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Fluctuations and quantum self-bound droplets in a dipolar Bose-Bose mixture
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We systematically investigate the properties of three-dimensional dipolar binary Bose mixture at low
temperatures. A set of coupled self-consistent equations of motion are derived for the two condensates. In
the homogeneous case, useful analytical formulas for the condensate depletion, the anomalous density, the
ground-state energy, and the equation of state are obtained. The theory is extended to the inhomogeneous case
and the importance of the inhomogeneity is highlighted. Our results open up an avenue for studying dipolar
mixture droplets. Impacts of the dipole-dipole interaction on the stability, density profiles, and the size of the
self-bound droplet are deeply discussed. The finite-temperature behavior of such a state is also examined.
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I. INTRODUCTION

Quantum degenerate gases of bosonic mixtures, achieved
by using either different hyperfine states, different isotopes of
the same species, or different atomic species have sparked a
great interest from both theoretical and experimental studies.
These systems have proved to be an ideal platform for explor-
ing quantum many-body physics due to their rigorous control
of the inter- and intracomponent interactions.

Bose-Bose mixtures with dipole-dipole interactions (DDIs)
represents an interesting model for observing and understand-
ing new states of matter in many areas of physics due to
their anisotropic and long-range interactions. Experimentally,
binary dipolar Bose-Einstein condensates (BECs) can be cre-
ated following different routes, namely, two different Rydberg
states [1] or heteronuclear diatomic molecules [2–4]. Most
recently, the first realization of a two-species magneto-optical
trap for Er-Dy has been reported in Ref. [5].

From the theoretical side, ground-state properties, the
immiscibility-miscibility transition (IMT), and the phase
separation of harmonically trapped two-component dipolar
BECs have been investigated in Refs. [6–9]. In quasi-two-
dimensional (2D) geometry, the IMT occurs due to the ro-
ton instability [10]. In a single-component BEC, the roton
instability may strongly enhance the quantum and the thermal
fluctuations [11]. The competition between the inter- and
intraspecies interactions leads to the emergence of nonlocal
solitons in dual dipolar BECs [12]. It has been found that
such systems may exhibit many interesting vortex structures,
such as interlaced honeycomb and octagonal vortex clusters,
as well as vortex necklaces [13–15]. Dipolar bosonic mixtures
in optical lattices constitute also ideal candidates for the
observation of the supersolid phase (see, e.g., Refs. [16,17])
owing to their large dipole moments and the high-precision
control over their internal and motional states. Very recently,
the properties of homogeneous 3D and 2D two-component
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BECs with DDIs have been investigated using beyond-mean-
field theory [18].

Almost all previous works for binary dipolar mixtures have
been limited to the case of zero temperature. The aim of the
present paper is to study the role of temperature effects in
excitations, fluctuations, and thermodynamics of Bose mix-
tures with DDIs. To this end, we employ the Hartree-Fock-
Bogoliubov (HFB) theory. This scheme has been successfully
utilized in 3D dipolar one-component systems with two-
and three-body interactions [19–21]. Our work reveals two
important effects which are dissimilar to a single component
BEC, (i) large condensate depletion (ii) near the phase sepa-
ration and at low temperature, the thermal contribution to the
depletion and all thermodynamic quantities has a distinct tem-
perature dependence. This is most likely due to the intriguing
interplay of inter- and intraspecies interactions. We show also
that quantum and thermal fluctuations may significantly affect
the excitations and the thermodynamics of the system even at
very low temperatures.

On the other hand, recent theoretical and experimental
studies of self-bound quantum droplets in nondipolar two-
component BECs with competing attractive interspecies and
repulsive intraspecies interactions [22–27] open the possibil-
ity of entirely new prospects for ultracold atomic physics.
The formation of such an exotic state, which survives even
in free space, arises from a repulsive beyond-mean-field Lee-
Huang-Yang (LHY) term. Up to now, effects of the DDI on
the properties of a mixture self-bound droplet have remained
unexplored.

Our motivation is then to investigate the formation of the
self-bound droplet in a dipolar bosonic mixture of intraspecies
repulsive interactions and attractive interspecies interaction
using our time-dependent HFB (TDHFB) equations [28–31].
By precisely adjusting the strength of the DDI, we show that
the repulsive LHY quantum corrections which provide an
extra term, ∝ n

5/2
c , arrest the attractive mean-field term, ∝ n2

c ,
enabling the nucleation of a stable dipolar mixture droplet.
This stabilization scenario resembles that which has occurred
in nondipolar binary Bose-Bose mixtures [22–25] and in a
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dipolar one-component BEC [20,32–36]. By sufficiently tun-
ing the dipolar interaction below the s-wave scattering length,
we find that the droplet becomes slightly anisotropic because
of DDIs. We point out that the dipolar interactions lead to
lowering the central density and the number of particles and
they squeeze the droplet widths. We then extend this study
to the finite temperature by numerically solving our TDHFB
equations. The condensate and noncondensate density profiles
in the droplet are profoundly analyzed. Our results show that
the thermal fluctuations may modify the equilibrium of the
droplet.

