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Quantum optics in Maxwell’s fish eye lens with single atoms and photons
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We investigate the quantum optical properties of Maxwell’s two-dimensional fish eye lens at the single-photon
and single-atom level. We show that such a system mediates effectively infinite-range dipole-dipole interactions
between atomic qubits, which can be used to entangle multiple pairs of distant qubits. We find that the rate of
the photon exchange between two atoms, which are detuned from the cavity resonances, is well described by
a model where the photon is focused to a diffraction-limited area during absorption. We consider the effect of
losses on the system and study the fidelity of the entangling operation via dipole-dipole interaction. We derive our
results analytically using perturbation theory and the Born-Markov approximation and then confirm their validity
by numerical simulations. We also discuss how the two-dimensional Maxwell’s fish eye lens could be realized
experimentally using transformational plasmon optics.
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I. INTRODUCTION

Maxwell’s two-dimensional fish eye is an optical lens with
remarkable imaging properties. Light emitted from any point
inside the lens refocuses at the antipodal point on the opposite
side of the lens. Since Maxwell’s original work that studied
ray optics inside the lens [1], the properties of the fish eye have
been analyzed in a variety contexts, including electromagnetic
waves [2,3], scalar waves [4], quantum mechanics [5], and
supersymmetry [6].

More recently, it was proposed that Maxwell’s fish eye
lens may have the ability to perfectly refocus electromagnetic
waves emerging from a point source [7–9], thereby overcoming
the diffraction limit [10]. The idea of perfect imaging with
Maxwell’s fish eye has generated vigorous debate [11–38] . It
has focused on how the presence of a pointlike detector, placed
at the focus point, changes the image formed and whether per-
fect imaging is an artifact of the detector. On the one hand, it has
been argued that the presence of the detector, which can absorb
the incoming radiation, is necessary to form a perfect image
[7–9,11–14]. On the other hand, concerns have been raised that
the detector itself would contribute electromagnetic waves to
the image formed, giving rise to the apparent subwavelength
focus point [14–17]. Subsequently, the discussion about perfect
imaging has shifted to finding a simple and realistic model for
such detectors [18–24]. More recently, it was suggested that
perfect imaging may be possible when operating very close to
the resonances of the fish eye lens [35–38].

In this paper, we study the imaging properties of Maxwell’s
two-dimensional (2D) fish eye lens at the single-photon level
using single atoms. In particular, we assume that both the
source and the detector of the photon are individual atoms and
thus no ambiguity arises regarding their fundamental proper-
ties. One atom, initially in its excited state, emits the photon
and the second atom, initially in its ground state, absorbs the
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photon, storing it in a metastable state for fluorescent readout.
This is conceptually the simplest model for a source and a
detector [37].

We model the 2D lens as an effective photonic cavity filled
with an inhomogeneous dielectric material and solve for the
atom-photon dynamics inside the lens. Since the rate of photon
exchange between the atoms is set by the local electric field
strength, the atomic dynamics is a sensitive indicator of the
electric field distribution of the photon during absorption. In
particular, we find the photon exchange rate between the two
atoms, which are detuned from the cavity resonances, is well
described by a simple model which assumes that the photon is
focused to a diffraction-limited area during absorption.

We also analyze the capabilities of the fish eye to enhance
the interaction between distant atoms. In particular, we show
that the dipole-dipole interaction mediated by the fish eye lens
is effectively infinite in range. This infinite-range interaction
is a consequence of the unique focusing properties of the fish
eye lens and is analogous to the infinite-range interactions
mediated by quasi-one-dimensional (1D) waveguides, which
have been the subject of extensive research in recent years in
the context of hollow [39,40], plasmonic [41–43], microwave
[44–46], and dielectric [47–52] waveguides. Within this model,
we quantitatively evaluate entangling operations and discuss a
realistic experimental realization.

This paper is organized as follows. In Sec. II we discuss
the general formalism behind our work and derive the dipole-
dipole interaction mediated by the lens between atoms. In
Sec. III we discuss the entanglement of atoms within the lens.
In Sec. V we discuss a possible physical realization of the 2D
fish eye using transformational plasmon optics. Key insights
of our work are summarized in Sec. VI.

II. GENERAL FORMALISM

In this section we describe the general formalism behind our
calculations for exploring the quantum optical properties of
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the system and calculate the dipole-dipole interaction between
atoms placed inside the lens.

A. Maxwell’s fish eye lens

The two-dimensional fish eye lens is a dielectric medium
of infinite size with refractive index [8]

n(r) = 2n0

1 + (r/R0)2
, (1)

where r =
√

x2 + y2, R0 is the natural length scale of the
problem, and n0 � 1 can be chosen arbitrarily. We assume
n0 = 1 for all numerical calculations in this paper. In the limit
of geometric optics, light rays propagate in perfect circles
(Fig. 1, dashed circles). All rays emitted from a single point
inside the lens ultimately meet at the antipodal point. For
|r| > R0 the refractive index varies between n0 and 0, which
is difficult to achieve in practice. Thus the lens is modified by
placing a mirror around the circle of radius |r| = R0 (black
circle in Fig. 1). In the presence of the mirror the trajectories
still remain closed (solid red lines in Fig. 1) [7].

The 2D fish eye can be realized for electromagnetic waves
in a thin disk of radius R0 with a dielectric material of radially
varying refractive index given in Eq. (1), which is constant
along the ẑ direction. When the top and bottom surfaces of
the disk are covered with two parallel mirrors, the lowest-
frequency transverse electromagnetic (TEM) mode is invariant
along the ẑ direction and realizes the ideal dynamics of the 2D
fisheye [9,30]. While other modes with higher frequencies will
also be present, when the operating frequency is below a certain
cutoff, only the lowest TEM mode is excited. Specifically,

FIG. 1. Light rays propagating within the infinite 2D fish eye lens
trace out perfect circles (dashed red lines). If a mirror of radius R0 is
introduced (black dotted circle), the trajectories remain closed (solid
red lines). All light rays emerging from an arbitrary point within the
lens (green dot) refocus at the antipodal point (blue star). The color
code and the inset show the spatial variation of the refractive index as
a function of the radius, where we assume that n0 = 1 in Eq. (1). For
r > R0 the refractive index of the fish eye dips below 1.

this is achieved when the frequency of the radiating source
ω0 is much smaller than the cut-off frequency πc/b, where c

is the speed of light in vacuum and b is the thickness of the
disk [30,53]. Later, we consider a realistic realization of the
two-dimensional fish eye with surface plasmons, where the
transverse confinement arises naturally from the confinement
of the plasmons to the metal-dielectric interface [54,55].

B. Hamiltonian

We model the atoms as two-level systems with ground
and excited states denoted by |g〉 and |e〉, respectively. The
Hamiltonian describing the evolution of the system composed
of the two atoms and the fish eye modes is given by

H = Hatom + Hfield + V, (2)

where the atoms evolve according to Hatom =
h̄ω0

∑
i=1,2 |ei〉〈ei | and the evolution of the electromagnetic

field is described by Hfield = ∑
l,m h̄ωla

†
l,mal,m, where al,m

is the annihilation operator of an eigenmode of the lens
labeled by (l, m). The interaction of the two atoms with the
electromagnetic field is given by V = −∑

i=1,2 di · E(ri ),

where di = dz(σ †
i + σi )ẑ with σi = |gi〉〈ei |, and dz is the z

component of the dipole moment of the e → g transition of
the atom, E(ri ) is the electric field operator at position ri

within the lens, and we neglect variations of the field over
the size of the atoms. The two atoms are positioned at r1

and r2 [see Fig. 2(a)]. Note that Eq. (2) describes a closed
lossless system composed of the lens and the two atoms with
no coupling to free-space modes. Later we will consider how
photon loss from the fish eye modes affects our results.

C. Quantization in the fish eye lens

We follow the quantization scheme of Glauber and Lewen-
stein [56] to write down the expression for the quantized
electromagnetic field E(ri ) of the lens

E(ri ) = i
∑
l,m

(
h̄ωl

2ε0

)1/2

[al,mfl,m(ri ) − a
†
l,mf∗

l,m(ri )], (3)

where fl,m are the classical eigenmodes of the cavity that are
solutions of the wave equation

n(r)2 ω2
l,m

c2
fl,m(r) − ∇ × [∇ × fm,l (r)] = 0, (4)

subject to the transversality condition

∇ · [n(r)2 fl,m(r)] = 0, (5)

together with the boundary condition that fl,m · ẑ = fl,m · φ̂ =
0 at |r| = R0 due to the presence of the mirror. The position-
dependent refractive index n(r) is given by Eq. (1). The
solutions of Eqs. (4) and (5) can be chosen to form an
orthonormal set satisfying∫

V
d3r n(r)2 fl,m(r) · f∗

l′,m′ (r) = δll′δmm′ , (6)

where the integral is performed over the quantization
volume V .
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FIG. 2. (a) Schematic depiction of the two dipoles embedded in the fish eye cavity, which is surrounded by mirrors on all sides. (b)
Spectrum of the cavity (ωl = √

l(l + 1)c/(R0n0 ), l = 1, 2, 3 . . . ) in the absence (κ = 0) and the presence (κ �= 0) of losses. The atomic
resonant frequency ω0 is tuned between two resonances of the cavity. (c) Strength of the dipole-dipole interaction δω(r1, r2 )/�0 between two
atoms for four different lens radii: (i) R0 = 4.93λ, (ii) R0 = 8.11λ, (iii) R0 = 11.3λ, and (iv) R0 = 14.48λ, assuming lens thickness b = λ/10
and �0 = d2

z ω
3
0/(3πε0h̄c3). The lens radii are chosen such that the transition frequency of the atoms ω0 = 2πc/λ lies halfway between the

resonances of the lens (l = 1, 2, 3 . . . ). In particular, we chose the order parameters (i) ν = 30.5, (ii) ν = 50.5, (iii) ν = 70.5, and (iv) ν = 90.5,
where ν = 1

2 [
√

16π 2(R0n0/λ)2 + 1 + 1] and n0 = 1. The atom on the left is positioned exactly λ away from the mirror, whereas the position
of the second atom is sweeped. The strength of the interaction peaks λ away from the opposite mirror surface with a height that is independent
of the radius of the lens and the interatomic distance. (d) Enlarged view of the dipole-dipole interaction near the antipodal point, showing that
the width of the peak is approximately λ/2.

