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Understanding the electromagnetic 4-potential in the tetrad bundle
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Separation of the spin and orbital angular momenta of the electromagnetic field has been discussed frequently
in recent years. The spin and orbital angular momenta cannot be made simultaneously gauge invariant and
Lorentz covariant and are not conserved separately. After analyzing the source of the problem, we find that
the electromagnetic 4-potential depends on the local reference frame instead of the global reference frame.
The transformation of the local reference frame is the intrinsic degree of freedom of the electromagnetic field.
Therefore, considering only the Lorentz transformation of the global reference frame and neglecting the Lorentz
transformation of the local reference frame may lead to the noncovariance of the electromagnetic 4-potential.
Accordingly, we redescribe these difficulties of the electromagnetic field from the perspective of quantum field
theory. By using the behavior of the electromagnetic 4-potential that satisfies the Coulomb gauge in Lorentz
coordinate transformation, we can construct the electromagnetic vector in the tetrad bundle. The various physical
quantities that are induced by this electromagnetic vector satisfy Lorentz covariance in the tetrad bundle. This
electromagnetic vector, which is projected onto space-time, is an electromagnetic 4-potential that satisfies the
Coulomb gauge; thus, the electromagnetic vector is gauge invariant.
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I. INTRODUCTION

There has been substantial discussion about the separation
of the angular momentum (AM) of the electromagnetic field
into its spin and orbital parts [1,2]. The orbital AM density
of the electromagnetic field is defined as L = Ej (r × ∇ )Aj

and the spin AM density as S = E × A, where A is the
electromagnetic 4-potential and A is the spatial part of A [3].
According to this definition, neither the spin nor the orbital
AM satisfies [U(1)-group] gauge invariance [4,5]. However,
gauge invariance is an inevitable requirement of an observable
physical quantity and the spin and orbital AMs of the electro-
magnetic field can be observed in various optical experiments
[6,7].

This problem can be solved by replacing Aμ with only its
transverse part, which is denoted Aμ = (0, A⊥) [8–10], where
A⊥ satisfies the Coulomb gauge: ∇ · A⊥ = 0. Namely, the
definitions of the spin and orbital AM densities are modified
to L = Ej (r × ∇ )Aj , S = E × A⊥. However, this definition
violates the Lorentz covariance: the Coulomb gauge is not
Lorentz covariant. Lorentz covariance is a requirement of the
principle of relativity: physical laws should not depend on the
reference frame.

The spin and orbital AMs cannot simultaneously be
Lorentz covariant and gauge invariant and they are not con-
served separately [11,12]. Bliokh et al. constructed a set of
conserved spin and orbital AM densities [12]. However, this
structure also depends on the Coulomb gauge. Therefore,
it is not Lorentz covariant. Bliokh et al. remark that this
phenomenon is consistent with the experimental operation
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because a local probe particle will always identify a special
laboratory reference frame in which it is at rest. This explana-
tion is not convincing. Any observable quantity must be ob-
served and measured in a special laboratory reference frame;
however, most of them do not have a Lorentz-violating math-
matical form because the Lorentz violation of observation
methods would not cause a Lorentz violation of physical laws.
In other words, the mathematical form of the measurement
result cannot depend on the reference frame, which is known
as observer Lorentz covariation [13]. Furthermore, according
to the gauge theory of gravitation [14], similarly to U(1)-group
gauge invariance, Lorentz covariance is the gauge invariance
of the SO(1,3) group; hence, Lorentz covariance is also an
inevitable requirement of observable quantities.

However, Bliokh’s point of view provides two main inspi-
rations: One is the specificity of the Coulomb gauge. Not only
can the Coulomb gauge be used to construct conserved spin
and orbital AMs, but also the canonical quantization proce-
dure performs well in this gauge [15]. The other is that the
optical phenomenon is closely related to the reference frame.
Physical laws are local [15,16]. What if an observable quantity
of the electromagnetic field depends not on the global refer-
ence frame (coordinate system) but on the local one (tetrad
field)? We suspect that the origin of the noncovariance of
the electromagnetic 4-potential, which satisfies the Coulomb
gauge, is that we have not taken the transformation of the
tetrad field into account. In detail, when the coordinate system
is transformed, the choice of tetrad changes, and although the
Coulomb gauge is broken, the transformation of the tetrad will
produce a phase that corrects the deviation [see Eq. (40)].