The paper is structured as follows. In Sec. II, we introduce
the basic formalism describing dipolar Bose mixtures. We
derive coupled equations of motion that enables us to study
the dynamics of the two condensates using the Hartree-Fock-
Bogoliubov (HFB) approximation. In Sec. III we obtain useful
formulas linking quantum and thermal fluctuations of some
thermodynamic quantities, such as the chemical potential,
the ground-state energy, and the compressibility for the ho-
mogeneous mixture. In Sec. IV we generalize the theory to
the case of the inhomogeneous Bose-condensed mixture with
DDIs, using the local-density approximation (LDA). Section
V deals with effects of the DDIs on the physics of the droplet
state in dilute dipolar Bose mixtures at both zero and finite
temperatures. Our results are summarized in Sec. VI.

II. MODEL

We consider weakly interacting two-component dipolar
BECs with the atomic mass mj . The grand-canonical Hamil-
tonian of the system reads as follows:

Ĥ =
2∑

j=1

[ ∫
dr ψ̂

†
j (r)hsp

j ψ̂j (r)

+ 1

2

∫
dr

∫
dr′ ψ̂†

j (r)ψ̂†
j (r′)Vj (r − r′)ψ̂j (r′)ψ̂j (r)

]

+
∫

dr
∫

dr′ ψ̂†
1 (r)ψ̂†

2 (r′)V12(r − r′)ψ̂2(r′)ψ̂1(r),

(1)

where ψ̂
†
j and ψ̂j denote respectively the usual creation

and annihilation field operators, satisfying the usual canoni-
cal commutation rule [ψ̂j (r), ψ̂†

j (r′)] = δ(r − r′), and h
sp
j =

−(h̄2/2mj )� + Uj (r) − μj is the single-particle Hamilto-
nian, with Uj (r) being the external traps and μj represent-
ing chemical potentials related to each component. The in-
traspecies two-body interaction potential is

Vj (r) = gj δ(r) + d2
j

1 − 3 cos2 θ

r3
, (2)

where gj = 4πh̄2aj/mj , with aj being the intraspecies s-
wave scattering lengths. The last term in Eq. (2) accounts for
the DDI potential where dj stands for the magnitude of the
dipole moment of component j and θ is the angle between
the polarization axis and the relative separation of the two
dipoles; it is supposed to be the same for both components.
The intraspecies dipole-dipole distance is defined as r∗j =
mjd

2
j /h̄2. The interspecies two-body interaction potential

reads

V12(r) = g12δ(r) + d1d2
1 − 3 cos2 θ

r3
, (3)

where g12 = g21 = 2πh̄2(m−1
1 + m−1

2 )a12 corresponds to the
interspecies short-range part of the interaction, which is
characterized by the interspecies a12 = a21 s-wave scatter-
ing lengths. The interspecies dipole-dipole distance is r∗12 =
r∗21 = 2d1d2/[h̄2(m−1

1 + m−1
2 )].

In order to describe Bose-Bose mixtures at finite tempera-
ture, we divide the Bose-field operator into two parts: the con-
densate contribution �, which corresponds to the macroscopic
occupation of a single quantum state, and noncondensed part
ˆ̄ψ , which corresponds to thermally excited atoms:

ψ̂j (r, t ) = �j (r, t ) + ˆ̄ψj (r, t ). (4)

Within this, the Hamiltonian (1) takes the form of a sum,

Ĥ = Ĥ (0) + Ĥ (1) + Ĥ (2) + Ĥ (3) + Ĥ (4), (5)

where

Ĥ (0) =
∑

j

[ ∫
dr �∗

j (r)hsp
j �j (r) + 1

2

∫
dr

∫
dr′Vj (r − r′)ncj (r)ncj (r′)

]
+

∫
dr

∫
dr′V12(r − r′)nc2(r)nc1(r′)

]
, (6a)

Ĥ (1) = 0, (6b)

Ĥ (2) =
∑

j

{∫
dr ˆ̄ψ†

j (r)hsp
j

ˆ̄ψj (r)
∫

dr
∫

dr′Vj (r − r′)
[
ncj (r) ˆ̄ψ†

j (r′) ˆ̄ψj (r′) + �∗
j (r)�j (r′) ˆ̄ψ†

j (r′) ˆ̄ψj (r)

+ 1

2
�∗

j (r′)�∗
j (r) ˆ̄ψj (r′) ˆ̄ψj (r) + 1

2
�j (r′)�j (r) ˆ̄ψ†

j (r′) ˆ̄ψ†
j (r)

]}
+

∫
dr

∫
dr′V12(r − r′)[ ˆ̄ψ†

2 (r) ˆ̄ψ2(r)nc1(r′)

+ ˆ̄ψ†
1 (r′) ˆ̄ψ1(r′)nc2(r)], (6c)

