some readily available
parameter values we write Eq. (22) as

�̄ = 2.945×10−6
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)
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It shows the rms angle is about 3 μrad at Z = 100, T = 300 K,
P = 1 bar, and L = 30 m, with the cutoff at � = 10λ̄e. Note
that this value is 2 orders of magnitude larger than the bending
angle by a single nucleus of the same Z value and at the
impact parameter b = �. Obviously, a greater amplification
can be obtained with a colder, higher pressure gas in a longer
chamber. This demonstrates that a Coulomb gas can be an
amplifier for the light bending in a Coulomb background.

Let us now focus on the cutoff �. For a photon at the
impact parameter b with a nucleus there are two constraints on
the photon wavelength λ, arising from the Euler-Heisenberg
Lagrangian (1) and the bending angle (3). For the local Euler-
Heisenberg interaction to be valid the wavelength should
be larger than the electron Compton length λ̄e, and for the
bending angle (3) be valid the wavelength should be smaller
than the impact parameter b, so that the geometrical optics

will be applicable. Thus

λ̄e � λ � b, (24)

which indicates the cutoff �, the lower bound of b, should be
a multiple of the photon wavelength. Putting in Eq. (22)

� = μλ, (25)

where μ is a constant larger than unity, we get the rms angle
for a photon beam of wavelength λ:
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where L0(P, T , λ) = kBT /Pλ2, and
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The magnitude of the rms angle has a sharp dependence on
the cutoff parameter μ. This clearly results from the limitation
of the bending angle (3) which is obtained in the geometrical
optics and is valid only for b � λ. At b not larger than the
wavelength, a more complete formula for the bending angle
may be obtained using the wave optics, which is beyond
the scope of this paper. Physically, however, it is clear that
the quartic divergence at small b, which gives the strong μ

dependence, should disappear in a complete formula, because
at b = 0 the bending angle must vanish for symmetry reasons.
We thus expect the bending angle will have a maximum at the
impact parameter b = μ0λ, where μ0 is a constant. We may
then identify μ0 with the cutoff parameter μ. It may not be
unreasonable to assume μ to be of the order of unity; so if we
put μ = 5 and λ = 5λ̄e, as an example, the rms angle is a few
tenths of μrad at the reference values of Z, P , T and L in
Eq. (27).

An experimental consequence of the bending will be a
broadening of the beam as it travels through the gas. This
beam broadening may be exploited to detect the light bending,
by studying its dependence on the temperature, the pressure,
the beam’s travel distance, and the wavelength of the photon
in the beam, and see if it follows Eq. (26). Another interesting
signal would be the intensity profile of the beam cross section.
Because of the random nature of the bendings off the nuclei,
the intensity profile should be Gaussian.

To conclude, we have shown that the Coulombic light
bending can be amplified by orders of magnitude with a
photon beam traveling in a Coulomb gas. The rms bending
angle at a given temperature and pressure is proportional to
the square root of the distance the beam traveled. Although
we considered a Coulomb gas as the amplifying medium for
the light bending, it is conceivable that a similar amplification
would occur as well in other mediums, like solid metals of
large atomic number such as gold. Such an amplification
might be investigated in experiments for precision measure-
ment of refractive index with γ rays [13–15], as the Coulom-
bic bending can have a dominating effect on the Delbrück
scattering [16].
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