According to this view, we must shift the perspective from
space-time to the tetrad bundle (see [17], [18]). The set of
all local reference frames of a space-time point q consti-
tutes q’s fiber. As a result, each transformation � of a local
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reference frame becomes an intrinsic degree of freedom of the
electromagnetic field. The electromagnetic 4-potential that we
observed is the projection to space-time of a high-dimensional
electromagnetic vectors in the tetrad bundle. This electromag-
netic vector has Lorentz covariance in the high-dimensional
tetrad bundle. The main essence of Lorentz covariance is that
the mathematical form of the physical quantity cannot depend
on a reference frame; hence, the physical quantity should be
a “geometric invariant.” Not all geometric invariants must be
vectors (or tensors) in space-time; however, we used to replace
“Lorentz covariance” with “Lorentz covariance of space-time
vectors (tensors)” narrowly. The electromagnetic vector in
the tetrad bundle that we construct is such an example; it is
a geometric invariant but does not have Lorentz covariance
when it is projected to space-time, where we cannot obtain all
its information.

The remainder of the paper is organized as follows: In
Secs. II and III, we restate the issue about Lorentz covariance
and gauge invariance that relates to the AM of the electromag-
netic field from the perspective of quantum field theory, which
lays the groundwork for Sec. IV. In Sec. IV, we present the
revised definitions of various physical quantities of the elec-
tromagnetic field in the tetrad bundle and the relationship with
the corresponding classical definition in space-time. Section V
provides a summary. Throughout the text, we use Einstein’s
sum rule; natural electrodynamical units, namely, μ0 = ε0 =
c = 1; the Minkowski metric, which is expressed as ημν =
diag(−1, 1, 1, 1); Greek indices ρ,μ, ν, . . . = 0, 1, 2, 3; and
Latin indices i, j, k, . . . = 1, 2, 3. We do not distinguish
between the notion of a “vector” in tangent space and
that of a “1-form” in the cotangent space; both are called
vectors.

II. ENERGY-MOMENTUM TENSOR

We assume that φρ is a spin-1 vector field with a mass
under the Lorentz transformation of the reference frame x →
�x, which is transformed as a vector representation of the
Lorentz group [19]:

U (�)φρ (x)U−1(�) = �σ
ρφσ (�x). (1)

Hence, φρ is a 4-vector. The canonical energy-momentum
tensor of φρ , which is denoted TN , is usually defined as

T
μν

N = ημνL − ∂L

∂ (∂μφρ )
∂νφρ, (2)

where L is the Lagrangian density.
Using Eq. (1), we can prove that under the coordinate

transformation x → �x,

U (�)T μν

N (x)U−1(�) = �ρ
μ�σ

νT
ρσ

N (�x). (3)

Therefore, TN is a Lorentz tensor with Lorentz covariance.
However, TN does not have local U(1) gauge invariance be-
cause under the gauge transformation φρ (x) → eiε(x)φρ (x),
∂νφρ will produce an additional factor, namely, ∂νε(x), which
cannot be canceled unless ∂μ is replaced with covariant
derivative Dμ in the u(1) algebra [20].

Using the canonical energy-momentum tensor, we can con-
struct a Noether flow, namely, the Lorentz generator density:

M
ρμν

N = xμT
ρν

N − xνT
ρμ

N . (4)

By integrating this Noether flow (volume integrals for suf-
ficiently localized fields are assumed), we can obtain the
generator of the Lorentz group,

Lμν =
∫

M
0μν

N d3x, (5)

where the spatial part, namely, Lij of Lμν , is the AM gener-
ator. However, the canonical energy-momentum tensor does
not satisfy index symmetry generally, i.e., T

μν

N �= T
νμ

N . Index
symmetry is a necessary and sufficient condition for the
conservation of Mρμν because