Solving these equations, the lowest TEM modes of the fish
eye take the following form:

fl,m(r, φ) =
√

2

bR2
0n

2
0

Ym
l

[
arccos

( |r|2 − R2
0

|r|2 + R2
0

)
, φ

]
ẑ, (7)

where Ym
l (θ, φ) are the spherical harmonic functions,

φ = arccos(x/|r|) is the azimuthal angle associated with posi-
tion r, and the eigenfrequencies are ωl = c

√
l(l + 1)/(R0n0).

The modes fl,m are labeled with the rescaled wave number
l = 1, 2, 3 . . ., and the angular momentum index m, where
m(l) = −(l − 1),−(l − 3), . . . , (l − 1) is enforced by the
boundary condition fl,m(R0, φ) = 0. The discrete spectrum of
the fish eye is schematically shown in Fig. 2(b). The number of
degenerate states increases linearly with l, since

∑
m(l) 1 = l.

D. Photon transfer between two atoms via
dipole-dipole interaction

In this section, we investigate the resonant transfer of a
photon between two atoms via the dipole-dipole interaction,
the strength of which we denote by δω. In quantum optics, the
most fundamental model for photon emission and detection
assumes that one atom is initially in its excited state |e1〉, while
the second atom is in its ground state |g2〉. When the system
evolves coherently in time, the excited atom (virtually) emits
the photon and after time tint ∼ π/(2δω), the second atom fully
absorbs the photon as its atomic population is transferred to the
excited state |e2〉 [43,57].

Furthermore, by making use of additional metastable states
|si〉 with i = 1, 2 (see Fig. 3) that only couple to |ei〉 via the
time-dependent classical control pulse �i (t ) (such that �i 

δω), the photon transfer can be performed in a controlled,

realistic scheme [58–60]. In particular, by adjusting �1(t ) and
�2(t ), the photon transfer can be initiated via the excitation
of |e1〉 and, as the photon is reabsorbed, the atomic population
of the second atom can be transferred to the metastable state
|s2〉. Then, by switching off �2(t ), reemission into the cavity
can be prevented. From the metastable state the photon can be
read out using standard fluorescence techniques [61,62]. This
completes the detection of the photon.

In a standard quantum optical setting, the dipole-dipole
interaction between two atoms with level spacing ω0 be-
tween ground |gi〉 and excited states |ei〉 in any environment
can be expressed in terms of the classical Green’s function
components Gαβ (r1, r2, ω0) (with α, β = x, y, z) through the
following expression [63–66]:

δω(r1, r2) = d2
z ω2

0

h̄ε0c2
Re{Gzz(r1, r2, ω0)}, (8)

where we assume that the two atoms are located at r1 and
r2 and their dipole moments dz are oriented along the z axis.

FIG. 3. Schematic depiction of a realistic scheme for the photon
transfer between the two atoms. The first atom emits the photon, while
the second atom fully absorbs it. By applying classical time-dependent
control pulses �1(t ) and �2(t ), the transfer can be initiated and the
photon can be captured in the metastable state of the second atom,
from which the photon can be read out using fluorescence techniques.
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Note that the real (imaginary) part of the Green’s function
Gzz(r1, r2, ω0) has the simple interpretation of being the z

component of the in-phase (out-of-phase) component of the
electric field generated at position r2 within the lens due to the
presence of a z-oriented pointlike dipole at position r1 radiating
at frequency ω0.

We note that when the classical Green’s function of a
problem is analytically known, it is typically a simple matter to
evaluate Eq. (8) and find the dipole-dipole interaction between
atoms. However, for the fish eye there is debate about what
Green’s function correctly describes the imaging process. The
subtlety of the issue arises from the fact that the fish eye, which
models the closed surface of the sphere, is inherently a closed
system from which radiation cannot escape in the absence
of losses and detectors [7–9]. As mentioned previously, the
accurate mathematical modeling of detectors has been a key
focus of the discussion regarding perfect imaging [11,12,14–
34,37,38].

Here, since we model both the “source” of the radiation
and the “detector” as atoms, the exact expression for the
dipole-dipole interaction can be obtained from the standard
quantum optical master equation [67], where no ambiguity
arises in the derivation of the results. Furthermore, as we
show below, the expression obtained for the dipole-dipole
interaction from the master equation exactly matches one of
the two Green’s functions discussed extensively in the fish
eye literature, allowing us to directly use Eq. (8), which
substantially simplifies numerical calculations.

The quantum optical master equation in the Born-Markov
approximation, which governs the evolution of the atoms inside
the lens, takes the following form in the interaction picture [67]:

dρ̃

dt
= − 1

h̄2

∫ ∞

0
dτ Tr(Ṽ (t ), [Ṽ (t − τ ), ρ̃(t ) ⊗ |0〉〈0|]),

(9)

where |0〉〈0| is a projector onto the vacuum state of the lens
(i.e., no photons in the lens) and the trace is implied over all
photonic Fock states of the lens,

∑
n〈n| . . . |n〉, and

ρ̃(t ) = eiHatomt/h̄ρ(t )e−iHatomt/h̄ (10)

and

Ṽ (t ) = ei[Hatom+Hfield]t/h̄V (t )e−i[Hatom+Hfield]t/h̄. (11)

In Eq. (9), the Born approximation was performed by writing
the density matrix for the system in the form ρ̃(t − τ ) ⊗ |0〉〈0|,
which amounts to neglecting correlations between the atoms
and the electromagnetic modes of the lens [67]. The Markov
approximation was made by replacing ρ̃(t − τ ) by ρ̃(t ), which
is based on the assumption that the atom-field correlation time
is negligibly short compared to the time scale on which the
system evolves [67]. The Markov approximation allowed us
to self-consistently extend to infinity the upper limit of the
integration with respect to dτ . We confirm the validity of the
Born-Markov approximation in Sec. IV.

After performing the trace over the modes of the fish eye
lens, we need to evaluate the following standard integral:∫ ∞

0
dτe−i(ωl∓ω0 )τ = πδ(ω0 ∓ ωl ) ± iP

1

ω0 ∓ ωl

, (12)

where δ(x) stands for the Dirac delta function and Pf (x)
denotes the principal value component of the function f (x).
Since the spectrum of the fish eye modes (which act as the
reservoir for the atoms) is discreet, the Dirac delta function and
the principal value do not contribute away from resonances
and we may simply replace the right-hand side of Eq. (12)
with ±i/(ω0 ∓ ωl ). More specifically, in the absence of any
mechanism for photon loss that would broaden the energy lev-
els, the atoms experience no spontaneous decay or cooperative
emission when their transition frequency does not coincide
with the resonant frequencies of the lens. The master equation
then describes the fully coherent, lossless evolution of the
atoms and takes the form

dρ

dt
= 1

ih̄
[Hat, ρ] − i

∑
i, j = 1, 2

i �= j

δω(ri , rj ) [σ †
i σj , ρ], (13)

where the dipole-dipole interaction between the atoms is given
by

δω(ri , rj ) = d2
z

h̄ε0

∑
l,m

ω2
l

ω2
l − ω2

0

f ∗
l,m(ri )fl,m(rj ), (14)

where the fish eye modes fl,m(r) are given by Eq. (7) and the
summation runs over all eigenmodes of the fish eye. Given the
summation over an infinite number of modes, it is difficult to
work directly with the expression given in Eq. (14) and it is
desirable to replace it with a simple, closed-form expression.

As shown in Appendix A, the right-hand side of Eq. (14)
can indeed be replaced by an expression of the same form as
Eq. (8) using a Green’s function, where the Green’s function
is given by the following expression:

Gzz(r1, r2, ω) = −Pν (ξ (α1, α2)) − Pν (ξ (α1, 1/α∗
2 ))

4b sin(πν)
, (15)

where Pν is the Legendre function of (noninteger) or-
der ν = 1

2 [
√

16π2 (R0n0/λ)2 + 1 − 1]. Note that the or-
der parameter ν depends on the atom frequency ω0

through the free-space wavelength λ = 2πc/ω0, and the
order parameters with integer values (ν = 1, 2, 3 . . . ) cor-
respond to the resonances of the lens. We have also de-
fined ξ (α1, α2) = (|ζ (α1, α2)|2 − 1)/(|ζ (α1, α2)|2 + 1) and
ζ (α1, α2) = (α1 − α2)/(α1α

∗
2 + 1), with αj = rj

R0
eiφj , where

(rj , φj ) are the cylindrical coordinates of the positions of the
two atoms (j = 1, 2) within the lens. In Eq. (15) the second
term on the right-hand side accounts for the presence of the
mirror at |r| = R0, ensuring that the electric field goes to zero
[7]. This Green’s function was first derived in Ref. [13] and
is obtained from the canonical equation of the dyadic Green’s
function in the presence of a single source term [7,9,12]. This
Green’s function has been used previously to describe the static
electric field distribution inside the lens for the case when a
diffraction-limited image forms at the antipodal point in the
presence of a classical source and in the absence of a “drain”
[12,15].