Ĥ (3) =
∑

j

{∫
dr

∫
dr′Vj (r − r′)[�j (r) ˆ̄ψ†

j (r) ˆ̄ψ†
j (r′) ˆ̄ψj (r′) + �∗

j (r) ˆ̄ψ†
j (r′) ˆ̄ψj (r′) ˆ̄ψj (r)]

}
+

∫
dr

∫
dr′V12(r − r′)

× [�1(r′) ˆ̄ψ†
2 (r) ˆ̄ψ2(r) ˆ̄ψ†

1 (r′) + �∗
1(r′) ˆ̄ψ†

2 (r) ˆ̄ψ2(r) ˆ̄ψ1(r′) + �2(r) ˆ̄ψ†
2 (r) ˆ̄ψ†

1 (r′) ˆ̄ψ1(r′) + �∗
2(r) ˆ̄ψ2(r) ˆ̄ψ†

1 (r′) ˆ̄ψ1(r′)], (6d)

Ĥ (4) = 1

2

∑
j

[ ∫
dr

∫
dr′ ˆ̄ψ†

j (r) ˆ̄ψ†
j (r′)Vj (r − r′) ˆ̄ψj (r′) ˆ̄ψj (r)

]
+

∫
dr

∫
dr′ ˆ̄ψ†

1 (r) ˆ̄ψ†
2 (r′)V12(r − r′) ˆ̄ψ2(r′) ˆ̄ψ1(r). (6e)
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In Eqs. (6), we have used the condition 〈 ˆ̄ψj 〉 = 0, which
ensures the quantum number conservation condition. At zero
temperature T = 0, almost all of the particles are in the
condensate state; hence the noncondensed operator can be
neglected ( ˆ̄ψj = 0), and only the zeroth-order H (0) term can
be taken into account in Eq. (5). Therefore, the ground state of
the system can be described by two coupled Gross-Pitaevskii
(GP) equations for the condensate wave functions �j (r, t ). At
finite temperature, the GP equations for Bose-Bose mixtures
reads

ih̄�̇j (r, t ) = dE
d�∗

j

= h
sp
j �j (r, t )+

∫
dr′Vj (r−r′)[nj (r′, t )�j (r, t )

+ ñj (r, r′, t )�j (r′, t ) + m̃j (r, r′, t )φ∗
j (r′, t )]

+
∫

dr′V12(r − r′)n3−j (r′)�j (r, t ), (7)

where E = 〈Ĥ 〉 is the energy of the system, and ncj (r) =
|�j (r)|2, ñj (r) = 〈 ˆ̄ψ†

j (r) ˆ̄ψj (r)〉, and m̃j (r) = 〈 ˆ̄ψj (r) ˆ̄ψj (r)〉
are respectively the condensed, noncondensed, and anomalous
densities. The total density in each component is given by
nj (r) = ncj (r) + ñj (r). The quantities ñj (r, r′) and m̃j (r, r′)
stand for the normal and the anomalous one-body density
matrices which account for the dipole exchange interaction
between the condensate and the noncondensate. The total
number of particles is defined as Nj = Ncj + Ñj = ∫

njdr,
where Ncj = ∫

ncjdr and Ñj = ∫
ñj dr are respectively the

condensed and the noncondensed number of particles in each
component. For r∗1 = r∗2 = r∗12 = 0, the coupled GP equa-
tions (7) reduce to those of a finite-temperature nondipolar
mixture [29]. If ñj = m̃j = 0, one can reproduce the usual
GP equations for binary condensates at zero temperature. The
dynamics of the noncondensed and the anomalous densities
can be derived easily using the coupled TDHFB equations
[28–31].

In what follows we consider only mixtures with equal
mass. In the uniform case, for which the trapping poten-
tial vanishes (Uj = 0), translational invariance requires the
solutions to be plane waves. The noncondensed operators
can be written as ˆ̄ψ†

j (r) = (1/V )
∑

k â
†
jke

−ik.r and ˆ̄ψj (r) =
(1/V )

∑
k âjke

ik.r, where â
†
k and âk are respectively the

creation and annihilation operators of particles and V is a
quantization volume. The Fourier transforms of interaction
potentials (2) and (3) are given by

Ṽj (k) = gj

[
1 + εdd

j (3 cos2 θk − 1)
]
, (8)

Ṽ12(k) = g12
[
1 + εdd

12 (3 cos2 θk − 1)
]
, (9)

where εdd
j = r∗j /3aj and εdd

12 = r∗12/3a12.
After having simplifying the higher-order terms (6d) and

(6e) applying the HFB approximation, the resulting Hamil-
tonian can be diagonalized by employing the following
canonical

Bogoliubov transformations [37]:

â1k = (u1kb̂1k+v1kb̂
†
1,−k ) cos γ −(u2kb̂2k+v2kb̂

†
2,−k ) sin γ,

(10a)

â2k = (u1kb̂1k+v1kb̂
†
1,−k ) sin γ +(u2kb̂2k + v2kb̂

†
2,−k ) cos γ,

(10b)

where b̂k and b̂
†
k are the quasiparticle operators satisfying the

usual Bose commutation relations; the Bogoliubov functions
ujk and vjk are given by

ujk, vjk = 1
2 (

√
εjk/Ek ± √

Ek/εjk ), (11)

where Ek = h̄2k2/2m is the kinetic energy of a particle and
εjk is the Bogoliubov excitations’ energy.