∂ρM
ρμν

N = 2T
[μν]
N , (6)

where [·] represents the tensor’s anticommutator. There-
fore, the Belinfante energy-momentum tensor was introduced
by adding an intrinsic spin term to the canonical energy-
momentum tensor [21],

T
μν

B = T
μν

N + 1
2∂ρ (Sρμν − Sμρν − Sνρμ), (7)

where the spin term, which is denoted ∂ρS
ρμν , cancels out the

antisymmetric part of TN , thereby leaving only the symmetric
part:

1
2∂ρS

ρμν = −T
[μν]
N . (8)

Thus, the Belinfante energy-momentum tensor is a symmetric
tensor and the Lorentz-group generator density, denoted MB ,
which is induced by the Belinfante energy-momentum tensor,
satisfies

M
ρμν

B = xμT
ρν

B − xνT
ρμ

B

= M
ρμν

N + Sρμν + ∂κ�
κρμν,

(9)

where �κρμν is a surface term that consists of coordinates and
spins. We interpret M

0ij

N as the orbital AM density and S0ij as
the spin AM density. The total Noether flow is conserved:

∂ρM
ρμν

B = 0. (10)

The famous physicist S. Weinberg presented the expression
of spin Sρμν in Ref. [15]:

Sρμν = ∂L

∂ (∂ρφν )
φμ − ∂L

∂ (∂ρφμ)
φν. (11)

The Lorentz covariance condition of the spin is

U (�)SρμνU−1(�) = �γ
ρ�α

μ�β
νSγαβ (�x). (12)

III. RESTATEMENT OF THE ANGULAR
MOMENTUM PROBLEMS

Problems arise in the construction of a massless vector field
Aμ(x) that is modeled on a mass vector field φρ [15]. Simply
using the creation and annihilation operators of the photon,
which are denoted a† and a, we cannot construct a 4-vector
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that satisfies (1); Aμ(x) can only have the form

Aμ(x) = (2π )−
3
2

∑
h=±1

∫
d3p√
2p0

(eμ(p, h)

× eipμxμ

a(p, h) + e∗
μ(p, h)e−ipμxμ

a†(p, h)), (13)

where p is the 3-momentum, p = (p0, p) is a lightlike 4-
momentum, and h is the helicity of the photon. The coeffi-
cient eμ(p, h) = R(p̂)μνeν (k, h), where R(p̂) is a rotational
transformation that rotates the spatial part k = (0, 0, 1) of
the standard momentum k = (1, 0, 0, 1) to the direction of p,
which is written as p̂, and eν (k, h) can be expressed as

eν (k, h) = 1√
2

(0, 1, ih, 0). (14)

In this configuration, Aμ satisfies the Coulomb gauge (in
vacuum):

A0 = 0, ∂jAj = 0. (15)

Under a reference-frame transformation x → �x, Aμ be-
haves as follows:

U (�)Aρ (x)U−1(�) = �σ
ρAσ (�x) + �σ

ρ (∂σ�)(�x,�).

(16)

The transformation of the reference frame leads Aμ to produce
a gauge ∂ρ�� that depends on the reference frame, where
�(x,�) can be expressed as a linear combination of creation
and annihilation operators. Reference [15] did not present an
explicit expression for �. According to our calculations,

�(x,�) = (2π )−
3
2

∑
h=±1

∫
d3p

2
√

p0
([α(p,�)

+ ihβ(p,�)]eipμxμ

a(p, h) + [α(p,�)

− ihβ(p,�)]e−ipμxμ

a†(p, h)), (17)

where α and β are parameters that depend on the Lorentz
transformation � and the 4-momentum p. The little-group
representation of � is expressed as W = L−1(�p)�L(p),
where L(p) is the standard Lorentz transformation, which
is applied to boost the standard momentum kμ to the 4-
momentum pμ, that is, L(p)k = p. The definitions of α and
β are α = W 0

1 and β = W 0
2.