Using Eqs. (8) and (15), the dipole-dipole interaction can
be calculated in a straightforward manner within the lens. In
Fig. 2(c) we plot the strength of the dipole-dipole interaction
between two atoms. The position of the first atom is fixed
exactly one wavelength away from the mirror, and the position
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of the second atom is varied across the lens. We plot the
interaction strength for four different radii of the fish eye. As
Fig. 2(c) shows, the strength of the dipole-dipole interaction
peaks at the antipodal point, exactly one wavelength away from
the mirror.

As noted at the start of this section, in quantum optics the
strength of the dipole-dipole interaction sets the rate at which
a photon can be resonantly transferred from one atom to the
other. Physically, this exchange rate depends on the strength
of the photon field at the location of the second atom that
absorbs the photon. In general, the smaller the volume the
photon is focused to, the larger the field strength gets. Thus,
the dipole-dipole exchange rate depends sensitively on the area
the photon is focused to. Figure 2(d) provides an enlarged view
that shows the dipole-dipole interaction rate—and thus the
electric field strength—experienced by the second atom near
the antipodal point [68]. The width of the peak is approximately
λ/2, suggesting that the photon is focused to a diffraction-
limited area at the location of the second atom. These results
for the rate of photon transfer are numerically confirmed in
Sec. IV.

Figure 2(c) also shows that the height of the peak remains
constant as the radius of the fish eye and therefore the distance
between the two atoms is increased. The photon emitted by an
atom anywhere within the cavity gets refocused at the antipodal
point, regardless of the size of the lens. Such infinite-range
dipole-dipole interaction is a well-known feature of quasi-1D
waveguides [39–52]. Intuitively, the 2D fish eye lens acts as
a quasi-1D system due to the fact that the lens mimics the
propagation of light on the surface of a sphere [8]. Just as in
1D light is confined to propagate along a single axis without
dispersion, the same way light emitted from a point on the
2D surface of a sphere is constrained to propagate along the
geodesics of the sphere and refocuses at the antipodal point
without any dispersion.

The functional form of the dipole-dipole interaction can
also be understood analytically by considering the asymptotic
behavior of the Green’s function near the source and image
points. In particular, note that the source and image points
in the lens correspond to ξ (α1, α2) = −1 and ξ (α1, 1/α∗

2 ) =
+1, respectively [7]. As ξ → −1 we obtain the asymptotic
expansion [7,69]

Pν (ξ ) → sin(νπ )

π

[
ln

(
1 + ξ

2

)
+ F (ν)

]
, (16)

where we have defined the function

F (ν) = γ + 2ψ (ν + 1) + π cot(νπ ). (17)

Here γ is Euler’s constant and ψ is the digamma function. In
addition, when ξ → 1 we obtain the asymptotics Pν (ξ ) → 1
[7,69]. Thus, near the source point the first term dominates in
Eq. (15) and a logarithmic divergence is formed. In contrast,
near the image point, the second term dominates and we can
analytically approximate the Green’s function as

Gzz ≈ − 1

4b sin(πν)
. (18)

This shows that the absolute value of the Green’s function is
maximized when the frequency falls halfway between two res-
onances such that ν = m + 0.5, where m ∈ N. Furthermore,

this expression also shows that the height of the peak at a given
frequency depends only on the transverse confinement of the
modes b and is independent of the lens radius R0. Finally, we
note that Eq. (18) also shows that the dipole-dipole interaction
is independent of where we place the atoms within the lens as
long as they are situated at antipodal points.

E. Spontaneous and cooperative decay of atoms

In all calculations so far, we assumed that the fish eye lens is
completely isolated from its surrounding environment and the
photon cannot leak out of the cavity. Here, we next consider
the situation when the lifetimes of the eigenmodes of the fish
eye are finite, e.g., due to the imperfection of the mirrors and
dissipation in the dielectrics. We account for the gradual loss of
photons from the fish eye modes by modifying the Hamiltonian
in Eq. (2) with a non-Hermitian term [70–75] of the following
form:

Hfield =
∑
l,m

h̄(ωl − iκ )a†
l,mal,m, (19)

where 2κ sets the rate of decay from the modes, which is
assumed to be frequency independent in the range of interest.
The decay of the cavity modes broadens the discrete energy
levels of the fish eye, creating a continuous spectrum, as shown
schematically in Fig. 2(b).

With this modification, we can rederive the master equation
from Eq. (10). We evaluate the following integral,∫ ∞

0
dτe−i(ωl∓ω0 )τ e−κτ = 1

i(ωl ∓ ω0) + κ
, (20)

and after neglecting the off-resonant decay terms [67] we
obtain the master equation in the following form,

dρ

dt
= 1

ih̄
[Hat, ρ] − i

∑
i, j = 1, 2

i �= j

δω(ri , rj ) [σ †
i σj , ρ]

−
∑

i, j = 1, 2
i �= j

�(ri , rj )

(
σiρσ

†
j − 1

2
{σ †

i σj , ρ}
)

, (21)

where the rate of decay is given by

�(ri , rj ) = d2
z

h̄ε0

∑
l,m

κ f ∗
l,m(ri )fl,m(rj )(L+

l + L−
l ), (22)

and the modified dipole-dipole interaction is given by

δω(r1, r2) = d2
z

2h̄ε0

∑
l,m

ωl f
∗
l,m(r1)fl,m(r2)(D+

l + D−
l ), (23)

where we have defined

L±
l = ∓ωl

κ2 + (ωl ± ω0)2
and D±

l = ωl ± ω0

κ2 + (ωl ± ω0)2
. (24)

Since we are now including losses in the system, the ex-
cited states of the two atoms can irreversibly decay into
the eigenmodes of the lens and leave the cavity, leading to
nonzero single-atom decay γ (ri ) = �(ri , ri ) (with i = 1, 2)
and cooperative decay γcoop(r1, r2) = �(r1, r2). The single-
atom decay γ describes how quickly an excitation decays
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from state |e〉 of an individual atom to the fish eye modes,
whereas the cooperative decay γcoop governs the coherent
joint emission of the two atoms into the modes leading to
super (γ + γcoop) and subradiant decay (γ − γcoop) of the
symmetric and antisymmetric superpositions of the two atoms,
respectively [67].

As for the lossless case, it is desirable to find closed-form
expressions to replace the expressions that involve infinite
summations on the right-hand side of Eqs. (22) and (23). As
shown in Appendix A, the decay rates and the dipole-dipole
interaction can be expressed using the Green’s function of
Eq. (15) in the following forms:

�(ri , rj )= 2d2
z

h̄ε0c2
Im{(ω0 + iκ )2Gzz(ri , rj , ω0 + iκ )} (25)

and

δω(ri , rj )= d2
z

h̄ε0c2
Re{(ω0 + iκ )2Gzz(ri , rj , ω0 + iκ )}. (26)

These simple, analytic expressions provide a convenient way
to calculate the quantum optical properties of atoms inside the
lossy fish eye lens and to study the atomic dynamics.

We also note that when κ � ω0, Eqs. (25) and (26) can be
approximated as

�(ri , rj ) ≈ 2d2
z ω2

0

h̄ε0c2
Im{Gzz(ri , rj , ω0 + iκ )} (27)

and

δω(ri , rj ) ≈ d2
z ω2

0

h̄ε0c2
Re{Gzz(ri , rj , ω0 + iκ )}. (28)

Equations (27) and (28) suggest an alternative way of ac-
counting for the loss of photons from the modes of the fish
eye. In particular, it can be shown (see Appendix A) that
Gzz(ri , rj , ω0 + iκ ) is the Green’s function of the fish eye lens
with the following complex refractive index:

ñ(r) = n(r)(1 + iα), (29)

where

α = κ/ω0, (30)

and n(r) is given by Eq. (1). Therefore, the loss of photons from
the modes of the fish eye can also be thought to arise from ma-
terial absorption in the dielectric [7]. This is a key observation,
which allows us to associate a κ value with material absorption
and, therefore, treat all losses that contribute to photon decay
from the fish eye modes in a unified manner. In particular, even
if different loss processes are present, e.g., material absorption
and leakage through the mirror, we can still associate a κ value
with each of these processes and calculate the total decay rate
via

κtotal = κabs + κmirror, (31)

which can be substituted into Eqs. (27) and (28) to calculate
the relevant atomic properties in the lossy lens. This will
be particularly useful when we consider a possible physical
realization of the fish eye lens with plasmons (see Sec. V).