Keeping in mind that the Bogoliubov approximation is
valid only for asymptotically weak interactions and at very
low temperatures where ñj � ncj and m̃j � ncj . Indeed, this
is equivalent to the case where the long-range exchange term
ñ(r, r′) = m̃(r, r′) = 0 [38], which does not influence the sta-
bility of the system [20,21,38]. This condition is necessary to
guarantee the gaplessness of the spectrum, i.e., limk→0 εjk =
0, and the Hugenholtz-Pines [39] theorem. Within this we
obtain the following expression for the Bogoliubov spectrum:

ε1k =
√

E2
k + 2Ekν1(θ ), ε2k =

√
E2

k + 2Ekν2(θ ), (12)

where

ν1,2(θ ) = Ṽ1(k)nc1

2
f1,2(θ ),

f1,2 = 1 + α ±
√

(1 − α)2 + 4�−1α, (13)

and

cos γ, sin γ = 1√
2

√
1 ± 1 − α√

(1 − α)2 + 4�−1α
, (14)

where

α(θ ) = β
1 + εdd

2 (3 cos2 θ − 1)

1 + εdd
1 (3 cos2 θ − 1)

,

with β = nc2g2/nc1g1.
The miscibility parameter is defined as

�(θ ) = Ṽ1(k)Ṽ2(k)

Ṽ 2
12(k)

= �

[
1 + εdd

1 (3 cos2 θ − 1)
][

1 + εdd
2 (3 cos2 θ − 1)

]
[
1 + εdd

12 (3 cos2 θ − 1)
]2 ,

(15)

where � = g1g2/g
2
12 is the miscibility parameter of a

nondipolar mixture. For �(θ ) > 1, the mixture is in a sta-
ble miscible regime, while �(θ ) < 1 leads to an unstable
immiscible phase for any value of θ [10]. The IMT occurs
when the interspecies and intraspecies are balanced, i.e.,
�(θ ) = 1. For θ = π/2, i.e., when momenta are perpen-
dicular to the dipole direction, �(π/2) = �(1 − εdd

1 )(1 −
εdd

2 )/(1 − εdd
12 )2. In such a situation, a stable mixture re-

quires the condition εdd
j = 1 + [(1 − εdd

12 )2/�(1 − εdd
3−j )]�1.
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For εdd
1 = εdd

2 = εdd
12 = 0, the miscibility parameter becomes

�(θ ) ≡ �.
In the long-wavelength limit (k → 0), the Bogoliubov ex-

citations (12) are sound waves εjk = h̄cj (θ )k, where cj (θ ) =√
Ṽj (|k| = 0)ncj /mj is the sound velocity of a single conden-

sate. As a result, the total dispersion is phononlike:

ε1,2k = h̄c1,2(θ )k, (16)

where the sound velocities c1,2 are

c2
1,2(θ ) = 1

2

[
c2

1 + c2
2 ±

√(
c2

1 − c2
2

)2 + 4�−1c2
1c

2
2

]
(θ ). (17)

For �(θ ) > 1, c2 tends to zero, indicating that the system
becomes unstable, and thus, the two condensates spatially sep-
arate in agreement with our above predictions. Remarkably,
the sound velocity is angular dependence; in other words, it
acquires a dependence on the propagation direction θ owing
to the anisotropy of the DDI. In the case of a single dipolar
BEC, the anisotropy of the sound velocity has already been
observed experimentally in Ref. [40].

The diagonalized Hamiltonian reads

Ĥ = E +
2∑

j=1

∑
k

εjkb̂
†
jkb̂jk, (18)

where E = E0 + δE is the ground-state energy of the system
with

E0 = 1

2

2∑
j=1

Ṽj (|k| = 0)n2
cj + Ṽ12(|k| = 0)nc1nc2,

is anisotropic, and should be evaluated at k → 0 since it
accounts for the condensate [19,41].

And

δE = 1

2

2∑
j=1

∑
k

[
εjk − Ek − ncj Ṽj (k) + n2

cj Ṽ
2
j (k)

2Ek

]

+ 1

2

∑
k

nc1nc2Ṽ
2

12(k)

Ek

(19)

stands for the ground-state energy corrections due to quantum
fluctuations [22,24,29,42]. The last two terms in Eq. (19) have
been added in order to circumvent the ultraviolet divergence
arising in that integral.