From the above discussion, although both the electromag-
netic 4-potential Aμ and the Lorentz vector φρ have the same
index, their transformation properties are different. According
to gauge field theory [20], Aμ is a gauge potential in the
principal bundle whose structure group is U(1), whereas φρ is
a vector (component) in the representation space. Therefore, if
we directly apply the definitions of energy-momentum tensor,
spin, Lorentz generator density, etc., of φρ to the electromag-
netic 4-potential Aμ, problems will inevitably be encountered.
However, researchers typically apply these definitions directly
to electromagnetic fields. We believe that this is why the
orbital and spin AMs of the electromagnetic field do not have
Lorentz covariance or gauge invariance.

The Lagrangian and action of the electromagnetic field in
a vacuum (with no matter) can be expressed as

L (x) = −1

4
Fμν (x)Fμν (x),

Sγ = −1

4

∫
d4x FμνF

μν, (18)

where Fμν (x) = ∂μAν (x) − ∂νAμ(x) is the electromagnetic
field tensor and Aμ(x) = Aμ(x) + ∂μθ (x) is an electromag-
netic 4-potential under any gauge. We temporarily imitate
Eq. (2) to calculate the canonical energy-momentum tensor
of the electromagnetic field,

T
μν

N = ημνL − ∂L

∂ (∂μAρ )
∂νAρ

= −1

4
ημνFρσF ρσ + Fμρ∂νAρ, (19)

and imitate Eq. (11) to calculate the spin term Sρμν of the
electromagnetic field:

Sρμν = ∂L

∂ (∂ρAν )
A μ − ∂L

∂ (∂ρAμ)
A ν

= FρμA ν − FρνA μ. (20)

According to Eqs. (19) and (20), it is easy to calculate the
three-dimensional form of the AM density; the calculation is
typically presented in textbooks [22]

L = Ej (r × ∇ )Aj , S = E × A, (21)

where Aμ = (ϕ, A). There is no local gauge invariance in
Eqs. (19) and (20). Unlike the gauge transformation of a
vector field φρ , the gauge transformation of Aμ(x) is not
performed by multiplying a local phase factor eiε(x). Aμ(x)
is the gauge potential in the u(1) algebra, i.e. [20],

A ′
ρ (x) = Aρ (x) + ∂ρε(x). (22)

Substituting (22) into (19) and (20) will yield two addi-
tional terms: Fμρ∂ν∂ρε and 2Fρ[μ∂ν]ε. The canonical energy-
momentum tensor and spin do not satisfy U(1) gauge invari-
ance. We cannot change this phenomenon even if we replace
the derivative operator ∂μ in Eq. (19) with the covariant
derivative Dμ.

The typical solution is to replace Aρ by its transverse part,
which is denoted Aρ [8–10] and always satisfies the Coulomb
gauge; hence, it is invariant under the gauge transformation in
Eq. (22):

T
μν

N = − 1
4ημνFρσF ρσ + Fμρ∂νAρ, (23)

Sρμν = FρμAν − FρνAμ. (24)

The three-dimensional form of the orbital and spin AMs is
corrected by

L = Ej (r × ∇ )Aj , S = E × A⊥, (25)

where Aμ = (0, A⊥) and ∇ · A⊥ = 0.
However, the frame transformation, (16), of Aρ causes a

new problem immediately: T
μν

N and Sρμν no longer satisfy
the Lorentz covariance conditions in Eqs. (3) and (12) and
neither do the orbital and spin AM densities that are induced
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by them. The source of the difficulty is the dependency of the
Coulomb gauge on the reference frame: if we perform a boost
transformation to the reference frame x̄ = �x while trans-
forming Aμ(x) via the classic approach, namely, Āμ(x̄) =
�μ

ρAρ (�−1x̄), then Āμ(x̄) no longer satisfies this gauge.
However, the Belinfante energy-momentum tensor that sums
the contributions of the orbital and spin parts (ignoring the
surface terms), which is expressed as

T
μν

B = − 1
4ημνFρσF ρσ + FμρF ν

ρ, (26)

is index symmetric, gauge invariant, and Lorentz covariant.
Hence, it is a well-defined observable quantity.