Furthermore, we can also find how ν, �, and δω scale
with α for system parameters of interest. First, we note that

16π2(R0/λ)2 
 1 whenever λ � R0. Assuming α � 1, to
first order in α we find that

ν ≈ 2πR0

λ
(1 + iα). (32)

Assuming that Re[ν] = m + 0.5 with m ∈ N (which corre-
sponds to tuning the atomic frequency between two reso-
nances), from Eq. (18) we obtain that, to lowest order in α, the
following approximation holds at the image point (r1 = −r2):

Gzz(r,−r, ω0 + iκ ) ≈ − 1

4b sin(πν)

≈ ∓ 1

4b[1 + (2π2R0α/λ)2]
, (33)

where the choice of sign ∓ depends on whether m is even or
odd. This is a purely real quantity and, therefore, from Eqs. (27)
and (28) we find that the cooperative decay is given by

γcoop = �(r,−r) ≈ 0, (34)

and the dipole-dipole interaction takes the form

δω(r,−r) ≈ ∓ d2
z ω2

0

h̄ε0c2

1

4b[1 + (2π2R0α/λ)2]
. (35)

Finally, we can find the single-atom decay rate γ by substitut-
ing ri = rj into Eq. (27) and substituting Eqs. (16) and (32)
into Eq. (15). We find that to leading order in α the following
approximation holds:

γ = �(r, r) ≈ d2
z ω2

0

h̄ε0c2

π2R0α

bλ
. (36)

III. ENTANGLEMENT OF ATOMS

Structures that mediate long-range dipole-dipole interac-
tions are of significant interest in quantum information pro-
cessing, as such interactions make it possible to entangle [40]
and perform deterministic phase gates between distant atoms
[43]. In this section we characterize the potential of the fish eye
to entangle distant atomic quits. We focus on the simple case of
a single excitation being exchanged between two atoms due to
the dipole-dipole interaction. In what follows, for simplicity we
assume that the two atoms are located at antipodal points (i.e.,
|r1| = |r2| and φ1 = φ2 + π ) and, therefore, γ = �(r1, r1) =
�(r2, r2).

In the absence of a driving field, the no-jump evolution
of the system can be described by a non-Hermitian effective
Hamiltonian of the form [76]

H0 = (h̄ω0 − iγ )|e1, e2〉〈e1, e2|
+ [δω − i(γ + γcoop)/2]|+〉〈+|
+ [−δω − i(γ − γcoop)/2]|−〉〈−|, (37)

where we have defined |±〉 = (|e1, g2〉 ± |g1, e2〉)/
√

2, and
recall from the previous section that γcoop = �(r1, r2) and
δω(r1, r2) stand for the cooperative decay and dipole-dipole
interaction of the atoms, respectively. Note that the overall
decrease of population in Eq. (37) due to the non-Hermitian
terms reflects the gradual loss of the photonic excitation from
the cavity.
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Assuming that at t = 0 the two atoms are in the state
|ψ (0)〉 = |e1, g2〉 = (|+〉 + |−〉)/

√
2, the time evolution of

the atomic wave function is governed by

|ψ (t )〉 = 1√
2

(
e−i[δω− i

2 (γ+γcoop )]t |+〉

+ e−i[−δω− i
2 (γ−γcoop )]t |−〉), (38)

which, upon substitution, yields

|ψ (t )〉 = C+(t )|e1, g2〉 + C−(t )|g1, e2〉, (39)

where

|C±(t )|2 = e−γ t

2
[cosh(γcoopt ) ± cos(2δωt )]. (40)

The expressions |C+|2 and |C−|2 give the excitation probability
of atom 1 and atom 2, respectively, as a function of time. In
Fig. 4 we plot the excitation probability of the two atoms as a
function of time. As the plots show, the photon is coherently
exchanged a number of times between the two atoms before it
gradually decays from the cavity modes.

During time evolution, the state |ψ (t )〉 will have
maximal overlap with the maximally entangled state
|ξ 〉 = (|e1, g1〉 − i|g1, e1〉)/

√
2 when |C+(t )| = |C−(t )|,

which happens when 2δωt ≈ π
2 + mπ , where m ∈ Z. Since

in the presence of losses the fidelity decreases over time, we
choose m = 0. Thus, the time needed to reach the maximal
overlap with the entangled state is t0 = π/(4δω) (see arrow
in Fig. 4) and the maximum fidelity of the entanglement
operation will be

F = |〈ξ |ψ (t0)〉|2 = exp

(
−π

4

∣∣∣∣ γ

δω

∣∣∣∣
)

cosh

(
π

4

∣∣∣∣γcoop

δω

∣∣∣∣
)

. (41)

Equation (41) gives a simple, analytic expression for the
fidelity of the entangling operation in terms of γ = �(ri , ri ),

FIG. 4. Excitation probability of two atoms within the cavity as a
function of time. Initially, atom 1 is excited and atom 2 is in its ground
state. As the system evolves, the two atoms repeatedly exchange a
photon via the dipole-dipole interaction. The photon gradually decays
from the cavity modes, leaving the atoms in their ground states. A fully
entangled state with maximal fidelity is formed at t = π/(4δω) (see
arrow). The plot was obtained for R0 = 3.34λ with a cavity loss rate
of α = κ/ω0 = 5 × 10−4, assuming that the two atoms are located at
two antipodal points within the lens such that |r1| = |r2| = 0.27R0

and φ1 = φ2 + π .

FIG. 5. Error (1 − F ) of the entangling operation between two
qubits located at two antipodal points within the lens (|r1| = |r2| =
0.27R0 and φ1 = φ2 + π ). (a) Error of the entangling operation as a
function of the cavity loss rate α = κ/ω0 for four different lens sizes
R0 ∈ {1.75, 3.34, 8.11, 14.5}λ, where the R0/λ ratio was chosen such
that Re(ν ) = 1

2 [
√

16π 2(R0/λ)2 + 1 + 1] ∈ {10.5, 20.5, 50.5, 90.5}.
The error increases as the losses and lens radii increase. (b) Error
of the entangling operation for a fixed loss rate α = 5 × 10−4 as
a function of the detuning �ν = Re(ν ) − νcenter, where νcenter ∈
{10.5, 20.5, 50.5, 90.5}. Error is plotted for the same four lens radii as
in (a). The error increases with radius and as the frequency approaches
one of the resonances. Numerical results are shown with large dots.
Good agreement is obtained between analytic and numerical data,
confirming the validity of the Born-Markov analysis.

γcoop = �coop(ri , rj ), and δω(ri , rj ), which can be evaluated
analytically through Eqs. (25) and (26). Here, the key figure
of merit is the ratio β = δω/(γ + γcoop). If the frequency of
the atoms is chosen to lie halfway between two resonances
of the fish eye [see Fig. 2(b)], the single-atom decay γ and
the cooperative decay γcoop are small and the dipole-dipole
interaction dominates [76]. Intuitively, in the absence of losses
(γ = γcoop = 0), the fidelity of the entangling operation is 1.

In Fig. 5(a) we plot the error in the entangling operation
(1 − F ) for four different lens radii as a function of α, where
α = κ/ω0 = 1/Q is the inverse of the cavity Q factor, charac-
terizing the ratio of the lifetime of the eigenmodes of the lens to
the frequency of the excitation. For all lens sizes, the position of
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the two atoms is fixed at two antipodal points such that |r1| =
|r2| = 0.27R0 and φ1 = φ2 + π . The ratio of the lens radius to
the transition wavelength (R0/λ) was chosen such that the real
part of the order parameter ν = 1

2 [
√

16π2(R0/λ)2 + 1 + 1]
associated with the atomic frequency falls halfway between
two resonances of the fish eye for all four lens radii (i.e.,
Re(ν) = q + 0.5 with q ∈ {10, 20, 50, 90}, where note that
for Re(ν) = 1, 2, 3 . . . the transition frequency ω0 is resonant
with one of the eigenenergies ωl of the lens). Clearly, the error
increases with increasing α and increasing R0 (i.e., increasing
interatomic distance). The maximal value of the error is 0.5,
which is reached when β becomes so small that the initial state
has the highest fidelity (F = |〈ξ |ψ (0)〉|2 = 0.5).

Figure 5(b) shows the error for a fixed value of
α = 5 × 10−4 for the same four lens radii as in (a) and the
same antipodal atomic positions. The error is now plotted
as a function of the detuning �ν = (Re(ν) − νcenter), where
νcenter = q + 0.5 with q ∈ {10, 20, 50, 90}. Clearly, the error
is minimal halfway between the resonances and increases as
the frequency approaches the resonances.

To gain further insight, we assume that the atomic frequen-
cies lie between two resonances of the lens and obtain the
scaling of the fidelity with system parameters by substituting
Eqs. (34), (35), and (36) into Eq. (41). We obtain the following
simple expression:

F = e−π3R0α/λ. (42)

In Fig. 6 we plot the fidelity of the entangling operation as a
function of the lens radius using both the exact expression in
Eq. (41) and the analytic approximation in Eq. (42). Very good
agreement is observed between the two curves.