III. FLUCTUATIONS AND THERMODYNAMICS

Explicit expressions for the noncondensed density
ñj = ∑

k �=0〈â†
jkâjk〉 and the anomalous density m̃j =∑

k �=0〈âjkâjk〉 (density of pair-correlated atoms) can be
given by utilizing the transformation (10). This yields

ñj = 1

V

∑
k �=0

{[
v2

jk + (
u2

jk + v2
jk

)
Njk

]
cos2 γ

+ [
v2

(3−j )k + (
u2

(3−j )k + v2
(3−j )k

)
N(3−j )k

]
sin2 γ

}
, (20)

m̃j = − 1

V

∑
k �=0

{[ujkvjk (1 + 2Njk )] cos2 γ

+ [u(3−j )kv(3−j )k (1 + 2N(3−j )k )] sin2 γ }, (21)

where Njk = 〈b̂†jkb̂jk〉 = [exp(εjk/T ) − 1]−1 are occupation
numbers for the excitations.

In the thermodynamic limit, the discrete sum over k can
be replaced by an integral over a continuous variable k as
follows: (1/V )

∑
k = ∫

dk/(2π )3. Therefore, we obtain the
following for the condensed depletion:

ñj = 1

2
√

2
ñ0

1

[
I3

j (εdd ) + I3
3−j (εdd )

]
+ 2

√
2 ñth

1

[
I−1

j (εdd ) + I−1
3−j (εdd )

]
, (22)

where ñ0
1 = (8/3)nc1

√
nc1a

3
1/π is the zero-temperature

single-condensate depletion (type 1) and ñth
1 =

(2/3)nc1

√
nc1a3/π (πT/nc1g)2 is the thermal contribution

to the noncondensed density of a single condensate. The
functions I

j (εdd ), which are defined as

I
j (εdd ) =

∫ π

0
sin θ

[
1+εdd

1 (3 cos2 θ−1)
]/2

f
/2
j cos2 γ dθ,

(23a)

I
3−j (εdd ) =

∫ π

0
sin θ

[
1+εdd

1 (3 cos2 θ−1)
]/2

f
/2
3−j sin2 γ dθ,

(23b)

account for the DDI contribution to the condensate depletion.
At zero temperature and for εdd

1 = εdd
2 = εdd

12 = 0, the deple-
tion (22) reduces to that obtained in Refs. [37,43] using the
Bogoliubov theory.

As is clearly seen in Eq. (21), the expression of m̃ is
ultraviolet divergent. This inconsistency is a symptom of the
contact interaction. Indeed, there are many ways of dealing
with such a problem, for instance, the dimensional regular-
ization which gives for the integral

∫ ∞
0 dx(x/

√
1 + x2) = −1

[28,44,45]. We proceed along the lines of [29], and obtain for
the anomalous density

m̃j = 1

2
√

2
m̃0

1

[
I3

j (εdd ) + I3
3−j (εdd )

]
+ 2

√
2 m̃th

1

[
I−1

j (εdd ) + I−1
3−j (εdd )

]
, (24)

where m̃0
1 = 8nc1

√
nc1a

3
1/π is the anomalous density of the

single component at zero temperature and m̃th
1 = −ñth

1 is the
thermal contribution to the anomalous density of a single
condensate. In fact, the resulting pair anomalous correlation
is important since it provides insights into the phenomenon
of dissipation and superfluidity (see below). Moreover, such
a quantity might give hints about the superradiance in dipolar
ultracold atoms.

The leading term in Eqs. (22) and (24) stands for the
quantum fluctuations. The subleading term, which represents
the thermal fluctuations, is evaluated at temperatures T �
gnc, where the main contribution to Eqs. (20) and (21) comes
from the phonon branch. At temperatures T  gnc, the main
contribution to Eq. (20) comes from the single-particle excita-
tions. Therefore, the thermal contribution of ñ becomes identi-
cal to the density of noncondensed atoms in an ideal Bose gas
while the pair anomalous correlation cannot exist anymore in
such a regime. In the absence of the DDI, Eqs. (22) and (24)
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excellently agree with our equations obtained recently for a
nondipolar mixture [29]. For εdd

12 = 0, expressions of m̃j and
ñj reduce to those found for a single dipolar BEC [19,46].
The comparaison between Eqs. (22) and (24) reveals that the
anomalous correlation is always greater than the condensate
depletion as in the case of a single BEC. Both quantities
are monotonically increasing with εdd. We see also that the
effects due to quantum fluctuations are small compared to
those due to thermal fluctuations since I−1

j (εdd ) > I3
j (εdd ).

For instance, for β = 0.2, � = 1.5, and εdd
1 = εdd

2 = εdd
12 �

1, the quantum depletion is larger by ∼5.55 than that of a
single-component BEC with contact interactions, whereas at
finite temperature, the thermal depletion in each component is
about 18 times higher than that of one Bose gas. These values
are decreasing with increasing both β and � and become
imaginary for � > 1 signaling that the system is unstable. The
same behavior holds for the pair anomalous correlations.