The origin of these difficulties in the final analysis is that
Aμ(x)’s transformation, (16), differs substantially from the
4-vector φρ . We cannot simply assert that Aμ(x) does not
have Lorentz covariance. After careful consideration, we find
that the essential requirement of Lorentz covariance is that
the definition of a physical quantity be independent of the
reference frames, that is, the physical quantity is a geometric
invariant. The geometric invariants of different structures have
different Lorentz transformation forms. The most familiar
example, namely, the Christoffel symbol, which is denoted
�ρ

νμ is a projection to space-time of the torsion-vanishing
metric connection ω in the tetrad bundle. This projection
mapping depends on the reference frames, whereas the mathe-
matical definition of ω is independent of the reference frames
[17]. As a projection of a geometric invariant, the Christoffel
symbol’s transformation differs substantially from that of a
tensor. We cannot simply treat the “Lorentz transformation”
as the “Lorentz transformation of tensors.”

If we can identify a geometric invariant whose projection
to space-time is the electromagnetic 4-potential, then we will
prove that the electromagnetic 4-potential remains Lorentz
covariant and the problem will be solved. Starting from the
Lorentz transformation in Eq. (16) of Aμ(x), we modify the
definitions of various physical quantities of the electromag-
netic field.

IV. PROMOTION OF THE ELECTROMAGNETIC
4-POTENTIAL TO A BUNDLE VECTOR

According to Eq. (16) and the little-group representation
of the unit Lorentz transformation 1, which is expressed
as W (p, 1) = L−1(1p)1L(p) = 1, α(p, 1) = 0, β(p, 1) = 0,
which leads to �(x, 1) = 0. We rewrite Eq. (16) as

U (�)[Aρ (x) + ∂ρ�(x, 1)]U−1(�)

= �σ
ρ[Aσ (�x) + (∂σ�)(�x,�)] (27)

and observe that Aρ + ∂ρ� behaves similarly to a 4-vector
under a reference-frame transformation. We define

Aρ (x,�) = Aρ (x) + ∂ρ�(x,�). (28)

Then, according to Eq. (27), the Lorentz transformation of Aρ

and its derivative can be obtained directly:

U (�)Aρ (x, 1)U−1(�) = �σ
ρAσ (�x,�),

U (�)∂σAρ (x, 1)U−1(�) = �ν
σ�μ

ρ (∂νAμ)(�x,�). (29)

Although Aρ is similar to a 4-vector, Aρ depends on both
x and �. Hence, Aρ is not a vector field in space-time.

If we consider (xρ,�μ
ν ) as a coordinate, x and � will

constitute a coordinate domain of the tetrad bundle. For a
point (q, e0, e1, e2, e3) in the tetrad bundle, where q is a point
in space-time whose coordinate is xρ , any orthonormal basis
(e0, e1, e2, e3) of the tangent space of q can be expressed as
eν = �μ

ν∂μ. Hence, �μ
ν is selected as the coordinate of this

basis which is called a tetrad of q. Therefore, Aρ is a vector
field in the tetrad bundle. Strictly, Aρ is a component of the
vector field and A = Aρ dxρ is a vector field where dxρ is
a vector not in space-time but in the tetrad bundle. Both dxμ

and d�ρ
σ constitute the vector basis of the cotangent space

of (q, e0, e1, e2, e3). We rewrite Eq. (28) in a coordinate-
independent form and (q, e0, e1, e2, e3) can be simplified
as (q, e)

A(q, e) = Aρ (q, e)dxρ + Aν
μ(q, e)d�μ

ν, (30)

where

Aρ (q, e) = Aρ (x) + ∂ρ�(x,�), (31)

Aν
μ(q, e) = 0. (32)

Although it vanishes, Aν
μ is written in Eq. (30) to emphasize

the difference between the electromagnetic vector A(q, e) =
Aρ (q, e)dxρ and the electromagnetic 4-potential A(q ) =
Aρ (x)dxρ , which have different dimensions. To observe the
difference more clearly, we consider their relationships with
the electromagnetic field tensor Fμν (q ). The electromagnetic
field tensor F (q ) in space-time is defined as

F (q ) = 1
2Fρσ (q )dxρ ∧ dxσ

= 1
2 (∂ρAσ − ∂σAρ )dxρ ∧ dxσ

= dA. (33)