Finally, we note that the fish eye lens could be used for
entangling many pairs of atoms simultaneously. As the radius
of the fish eye is increased, the dipole-dipole interaction at
all points further than λ/2 away from the antipodal point

FIG. 6. Maximum fidelity of the entanglement operation as a
function of the lens radius. The fidelity was evaluated at discrete
values of R0/λ that correspond to tuning the atomic frequency
halfway between two resonances, i.e., Re[ν] = m + 0.5, where m

is an integer. The red line marked with circles was obtained from
the exact analytical expression in Eq. (41), whereas the blue line
marked with squares was obtained from the approximate expression
in Eq. (42). Good agreement is obtained between the two curves. The
loss rate was assumed to be α = κ/ω0 = 5 × 10−4.

monotonically decreases. For lens radii with R0 > 5λ, the
dipole-dipole interaction at the antipodal point is an order
of magnitude larger than anywhere else in the cavity [see
Fig. 2(c)]. Thus, by placing numerous pairs of atoms into the
cavity simultaneously, they can be entangled pairwise without
substantial interaction between the different pairs.

IV. VALIDITY OF THE BORN-MARKOV APPROXIMATION

In our derivation of Eqs. (14), (22) and (23) we made
use of the Born-Markov approximation, which presupposes
that the environment is large and the correlation time
of the environment is very short compared to the evolution
of the atomic states [67]. Since in our formalism the role of the
“environment” is played by the modes of the finite cavity, the
validity of these assumptions needs to be evaluated carefully.

In order to verify the validity of the above results, we
numerically solve the Schrödinger equation, where the Hamil-
tonian is given by Eq. (2) together with the non-Hermitian
term introduced in Eq. (19). The form of V is considerably
simplified when the two atoms are placed at two antipodal
points within the lens such that |r1| = |r2| and φ1 = φ2 + π .
In this case the in-phase combination of the atomic dipole
moments [dz(σ1 + σ2)/

√
2 + H.c.] only couples to the odd

modes (l = 1, 3, 5 . . .) and the out-of-phase combination of the
dipole moments [dz(σ1 − σ2)/

√
2 + H.c.] only couples to the

even modes (l = 2, 4, 6 . . .) of the fish eye (see Appendix B).
This reduces the size of the Hilbert space, making it possible to
efficiently simulate the system while including a large number
of the eigenmodes of the lens with frequencies close to ω0.
We further restrict the Hilbert space to have at most a single
excitation in the system.

We numerically determine the time evolution, starting
from the state |ψ (0)〉 = |e1, g2〉 via the operator U (t ) =
exp[−iH t/h̄]. To obtain the maximum fidelity of the entan-
gling operation, the overlap of the time-evolved atomic state
is calculated with the maximally entangled state (|e, g〉 −
i|g, e〉)/

√
2. In Figs. 5(a) and 5(b) we plot the numerically

obtained values for the error (1 − F ) (dotted lines) for different
lens radii as a function of losses and atom frequencies, respec-
tively. Even though the analytical results were derived using the
Born-Markov approximation and neglecting retardation [57],
good agreement is obtained between the analytic results and
numerical data. This confirms the validity of the analytical
formalism described in previous sections.

V. POSSIBLE EXPERIMENTAL REALIZATION

A promising way to realize the fish eye lens is via trans-
formational plasmon optics [54,55]. The idea behind this
approach is to engineer an effective refractive index distribu-
tion for surface plasmon polaritons by depositing a layer of
high-index dielectric on top a 2D silver surface (see Fig. 7).
By varying the height of the dielectric layer on the surface,
the effective refractive index seen by the plasmons can be
changed. In particular, when there is no dielectric on top of
the silver, the effective refractive index seen by the plasmons
is close to 1, whereas in the presence of a thick dielectric
layer, the effective plasmonic refractive index will be close
to the refractive index of the dielectric itself. Through this
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FIG. 7. Physical realization of the fish eye lens using transforma-
tion plasmon optics. (a) Effective refractive index n(d ) = Re{ñ(d )}
created as a function of the height of the dielectric d deposited on the
silver surface. The inset shows the material losses χ (d ) = Im{ñ(d )}
as a function of the dielectric height d . (b) Schematic depiction of
the plasmonic fish eye lens. The two emitters are embedded in the
dielectric. The height of the dielectric varies across the lens, which
creates the effective refractive index distribution of the fish eye lens.
The lens is surrounded by mirrors from all sides (the front part of the
mirror has been removed to show the interior).

experimental technique, complex, spatially varying refractive
index profiles can be engineered [54]. Crucially, the behavior
of plasmons in a plasmonic lens with a particular refractive
index profile closely mimics the predicted behavior of classical
light rays in the corresponding 2D lens. This correspondence
between 2D classical lenses and quasi-2D plasmonic lenses
was theoretically established in Ref. [54] and experimentally
confirmed for the nanoscale Luneburg and Eaton lenses [55].

We expect that the plasmonic version of the nanoscale
fish eye lens could be experimentally realized analogously to
the Luneburg and Eaton lenses. A dielectric layer of varying
height could be deposited on a flat silver surface while the
lens is surrounded by a circular mirror [see Fig. 7(b)]. To
explore the quantum optical properties of the fish eye, atomlike
color defects in diamond could be used as quantum emitters.
Subwavelength positioning and coherent manipulation of such
color defects has been experimentally demonstrated previously
[77–80]. Recently, the entanglement of two silicon-vacancy
(SiV) color defects inside a nanoscale waveguide was also
demonstrated [81].

For illustration, we provide here an estimate of the entan-
glement fidelity of two atoms inside a particular example of a

plasmonic fish eye lens. We assume that the lens operates at
406.706 THz, which is the zero-phonon resonance of SiVs
corresponding to a vacuum wavelength of λSiV = 737 nm.
Furthermore, we assume that the lens has a radius of R0 =
1.749 λSiV, which ensures that the SiV resonance falls between
two resonant modes of cavity [Re(ν) = 10.5]. We also assume
that the flat silver substrate is made of single-crystal silver
[82], which at the SiV resonance frequency has a permittivity
of εm = −25.23 + 0.589i and gives rise to plasmonic propa-
gation distances on the order of ∼ 160 λSiv. It is also assumed
that there is a thin (∼10–15 nm) diamond layer on top of the
metal that has two SiVs implanted at two antipodal points such
that |r1| = |r2| = 0.27R0 and φ1 = φ2 + π , as schematically
shown in Fig. 7(b). Due to their proximity to the silver surface,
the two ẑ-polarized emitters will couple strongly to the surface
plasmons, which are tightly confined to the metal-dielectric
interface.

The spatially varying refractive index n(r) of the fish
[Eq. (1) with n0 = 1] could be experimentally realized by
depositing a dielectric of permittivity εd = 3.6 on top of a
thin diamond layer. By varying the height of the dielectric
between 0 and 200 nm, the effective refractive index seen by
the plasmons can be varied between 1 and 2. The refractive
index of the dielectric (nd = √

εd = 1.9) was chosen such that
the effective index can reach 2, but a dielectric with even higher
index (such as diamond with εdiamond = 5.76) was avoided to
ensure that the plasmons are not confined unnecessarily tightly
to the silver surface, which would give rise to significantly
higher ohmic losses.

The direct relationship between the height of the dielectric
layer d and the resulting (complex) refractive index ñ(d ) =
n(d ) + iχ (d ) can be obtained from the following implicit
equation [54]:

tanh(kdεdd ) = −kairkd + kdkm

k2
d + kairkm

, (43)

where

kair =
√

(ñk0)2 − k2
0, (44)

kd =
√

(ñk0)2 − εdk
2
0

εd

, (45)

and

km =
√

(ñk0)2 − εmk2
0

εm

, (46)

where k0 = 2π/λSiV and in our calculation we ignored, for
simplicity, the presence of the diamond layer, as it does not
significantly modify the effective index seen by the plasmons
as long as the diamond layer is much thinner than the transverse
confinement of the plasmons, which is on the order of a
wavelength.

Figure 7(a) shows the real part n(d ) and imaginary part
χ (d ) (inset) of the complex refractive index ñ(d ) seen by
the plasmons as the thickness of the dielectric d is varied.
The effective refractive index increases monotonically with the
thickness of the dielectric layer. Since the refractive index of the
fish eye increases radially inward [see Eq. (1)], the dielectric
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layer in the fish eye lens takes a conical shape as shown in
Fig. 7(b).

From the imaginary part of the effective refractive index
χ (d ), we can estimate the average photon loss rate due to ohmic
losses via the relation κabs(r)/ω0 = χ (r)/n(r) (see Sec. II E).
Since this loss rate varies significantly across the lens, we
numerically average χ (r)/n(r) over the radius of the lens and
obtain the averaged quantity κabs(r)/ω0 ≈ 3 × 10−3. This is
the leading-order contribution to the photon loss.

Photons can also be lost from the lens by leaking out through
the mirror. Assuming that the reflectivity of the mirror is r2, we
can estimate the loss rate κmirror/ω0. In the absence of other loss
mechanisms, the photon would bounce off the mirror ∼ 1/t2

times before being lost, where t2 = 1 − r2. The time interval
between two bounces is approximately (2R0)/(c/n̄), where R0

is the radius of the lens, c is the speed of light in vacuum, and n̄

is the average index of refraction in the lens. Thus the lifetime
of the photon due to the finite mirror reflectivity is

τmirror ∼ 1

κmirror
∼ 2R0

c/n̄

1

t2
. (47)

Making the conservative estimate that r2 = 0.95, we obtain
the following loss rate:

κmirror

ω0
∼ 1

4π

1

n̄

λ0t
2

R0
∼ 4 × 10−4, (48)

where we have used n(r) = 1.57, which is obtained by numer-
ically averaging the refractive index over the radius of the lens.
Note that this shows that the losses due to the finite reflectivity
of the mirror are an order of magnitude smaller than the ohmic
losses.