The Bogoliubov approach requires that quantum and ther-
mal fluctuations should be small. Therefore, the small pa-

rameter of the theory can be given as
√

nc1a
3
1 [I3

1 (εdd ) +
I3

2 (εdd )]�1 and (T/nc1g1)
√

nc1a
3
1 [I−1

1 (εdd )+I−1
2 (εdd )]�

1. In the absence of the DDI and the interspecies interaction,
the validity criterion of the theory reduces to

√
nca3 � 1.

The shift to the equation of state (EoS) due to
quantum and thermal fluctuations can be obtained through
δμj = ∑

k Ṽ (k)[vjk (vjk − ujk )] = ∑
k Ṽ (k)(ñj + m̃j )

[11,19,29,47]:

δμj = 1

4
√

2
μ0

1

[
I5

j (εdd )f −1/2
j + I5

3−j (εdd )f −1/2
j

]

+
√

2 mT 2

12h̄3

[
I1

j (εdd )f −1
j

c1
+ I1

3−j (εdd )f −1
j

c2

]
, (25)

where μ0
1 = (32/3)g1nc1

√
nc1a

3
1/π is the EoS of a single

Bose gas. For εdd
1 = εdd

2 = εdd
12 = 0 and g12 = 0, Eq. (25)

recovers the celebrated LHY corrections of the chemical
potential [48] for a single Bose gas.

At T = 0, the inverse compressibility is equal to κ−1
j =

n2
j ∂μj/∂nj . Then the quantum corrections to the inverse

compressibility matrix can be computed via Eq. (25), and we
obtain

∂δμ1

g1∂n1
= 4√

2

√
nc1a

3
1

π

[
G1(θ )f −3/2

1 I5
1 (εdd ) + f

−1/2
1 I5

1 (εdd )

− G2(θ )f −3/2
2 I5

2 (εdd ) + f
−1/2
2 I5

2 (εdd )
]

(26)

and

∂δμ2

g2∂n2
= 4√

2

√
nc1a

3
1

π

1

β

[ − G1(θ )f −3/2
1 I5

1 (εdd )

+ G2(θ )f −3/2
2 I5

2 (εdd )
]
, (27)

where

G1,2 = ∓α + α(1 − α) − 2α�−1√
(1 − α)2 + 4α�−1

.

At finite temperature, the grand-canonical ground-state
energy can be calculated using the thermodynamic relation
E′ = E + Eth = −T 2( ∂

∂T
F
T

)|V,μ, where the free energy is
given by F = E′ + T

∑
k ln[1 − exp(−εkj /T )]. At low tem-

perature T � g1nc1, corrections to the ground-state energy
due to thermal fluctuations are

Eth =
√

2π2T 4

15h̄3

[
J −3

1 (εdd )

c3
1

+ J −3
2 (εdd )

c3
2

]
, (28)

where the functions J 
j (εdd ) are defined as

J 
j (εdd ) =

∫ π

0
sin θ

[
1 + εdd

1 (3 cos2 θ − 1)
]/2

f
/2
j dθ, (29)

The system pressure is defined as P = −(∂F/∂V )|T .
Again at T � g1nc1, the thermal pressure is

P th =
√

2π2T 4

45h̄3

[
J −3

1 (εdd )

c3
1

+ J −3
2 (εdd )

c3
2

]
. (30)

The explicit value of P th enables us to estimate the inverse
isothermal compressibility of the gas (∂P th

j /∂nj ).
Remarkably, corrections due to quantum and thermal

fluctuations to all the above thermodynamic quantities are
isotropic while their leading terms are anisotropic; i.e., their
values depend on the propagation direction. For vanishing
DDIs, Eqs. (25)–(30) reduce to those found for a nondipolar
mixture [29].

It is interesting to discuss the case of a balanced mix-
ture where nc1 = nc2 and Ṽ1(k) = Ṽ2(k) = Ṽ12(k) = Ṽ (k),
one has f1 = 4 and f2 = 0, and hence, the spectrum of
the upper branch is identical to the spectrum of the one-

component dipolar BEC, ε1k =
√

E2
k + 8Eknc1V (k). In such

a case the functions (23) reduce to I
j (εdd ) = Q(x) = (1 −

x)/2
2F1(− 

2 , 1
2 ; 3

2 ; 3x
x−1 ), where 2F1 is the hypergeometric

function. The functions Q(x) are maximum at x ≈ 1. For
x � 1, Q(x) are imaginary which means that the dipolar
interaction dominates the repulsive two-body interactions,
leading to unstable soft modes, whereas the spectrum asso-
ciated with the lower branch becomes identical to that of
free particles, ε2k = Ek . Therefore, the noncondensed and the
anomalous densities take the following forms:

ñ = 2
√

2 ñ0
1Q3(εdd ) +

√
2 ñth

1 Q−1(εdd ) + �3ζ (3/2) (31)

and

m̃ = 2
√

2 m̃0
1Q3(εdd ) +

√
2 m̃th

1 Q−1(εdd ), (32)

where � is the thermal de Broglie wavelength and ζ (3/2)
is the Riemann zeta function. The anomalous density cannot
exist in the component associated with the lower branch since
the system becomes extremely dilute. We see that the thermal
term in a balanced mixture is larger by

√
2 than that of a single

BEC [19,41].
The ground-state energy simplifies to

δE = (8/
√

2)E0
1Q5(εdd ), (33)
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where E0
1/V = (64/15)g1n

2
c1

√
nc1a

3
1/π is the zero-

temperature single-condensate-ground state energy. The
energy (33) differs by the factor 8/

√
2 from the one Bose gas

[19,41]. For εdd > 1, the DDIs would destabilize the balanced
mixture due to the possibility of the collapse.

Now let us look at the situation where one component
is dipolar and the other is nondipolar, say component 2.
This leads to r∗2 = r∗12 = r∗21 = 0, and thus, α(θ ) = β[1 +
εdd

1 (3 cos2 θ − 1)]−1. The miscibility parameter (15) takes
the form �(θ ) = �[1 + εdd

1 (3 cos2 θ − 1)]. In the vicinity of
phase separation transition, one has Ṽ1(k)Ṽ2(k) → Ṽ 2

12(k),
and

ν1(θ ) � Ṽ1(k)nc1 + Ṽ2(k)nc2,

ν2(θ ) � Ṽ1(k)nc1Ṽ2(k)nc2 − Ṽ 2
12(k)nc1nc2

Ṽ1(k)nc1 + Ṽ2(k)nc2
� ν1(θ ).

Therefore, at zero temperature the noncondensed and anoma-
lous densities become

ñ = ñ0
1(1 + β )3/2Q3(ςdd ) (34)

and

m̃ = m̃0
1(1 + β )3/2Q3(ςdd ), (35)

where ςdd = εdd/(1 + β ). A similar formula for the depletion
(34) has been obtained recently in Ref. [18] using the one-loop
approximation.

From Eqs. (34) and (35) follows a useful LHY-corrected
EoS:

δμ = μ0
1(1 + β )5/2Q5(ςdd ). (36)

The ground-state energy shift can be immediately calculated
via δE = ∫

δμdn as

δE = E0
1 (1 + β )5/2Q5(ςdd ). (37)

Near the phase separation and at low temperature, the
lower branch has the free-particle dispersion law εk2 =
Ek [49], while the upper branch is phononlike, εk1 =
h̄c1(1 + α)1/2k. This result indicates that the thermal deple-
tion has two different temperature dependence forms: ñth =
aT 2 + bT 3/2, where a = ñth

1 (1 + β )−1/2Q−1(ςdd ), and b =
(m/2πh̄2)3/2ζ (3/2). One can conclude that the component
related to the lower branch is extremely dilute. Notice that
the distinction in the temperature dependence cannot hold in
the thermal part of the anomalous density because m̃th itself
cannot survive any more in the free-particle regime. All the
thermodynamic quantities can be straightforwardly calculated
following the procedure outlined in Sec. III. For εdd > (1 +
β ), the mixture becomes unstable even in the miscible regime
(� > 1) since the function Q5(ςdd ) is imaginary. In this case,
the repulsive two-body contact interactions are dominated by
the attractive DDIs, driving the system collapse results in from
the presence of unstable soft modes.

IV. INHOMOGENEOUS MIXTURE

Now we discuss the case of a harmonically trapped dipolar
Bose-Bose mixture, Uj (r) = 1

2m(ω2
jxx

2 + ω2
jyy

2 + ω2
jzz

2),
where ωjx,y,z are the trapping frequencies. To calculate the
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FIG. 1. Thermal local LHY corrections as a function of
T/n1(r )g1 for several values of εdd

12 . Parameters are as follows: (left)
β = � = 1 and εdd

1 = εdd
2 = 0.7, and (right) β = 1.8, � = 0.85, and

εdd
1 = εdd

2 = 0.7.

excitations’ spectra and the fluctuations, we employ the LDA
introduced first for cleaned [41] and disordered [50,51] single-
component dipolar Bose gases. Such an approximation is
valid when the external trapping potentials are sufficiently
smooth and hence consists of setting εk → εk (r), ujk →
ujk (r), and vjk → vjk (r). Therefore, the noncondensed and
the anomalous densities become

ñj (r) = 1

2
√

2
ñ0

1(r)
[
I3

j (r, εdd ) + I3
3−j (r, εdd )

]
+ 2

√
2 ñth

1 (r)
[
I−1

j (r, εdd ) + I−1
3−j (r, εdd )

]
(38)

and

m̃j (r) = 1

2
√

2
m̃0

1(r)
[
I3

j (r, εdd ) + I3
3−j (r, εdd )

]
+ 2

√
2 m̃th

1 (r)
[
I−1

j (r, εdd ) + I−1
3−j (r, εdd )