Since Fρσ = 2∂[ρAσ ] = 2∂[ρAσ ], F (q ) can be promoted to
the bundle tensor F (q, e):

F (q, e) = 1
2Fρσ (q, e)dxρ ∧ dxσ

= 1
2 (∂ρAσ − ∂σAρ )dxρ ∧ dxσ . (34)

Then Fρσ (q, e) = Fρσ (q ), that is, F is independent of the
selection of the tetrad. However,

dA = d
(
Aρ (q, e)dxρ

) = dAρ ∧ dxρ

= 1

2
(∂ρAσ − ∂σAρ )dxρ ∧ dxσ + ∂Aρ

∂�μ
ν

d�μ
ν ∧ dxρ

= F (q, e) +
(

∂

∂�μ
ν

∂

∂xρ
�

)
d�μ

ν ∧ dxρ. (35)

We observe that F �= dA and F = DA, where D is the exte-
rior covariant derivative in the tetrad bundle, whose definition
can be found in the literature [17].

It is necessary to discuss the performance of the projection
of A to space-time. Only this projection can be directly
observed. If we choose a fixed tetrad e(q ) at each space-time
point q, mapping e(q ) is called a tetrad field.

Applying the pullback mapping e∗, which is induced by the
tetrad e(q ) to A, we obtain a vector field e∗A in space-time.
Via Eq. (30), we obtain the component form of e∗A by setting
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eν (q ) = �μ
ν (q )∂μ, where �μ

ν (q ) is related to q,

(e∗A)ρ (q ) = Aρ (q, e(q )) + Aν
μ(q, e(q ))

∂�μ
ν (q )

∂xρ

= Aρ (q, e(q )); (36)

that is,

(e∗A)(q ) = Aρ (q, e(q ))dxρ

= (Aρ (x) + ∂ρ�(x,�))dxρ, (37)

where dxρ becomes a vector in space-time again.
Pullback e∗ is a projection. The tetrad e(q ) represents the

(local) laboratory reference frame that we are observing. We
regard e(q ) as a Lorentz gauge.

When a set of coordinates x(q ) is selected, a natural se-
lection of a tetrad is e(q ) = (∂0, ∂1, ∂2, ∂3). This is the default
choice of optical experiments so that the influence of the local
reference frame (tetrad) can be ignored. The coordinate of
(q, e(q )) is (xσ , δμ

ν ). Since ∂ρ�(xσ , δμ
ν ) = 0, (e∗A)ρ (q ) =

Aρ (x). If we choose another coordinate x̄ = �x, the tetrad
field will be reselected as ē(q ) = (∂̄0, ∂̄1, ∂̄2, ∂̄3). Naturally,
A’s projection under ē(q ) is

(ē∗A)(q ) = Āρ (q, ē(q ))dx̄ρ = Āρ (x̄)dx̄ρ. (38)

From another perspective, to calculate ē∗A, we observe
that ē(q ) = e(q )�−1. Substituting x = �−1x̄ and ē(q ) into
Eq. (37), we obtain

(ē∗A)(q )

= Aρ (q, ē(q ))dxρ

= (Aρ (x) + ∂ρ�(x,�−1))dxρ

= (Aσ (�−1x̄) + (∂σ�)(�−1x̄,�−1))�ρ
σ dx̄ρ. (39)

Contrasting Eqs. (38) and (39), there must be

Āρ (x̄) = �ρ
σAσ (�−1x̄) + �ρ

σ (∂σ�)(�−1x̄,�−1), (40)

where both Aρ (x) and Āρ (x̄) satisfy the Coulomb gauge, (15);
hence, they are not Lorentz vectors in space-time. This is
expected because the electromagnetic 4-potential that we have
observed is a projection of the vector in the tetrad bundle;
thus, it is one-sided and, naturally, cannot satisfy Lorentz
covariance. Vector A(q, e) provides a complete description
of the electromagnetic field. Equation (40) proves that the
definition of A is independent of the reference frames. For
any reference frame x, Aρ (x) in the frame that satisfies the
Coulomb gauge is promoted to the vector A. Hence, A is the
geometric invariant for which we are looking.