Next, we consider emission into free space γ0. In the
close proximity of a metal surface, the rate of decay of the
emitter into plasmonic modes γ can significantly exceed the
rate of emission into free-space modes γ0 = d2

z ω3
0/(3πε0h̄c3)

[41,83]. Here, we take the Purcell factor to be η = γ /γ0 ≈ 3,
which is the approximate value for a z-oriented dipole 10–15
nm away from a flat silver surface emitting radiation at 737 nm
[84]. Furthermore, we also make the conservative estimate that
the emission to free space is reduced by a factor of 2 due to
the presence of the silver surface [85]. In order to account for
the presence of this additional decay channel, we need to make
the replacement γ → γ + γ0/2 in Eq. (37), and thus Eq. (42)
becomes

F = e
−π3(1+ 1

2η
) R0

λ
α

. (49)

Note that this equation holds only if the atomic frequencies
fall halfway between two resonances and the atoms are placed
at two antipodal points anywhere in the lens. Substituting
R0/λSiV = 1.749, α = (κabs + κmirror)/ω0 = 3.4 × 10−3, and
η = 3 into Eq. (49), we obtain that the fidelity of the entangling
operation would be approximately F = 80%. We note that this
fidelity could be further improved by utilizing the adiabatic
passage of a dark state in a Raman scheme [58].

VI. CONCLUSION

In conclusion, we have investigated the single-photon dy-
namics of atoms inside the fish eye lens. We demonstrated

that the lens mediates long-range interactions between distant
emitters. The dipole-dipole interaction has an infinite range,
limited only by the decay rate of the cavity modes. Fur-
thermore, our results show that the fish eye focuses a single
photon to a diffraction-limited area during the exchange of a
photon between two antipodal atoms whose frequency is tuned
between two resonances of the cavity. We derived closed-form
expressions for the decay rates and dipole-dipole interaction
of atoms in the presence of losses and studied the fidelity
of entangling operations. We confirmed the validity of our
analysis, which relied on the Born-Markov approximation,
by numerically solving the Schrödinger equation. Finally, we
proposed a possible realization for the fish eye lens using
transformational plasmon optics and silicon-vacancy centers
that could open up the fish eye for practical applications.

We note that while this work has focused on atoms whose
frequencies were tuned in-between two resonances, we expect
that our analysis can be adapted near resonant frequencies
as well, where the Born-Markov approximation may not be
accurate. In particular, our method for numerically solving the
Schrödinger equation for single photons could shed further
light on whether perfect imaging is possible very close to the
resonant frequencies of the fish eye lens [35–38].
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APPENDIX A: DERIVATION OF A CLOSED-FORM
EXPRESSION FOR THE DIPOLE-DIPOLE INTERACTION

In this section we show that the single-source Green func-
tion derived by Leonhardt [7,12] for the 2D fish eye lens can
be written as a sum over the eigenmodes of the lens [Eq. (7)].
This result enables us to connect the Green’s function to the
expressions obtained for the atomic properties from the master
equation treatment.

1. Green’s function of the 2D fish eye

The single-source Green’s function of Maxwell’s 2D fish
eye (of radius R0, thickness b, and refractive index profile
n(r ) = 2n0

1+(r/R0 )2 ) is a solution of the following equation:

(∂α∂ν − δαν∂η∂η )Gνβ (r, r′, ω0) − ε(r)
ω2

0

c2
Gαβ (r, r′, ω0)

= δαβδ(r − r′), (A1)

where α, β, μ, ν = x, y, z and summation is implied over
repeated indices, and ε(r) = n(r)2 = [2n0/(1 + (r/R0)2)]2 is
the position-dependent electric permittivity. When b is chosen
such that ω0 � πc/b, only the lowest TEM-polarized mode
of the fish eye can be excited and the electric field is invariant
along the z axis [∂zE(r) = 0]. The explicit expression for
the zz components of the Green’s function [Eq. (15)] is then
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given by

Gzz(r1, r2, ω) = F (α1, α2) − F (α1, 1/α∗
2 ), where F (α1, α2) = −Pν (ξ (α1, α2))

4b sin(πν)
, (A2)

where Pν is the Legendre function of (noninteger) order ν:

ν = 1

2

[√
4
ω2

c2
R2

0n
2
0 + 1 − 1

]
/∈ Z and ξ (α1, α2) = |ζ (α1, α2)|2 − 1

|ζ (α1, α2)|2 + 1
,

where ζ (α1, α2) = α1 − α2

α1α
∗
2 + 1

, and αj = rj

R0︸︷︷︸
ρj

eiφj (j = 1, 2).

2. Virtual coordinates

The stereographic transformation [8]

rj �→ r2
j − R2

0

r2
j + R2

0

= ρ2
j − 1

ρ2
j + 1

=: cos θj (A3)

can be used to map any point (r, φ) on the real plane to a point (θ, φ) on the surface of a virtual sphere (where φ is the same
value in both coordinate systems). Using this transformation, we can simplify the definition of the Green’s function,

ζ (α1, α2) = (ρ1 cos φ1 − ρ2 cos φ2) + i(ρ1 sin φ1 − ρ2 sin φ2)

ρ1ρ2 cos(φ1 − φ2) + 1 + iρ1ρ2 sin(φ1 − φ2)
,

|ζ (α1, α2)|2 = ρ2
1 + ρ2

2 − 2ρ1ρ2 cos(φ1 − φ2)

(ρ1ρ2)1 + 1 + 2ρ1ρ2 cos(φ1 − φ2)
,

ξ (α1, α2) = ρ2
1 + ρ2

2 − (ρ1ρ2)2 − 1 − 4ρ1ρ2 cos(φ1 − φ2)

ρ2
1 + ρ2

2 + (ρ1ρ2)2 + 1

= −
[(

ρ2
1 − 1

ρ2
1 + 1

)(
ρ2

2 − 1

ρ2
2 + 1

)
+

(
2ρ1

ρ2
1 + 1

)(
2ρ2

ρ2
2 + 1

)
cos(φ1 − φ2)

]
= −[cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2)] = − cos θ12,

where θ12 is the spherical distance between two points, (θ1, φ1) and (θ2, φ2), on the surface of a unit sphere, since

cos θ12 = x1x2 =
⎡
⎣sin θ1 cos φ1

sin θ1 sin φ1

cos θ1

⎤
⎦

⎡
⎣sin θ2 cos φ2

sin θ2 sin φ2

cos θ2

⎤
⎦ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2). (A4)

Similarly,

ζ (α1, 1/α∗
2 ) =

(
ρ1 cos φ1 − 1

ρ2
cos φ2

) + i
(
ρ1 sin φ1 − 1

ρ2
sin φ2

)
ρ1

ρ2
cos(φ1 − φ2) + 1 + i

ρ1

ρ2
sin(φ1 − φ2)

,

|ζ (α1, 1/α∗
2 )|2 =

ρ2
1 + 1

ρ2
2

− 2 ρ1

ρ2
cos(φ1 − φ2)(

ρ1

ρ2

)1 + 1 + 2 ρ1

ρ2
cos(φ1 − φ2)

,

ξ (α1, 1/α∗
2 ) =

ρ2
1 + (

1
ρ2

)2 − (
ρ1

ρ2

)2 − 1 − 4 ρ1

ρ2
cos(φ1 − φ2)

ρ2
1 + (

1
ρ2

)2 + (
ρ1

ρ2

)2 + 1

= −
[(

ρ2
1 − 1

ρ2
1 + 1

)(
1 − ρ2

2

ρ2
2 + 1

)
+

(
2ρ1

ρ2
1 + 1

)(
2ρ2

ρ2
2 + 1

)
cos(φ1 − φ2)

]
= −[cos θ1 cos(π − θ2) + sin θ1 sin(π − θ2) cos(φ1 − φ2)] = − cos θ ′

12,

where, now, θ ′
12 is the spherical distance between the points (θ1, φ1) and (π − θ2, φ2).

Now, we can write the Green’s function as

Gzz(r1, r2, ω) = −Pν (− cos θ12) − Pν (− cos θ ′
12)

4b sin(πν)
. (A5)
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3. Expansion in spherical harmonics

a. Expansion with respect to l

The full set of Legendre polynomials Pl forms a complete, orthogonal basis on the space of smooth [−1, 1] → R functions.
This allows us to expand the Legendre function Pν in terms of the Legendre polynomials Pl :

Pν (x) =
∞∑
l=0

clPl (x), where cl = 2l + 1

2

∫ +1

−1
dx Pl (x)Pν (x). (A6)

According to Abramowitz and Stegun, Sec. 8.14 of Ref. [86],∫ +1

−1
dx Pη(x)Pν (x) = 2

π2

2 sin(πη) sin(πν)[ψ (η + 1) − ψ (ν + 1)] + π sin(πν − πη)

(ν − η)(ν + η + 1)
, (A7)

where ψ is the digamma function and which expression, in the case of η = l ∈ N, simplifies to∫ +1

−1
dx Pl (x)Pν (x) = 2

π

(−1)l sin(πν)

ν(ν + 1) − l(l + 1)
, if l ∈ N. (A8)

This means that

Pν (x) = sin(πν)

π

∞∑
l=0

(−1)l
2l + 1

ν(ν + 1) − l(l + 1)
Pl (x), (A9)

and we can write the Green’s function as

Gzz(r1, r2, ω) = − 1

4πb

∞∑
l=0

(−1)l
2l + 1

ν(ν + 1) − l(l + 1)
[Pl (− cos θ12) − Pl (− cos θ ′

12)]. (A10)

b. Expansion with respect to m

According to the addition theorem of spherical harmonics,

Pl (x1 · x2) = Pl (cos θ12) = 4π

2l + 1

+l∑
m=−l

Y m∗
l (θ1, φ1)Ym

l (θ2, φ2), (A11)

where the spherical harmonics are defined by

Ym
l (θ, φ) =

√
2l + 1

4π

(l − m)!

(l + m)!
P m

l (cos θ )eimφ, (A12)

where P m
l are the associated Legendre polynomials.

By using this theorem, and the property that Pl (−x) = (−1)lPl (x), we can write

P (− cos θ12) = (−1)l
4π

2l + 1

+l∑
m=−l

Y m∗
l (θ1, φ1)Ym

l (θ2, φ2),

P (− cos θ ′
12) = (−1)l

4π

2l + 1

+l∑
m=−l

Y m∗
l (θ1, φ1) Ym

l (π − θ2, φ2)︸ ︷︷ ︸
(−1)l−mYm

l (θ2,φ2 )

,

P (− cos θ12) − P (− cos θ ′
12) = (−1)l

4π

2l + 1

+l∑
m=−l

[1 − (−1)l−m]Ym∗
l (θ1, φ1)Ym

l (θ2, φ2).

The expression inside the square brackets is zero if l and m have the same parity, and 2 if they have different parity. The set of m

values for which the corresponding term is nonzero is Ml = {−(l − 1),−(l − 3), . . . , (l − 3), (l − 1)}. Using this notation, we
can write the Green’s function as

Gzz(r1, r2, ω) = −2

b

∞∑
l=0

∑
m∈Ml

Ym∗
l (θ1, φ1)Ym

l (θ2, φ2)

ν(ν + 1) − l(l + 1)
. (A13)
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4. Expansion in cavity modes

Recall from Eq. (7) that the TEM eigenmodes of Maxwell’s
fish eye with radius R0 and width b are

fl,m(r) =
√

2

bR2
0n

2
0

√
2l + 1

4π

(l − m)!

(l + m)!
P m

l

(
r2 − R2

0

r2 + R2
0

)
eimφ

=
√

2

bR2
0n

2
0

(−1)mYm
l (θ, φ), (A14)

where r and φ are polar coordinates of r and cos θ = r2−R2
0

r2+R2
0
.

They satisfy the orthonormality condition,

δl,l′δm,m′ =
∫ R0

0
dr r

∫ 2π

0
dφ

∫ b

0
dz n2(r )f ∗

l,m(r, φ)fl′,m′ (r, φ).

(A15)

The corresponding (partially degenerate) eigenfrequencies are

ωl,m = ωl = c

R0n0

√
l(l + 1) =: ckl. (A16)

Now, we can write the Green’s function in Eq. (A13) as

Gzz(r1, r2, ω/c) = −R2
0n

2
0

∞∑
l=0

∑
m∈Ml

f ∗
l,m(r1)fl,m(r2)

ν(ν + 1) − l(l + 1)

= −
∞∑
l=1

∑
m∈Ml

f ∗
l,m(r1)fl,m(r2)

(ω/c)2 − k2
l

, (A17)

where we used the connection between ωl and l, and ω and ν.
Using Eq. (8), we can then write the dipole-dipole interaction
within the fish eye in the following form:

δω(r1, r2) = d2
z ω2

0

h̄ε0c2
Re{Gzz(r1, r2, ω0)}

= d2
z ω2

0

h̄ε0c2

∞∑
l=1

∑
m∈Ml

f ∗
l,m(r1)fl,m(r2)

k2
l − (ω0/c)2

. (A18)

We note that this decomposition of the Green’s function in
terms of the eigenmodes of the fish eye is a particular example
of Fredholm’s theorem [87].

5. Comparison with master equation results

Recall that the dipole-dipole interaction obtained from the
master equation [see Eq. (14)] has the form

δω(r1, r2) = d2
z

h̄ε0

∑
l,m

ω2
l

ω2
l − ω2

0

f ∗
l,m(r1)fl,m(r2). (A19)

Making use of the transformation

ω2
l

ω2
l − ω2

0

=
[

1 + ω2
0

ω2
l − ω2

0

]
, (A20)

the dipole-dipole interaction becomes

δω(r1, r2) = d2
z

h̄ε0

[∑
l,m

fl,m(r1)fl,m(r2)

+ω2
0

∑
l,m

f ∗
l,m(r1)fl,m(r2)

ω2
l − ω2

0

]
. (A21)

Since the modes fl,m form a complete basis, i.e.,∑
l,m

f ∗
l,m(r1)fl,m(r2) = δ(3)(r1 − r2), (A22)

the first term inside the square brackets does not contribute if
r1 �= r2, thus

δω(r1, r2) = d2

h̄ε0

ω2
0

c2

∑
l,m

f ∗
l,m(r1)fl,m(r2)

k2
l − (ω0/c)2

, if r1 �= r2,

(A23)

which is identical to Eq. (A18). This shows that the right-hand
side of Eq. (14) can indeed be replaced by Eqs. (8) and (15).

More generally, using Eqs. (A20) and (A22) we can express
Eq. (A17) in the form

d2

h̄ε0

ω2
0

c2
Gzz(r1, r2, ω0) = d2

2h̄ε0

∑
l,m

ωlf
∗
l,m(r1)fl,m(r2)

×
(

1

ω0 + ωl

− 1

ω0 − ωl

)
, (A24)

from which it is straightforward to show that

d2

h̄ε0

(ω0 + iκ )2

c2
Gzz(r1, r2, ω0 + iκ )

= d2

2h̄ε0

∑
l,m

ωl f
∗
l,m(r1)fl,m(r2)

×
{

(ωl + ω0)

κ2 + (ωl + ω0)2
+ (ωl − ω0)

κ2 + (ωl − ω0)2
(A25)

− i

(
κ

κ2 + (ωl + ω0)2
− κ

κ2 + (ωl − ω0)2

)}
, (A26)

which allows us to express the decay rates Eq. (22) and the
dipole-dipole interaction [Eq. (23)] in the presence of losses in
the following closed form:

�(ri , rj ) = 2d2
z

h̄ε0c2
Im{(ω0 + iκ )2Gzz(ri , rj , ω0 + iκ )}

(A27)
and

δω(ri , rj ) = d2
z

h̄ε0c2
Re{(ω + iκ )2Gzz(ri , rj , ω0 + iκ )}.

(A28)

We note that Gzz(ri , rj , ω0 + iκ ) is the solution of the follow-
ing equation:

(∂α∂ν − δαν∂η∂η )Gνβ (r, r′, ω0 + iκ )

−n(r)2 (ω0 + iκ )2

c2
Gαβ (r, r′, ω0 + iκ ) = δαβδ(r − r′),

(A29)
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which can be thought of as the dyadic equation for
the fish eye lens with the complex refractive index
ñ(r) = n(r)(1 + iκ/ω0), since

n(r)2(ω0 + iκ )2 = n(r)2(1 + iκ/ω0)2ω2
0 = ñ(r)2ω2

0.

(A30)

Noting that for κ � ω0 the following approximations hold,

�(ri , rj ) ≈ 2d2
z ω2

0

h̄ε0c2
Im{Gzz(ri , rj , ω0 + iκ )} and

δω(ri , rj ) ≈ d2
z ω2

0

h̄ε0c2
Re{Gzz(ri , rj , ω0 + iκ )}, (A31)

and we find that photon loss from the modes of the fish eye of
the form of Eq. (19) can be simply modeled with the complex
refractive index profile ñ(r).

APPENDIX B: NUMERICAL SOLUTION OF
THE SCHRÖDINGER EQUATION

In this Appendix we describe an efficient way to numerically
solve the Schrödinger equation while including the two atoms
and the modes of the fish eye in the dynamics.

1. Hamiltonian

a. Electric dipole interaction of a single atom

Recall that the electric dipole coupling of a single atom,
placed at ri , to the electromagnetic field modes of the fish eye
is given by

V = −di · E(ri ), where di = dzẑ(σ †
i + σi ), where

σi = |gi〉〈ei |, (B1)

where dz is the magnitude of the transition dipole moment
between the two states of the atoms |ei〉 and |gi〉, whose
energy difference is h̄ω0. Substituting Eq. (3) into Eq. (B1)
and neglecting the counter-rotating terms in V , we arrive at

VRWA =
∑
l,m

id

√
h̄ωl

bR2
0ε0

[al,mσ †Yl,m(θ, φ) − a
†
l,mσYl,m(θ, φ)],

(B2)

where n0 = 1 was assumed.

b. Two atoms

Assuming that there are two identical atoms positioned at
r1 and at r2, the interaction term takes the form VRWA(r1) +
VRWA(r2). The total Hamiltonian then becomes

H = h̄ω0σ
†
1 σ1 + h̄ω0σ

†
2 σ2 +

∑
l,m

h̄ωla
†
l,mal,m +

∑
l

h̄gl

[
σ
†
1

∑
m

al,mYl,m(θ1, φ1) + σ
†
2

∑
m

al,mYl,m(θ2, φ2)

]
+ H.c., (B3)

where gl = idz√
h̄bR2

0ε0

√
ωl .