Since Aρ (x) in Eq. (31) must satisfy the Coulomb gauge,
(15), A does not change when Aρ (x) is subjected to gauge
transformation Aρ (x) + ∂ρε(x). Thus, A has U(1) gauge
invariance.

It is natural to replace Aρ and Aρ with Aρ in the definition
of each physical quantity. The form of the electromagnetic
field tensor will be unchanged under the replacement since
Fρσ = Fρσ and e∗F = F . In addition, the form of the La-
grangian will be unchanged, in particular, for Maxwell’s
equation. However, this substitution results in the promotion
of scalars, vectors, and tensors from space-time to the tetrad
bundle.

The definition of the canonical energy-momentum tensor
TN is modified to

T μν

N (q, e) = − 1
4ημνFρσ (q )Fρσ (q ) + Fμρ (q )∂νAρ (q, e).

(41)

Then we can prove that TN is Lorentz covariant:

U (�)T μν

N (x, 1)U−1(�) = �ρ
μ�σ

νT ρσ

N (�x,�). (42)

From the U(1) gauge invariance of A, the gauge invariance of
TN follows.

Similarly, the spin Sρμν is modified to

Sρμν = FρμAν − FρνAμ. (43)

The Belinfante energy-momentum tensor TB remains un-
changed under A → A.

In the laboratory reference frame, we select the tetrad
e(q ) = (∂0, ∂1, ∂2, ∂3) and the projection of the canonical
energy-momentum tensor TN is

(e∗TN )μν (x) = T
μν

N (x)

= − 1
4ημνFρσF ρσ + Fμρ∂νAρ. (44)

Naturally, the projection of spin S is

(e∗S )ρμν = FρμAν − FρνAμ. (45)

Similarly, we can formulate the projection of the AM
density, which is the same as Eq. (25). These results are
consistent with Eqs. (23) and (24). Equations (23) and (24)
may have Lorentz covariance; however, TN and S, which only
reflect part of the information, do not provide a complete
physical description, in contrast to TN and S .

Since the projection of A maintains the Coulomb gauge
in any reference frame, after being promoted to bundle
tensors, the conserved orbital and spin AMs that are con-
structed by Bliokh in [12] will be meaningful in any reference
frame.

V. SUMMARY

The problem that the orbital and spin AMs of an electro-
magnetic field cannot be simultaneously gauge invariant and
Lorentz covariant becomes clear in the framework of quantum
field theory. With a Lorentz transformation, the electromag-
netic 4-potential that satisfies the Coulomb gauge will produce
a phase, denoted �, which depends on this transformation
and breaks the Lorentz-covariant form of the electromagnetic
4-potential. After promotion as a vector in the tetrad bundle,
the electromagnetic 4-potential can possess Lorentz covari-
ance, which suggests that the noncovariance is due to our
negligence of the transformation of the local reference frame.
Equivalently, the electromagnetic object at (xμ, ∂ν ) should
be covariant with the object at (�μ

σ xσ ,�ν
σ ∂σ ); however,

we are accustomed to comparing the electromagnetic objects
at (xμ, ∂ν ) and (�μ

σ xσ , ∂ν ). The local reference frame also
plays a role as an internal degree of freedom.

The tetrad bundle is closely related to the gravitational
effects [23]. Strictly, in curved space-time, the local frame
e(q ) = (∂0, ∂1, ∂2, ∂3) is not orthonormal; hence, it is not
a tetrad so that the coordinate and tetrad diverge, which
will generate observable differences between the electro-
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magnetic 4-potential and the electromagnetic vector in a
strong gravitational field. Therefore, the electromagnetic vec-
tor could play a role in the optical observation of astronomical
objects.

In addition, the electromagnetic 4-potential is a gauge
potential in the principal bundle whose structure group is U(1)

and a projection of a vector in the tetrad bundle. We can view
the electromagnetic 4-potential as a link that connects the two
bundles. A natural question arises: What type of relationship
has been established by the electromagnetic 4-potential be-
tween electromagnetic and gravitational interactions? We will
explore this further.
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