The diagonal terms h̄ω0(σ †
1 σ1 + σ

†
2 σ2 + ∑

l,m a
†
l,mal,m) simply give a constant energy shift to all eigenvectors in the subspace

of interest and can therefore be subtracted from the Hamiltonian. The modified Hamiltonian then takes the form

H/h̄ =
∑

l

δl

∑
m

a
†
l,mal,m +

∑
l

gl

[
σ
†
1

∑
m

al,mYl,m(θ1, φ1) + σ
†
2

∑
m

al,mYl,m(θ2, φ2)

]
+ H.c., (B4)

where δl = ωl − ω0.

c. Opposite positions

If the two atoms are placed at opposite positions (θ = θ1 =
θ2 and φ = φ1 = −φ2), then we can write the interaction part
of H as

V/h̄ =
∑

l

gl

∑
m

[σ †
1 al,myl,m + σ

†
2 al,m(−1)myl,m + H.c.],

(B5)

where yl,m = Yl,m(θ, φ). Here we used that Yl,m(θ,−φ) =
(−1)mYl,m(θ, φ). Since the summation of m goes over m =
−l + 1,−l + 3, . . . l − 3, l − 1, m and l always have opposite
parity, and we can pull out (−1)m = (−1)l+1 from the sum-
mation, giving

V/h̄ =
∑

l

gl[σ
†
1 + (−1)l+1σ

†
2 ]

∑
m

al,myl,m + H.c. (B6)

We define an incomplete set of new modes,

Al =
∑

m al,myl,m

Nl

, N2
l =

∑
m

|yl,m|2, [Al,A
†
l ] = 1.

(B7)

The normalization factor can be calculated as follows:

∑
m∈M

|Yl,m(θ, φ)|2 =
+l∑

m=−l

1 − (−1)l−m

2
|Yl,m(θ, φ)|2, where

M = {−l + 1,−l + 3, . . . l − 3, l − 1}. (B8)

Recall the sum rule:

+l∑
m=−l

Y ∗
l,m(θ1, φ1)Yl,m(θ2, φ2) = 2l + 1

4π
Pl (cos θ12), (B9)

where θ12 is the angle between points 1 and 2 on the unit sphere,
and Pl is the lth Legendre polynomial. We use Eq. (B9) to
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evaluate the two series:

+l∑
m=−l

|Yl,m(θ, φ)|2 = 2l + 1

4π
Pl (1) = 2l + 1

4π
, (B10)

+l∑
m=−l

(−1)l−m|Yl,m(θ, φ)|2 =
+l∑

m=−l

Y ∗
l,m(π − θ, φ)Yl,m(θ, φ)

= 2l + 1

4π
Pl (cos(π − 2θ )),

(B11)

where we used that (−1)l−mYl,m(θ, φ) = Yl,m(π − θ, φ) and
that the angle between point (θ, φ) and point (π − θ, φ) is
θ12 = π − 2θ .

Using these new Al modes, the interaction can be written
as

V/h̄ =
∑

l

glNl[σ
†
1 + (−1)l+1σ

†
2 ]Al + H.c. (B12)

Modes Al with different l parity couple to different combina-
tions of the two atoms. Let us define

σo = σ1 + σ2√
2

, σe = σ1 − σ2√
2

, (B13)

and write

V/h̄ =
∑
l∈odd

Gl (Alσ
†
o + A

†
l σo) +

∑
l∈even

Gl (Alσ
†
e + A

†
l σe ),

(B14)
where

Gl =
√

2glNl =
√

d2
z c

h̄bR3
0ε0

√
(2l + 1)

√
l(l + 1)

4π
[1 − Pl (cos(π − 2θ ))]. (B15)

2. Numerical analysis

a. Hilbert space

We are interested in the dynamics of a single excitation, i.e., we truncate the Hilbert space to

H = Span{|e〉|g〉|vac〉︸ ︷︷ ︸
|a〉

, |g〉|e〉|vac〉︸ ︷︷ ︸
|b〉

, {|g〉|g〉A†
l |vac〉︸ ︷︷ ︸

|l〉

: l = 1, 2, . . . lmax}}, (B16)

and separate it into two subspaces

Ho = Span{σ †
o |g〉|g〉|vac〉︸ ︷︷ ︸

|o〉

, {A†
l |g〉|g〉|vac〉︸ ︷︷ ︸

|l〉

: l = 1, 3, 5, . . .}}, (B17)

He = Span{σ †
e |g〉|g〉|vac〉︸ ︷︷ ︸

|e〉

, {A†
l |g〉|g〉|vac〉︸ ︷︷ ︸

|l〉

: l = 2, 4, 6, . . .}}, (B18)

each of which is governed by its own Hamiltonian block.

b. Hamiltonian

The following Ho,He act as two independent blocks on Ho

and He:

Ho =
∑
l∈odd

[δlA
†
l Al + Gl (Alσ

†
o + A

†
l σo)]

=
∑
l∈odd

[δl|l〉〈l| + Gl (|o〉〈l| + |l〉〈o|)], (B19)

He =
∑

l∈even

[δlA
†
l Al + Gl (Alσ

†
e + A

†
l σe )]

=
∑

l∈even

[δl|l〉〈l| + Gl (|e〉〈l| + |l〉〈e|)], (B20)

where

δl = c

R0
[
√

l(l + 1) −
√

l0(l0 + 1)], (B21)

where l0 stands for the atomic frequency, i.e., ω0 =
c

R0

√
l0(l0 + 1), and

Gl =
√

d2
z c

h̄bR3
0ε0

√
(2l + 1)

√
l(l + 1)

4π
[1 − Pl (cos(π − 2θ ))].

(B22)

c. Results: Time series

We start the system from |ψ (0)〉 = |e〉|g〉|vac〉 = |a〉 =
|o〉+|e〉√

2
, and evolve it with U (t ) = exp[−iH t/h̄], to get

|ψ (t )〉 = 1√
2

[e−iHot/h̄|o〉 + e−iHet/h̄|e〉]

= 1√
2

⎡
⎣∑

j

〈φo,j |o〉e−i�o,j t |φo,j 〉

+
∑

k

〈φe,k|e〉e−i�e,k t |φe,k〉
]
, (B23)
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where �o,j , |φo,j 〉 and �e,k , |φe,k〉 are eigenvalues and eigen-
states of Ho/h̄ and He/h̄, respectively.

Finally, we note that the numerical results shown in Fig. 5
are independent of the atomic parameters and the thickness
of the lens, as only ratios of the dipole-dipole interaction,

spontaneous decay, and cooperative decay are considered
(each of which is proportional to the square of the prefactor√

d2
z c/h̄bR3

0ε0).

[1] J. C. Maxwell, Camb. Dublin Math. J 8, 188 (1854).
[2] C. T. Tai, Nature (London) 182, 1600 (1958).
[3] H. Rosu and M. Reyes, Il Nuovo Cimento D 16, 517 (1994).
[4] A. Greenwood and Jian-Ming Jin, IEEE Antennas Propag. Mag.

41, 9 (1999).
[5] A. J. Makowski and K. J. Górska, Phys. Rev. A 79, 052116

(2009).
[6] H. C. Rosu, M. Reyes, K. B. Wolf, and O. Obregon, in Proc. SPIE

2730, Second Iberoamerican Meeting on Optics (February 5,
1996), edited by D. Malacara-Hernandez, S. E. Acosta-Ortiz,
R. Rodriguez-Vera, Z. Malacara, and A. A. Morales (IEEE,
New York, 1996), pp. 436–439.

[7] U. Leonhardt, New J. Phys. 11, 093040 (2009).
[8] U. Leonhardt and T. Philbin, Geometry and Light: The Science

of Invisibility (Dover Publications, New York, 2010).
[9] Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt,

New J. Phys. 13, 033016 (2011).
[10] M. Born and E. Wolf, Principles of Optics: Electromagnetic

Theory of Propagation, Interference and Diffraction of Light
(Cambridge University Press, 1999).

[11] U. Leonhardt and T. G. Philbin, Phys. Rev. A 82, 057802 (2010).
[12] U. Leonhardt, New J. Phys. 12, 058002 (2010).
[13] U. Leonhardt, New J. Phys. 13, 028002 (2011).
[14] T. Tyc and X. Zhang, Nature (London) 480, 42 (2011).
[15] R. J. Blaikie, New J. Phys. 12, 058001 (2010).
[16] R. Merlin, Phys. Rev. A 82, 057801 (2010).
[17] R. J. Blaikie, New J. Phys. 13, 125006 (2011).
[18] P. Kinsler, Phys. Rev. A 82, 055804 (2010).
[19] J. C. González, P. Benítez, and J. C. Miñano, New J. Phys. 13,

023038 (2011).
[20] O. Quevedo-Teruel, R. C. Mitchell-Thomas, and Y. Hao, Phys.

Rev. A 86, 053817 (2012).
[21] T. Tyc and A. Danner, New J. Phys. 16, 063001 (2014).
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