]
. (39)

The EoS turns out to be given as δμj (r) = δμ0
j (r) + δμth

j (r),
where

δμ0
j (r) = 1

4
√

2
μ0

1(r)
[
I5

j (r, εdd )f −1/2
j (r)

+ I5
3−j (r, εdd )f −1/2

j (r)
]

(40)

and

δμth
j (r) =

√
2 mT 2

12h̄3

[I1
j (r, εdd )f −1

j (r)

c1(r)

+ I1
3−j (r, εdd )f −1

j (r)

c2(r)

]
. (41)

The behavior of δμth
1 (r) is displayed in Fig. 1. It is mono-

tonically increasing with temperature T/n1(r )g1. The thermal
contribution to the EoS depends also on the system parame-
ters, namely β, �, and εdd

j (see right panel of Fig. 1). The same
holds true for the chemical potential of the second component
δμth

2 (r).
The condensed density in Eqs. (38)–(40) can be calculated

using the Thomas-Fermi (TF) approximation. The insertion
of corrections (40) in the generalized coupled GP equations
permits us to examine, in a simpler manner, the role of
quantum fluctuations in the TF regime. Remarkably, the
quantum and thermal fluctuations and their corrections to
all thermodynamic quantities remain isotropic in the trapped
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case. One can expect that the inhomogeneity of the system
may crucially affect the damping rates and energy shifts of
low-energy excitations. Equation (40) is our starting point
in the next section for analyzing the stability of quantum
droplets in dipolar Bose-Bose mixtures at both zero and finite
temperatures.

V. SELF-BOUND DROPLET STATE

Aiming to check the formation of a self-bound droplet
state at both zero and finite temperatures, we consider a
dipolar Bose mixture of intraspecies repulsive interactions
and attractive interspecies interactions. The dipole moments
of the particles are supposed to be oriented perpendicular to
the plane. The mutual contact interactions can be tuned via
the Feshbach resonances [52].

A. Zero-temperature case: Gross-Pitaevskii equation

At zero temperature, where ñj � ncj , m̃j � ncj , and Nc ≈
N , the energy density corresponding to the GP equation reads

Ed =
∑

j

[
h̄2

2m
|∇�j |2+ 1

2

∫
dr′Vj (r−r′)|�j (r)|2|�j (r′)|2

]

+
∫

dr′V12(r − r′)|�2(r)|2|�1(r′)|2 + δEj , (42)

where δEj can be calculated from Eq. (19) or through δEj =∫
δμ0

j dnj . Following the procedure outlined in Ref. [22],
we assume the two components occupying identical spatial

modes �j =
√

n0
jcφj , with n0

cj being the saturation densities.

The density ratio which minimizes the energy of the hard
mode [22,23,25] is given by

n0
c1

n0
c2

=
√

g1
(
1 − εdd

1

)
g2(1 − εdd

2 )
, εdd

1 < 1 and εdd
2 < 1, (43)

The condition (43) is necessarily for the stability and the
formation of the self-bound droplet. In the case of a mixture
with tilted dipoles, such a condition becomes dependent on
the angle θ . The dynamics of the dipolar mixture self-bound
droplet is described by the generalized GP equation which
can be derived from Eq. (42). The resulting equation includes
an extra LHY repulsive term stabilizing the mixture against
collapse. In the absence of the DDI, it reduces to Petrov’s
equation [22].

From now on, lengths and energies are expressed in units
of the extended healing length ξ and h̄2/2mξ 2, respectively,
where

ξ = h̄

√√√√√√
√

g2
(
1 − εdd

2

)
/m1 +

√
g1

(
1 − εdd

1

)
/m2

|δḡ|
√

g1
(
1 − εdd

1

)
n0

c1

, (44)

and δḡ = g12(1 − εdd
12 ) +

√
g1(1 − εdd

1 )g2(1 − εdd
2 ). Within

these new dimensionless variables, the number of particles is
scaled as Nc = ξ 3n0

cjN . For simplicity, we consider the case
of a balanced mixture m1 = m2 = m, Nc1 = Nc2 = Nc/2,
a1 = a2, and εdd

1 = εdd
2 . In such a case, the stability and
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FIG. 2. Density profiles of the dipolar Bose mixture droplet as a
function of the radial coordinate for several numbers of particles and
a12 = −5.5a0 (a0 is the Bohr’s radius). Solid lines: εdd

12 = 0.3. Dotted
lines: εdd

12 = 0.5. Dashed lines: εdd
12 = 0.7.

the formation of the droplet state are governed by only the
parameters a12, εdd

12 , and Nc.
We numerically determine the equilibrium state of the

dipolar mixture droplet and its energy Ed = dr
∫
Ed (φj , φ

∗
j ).

Our numerical solution was performed by using a split-
step Fourier method which has been proven to be a quite
powerful numerical tool in solving nonlinear equations (see,
e.g., Refs. [32,34,53]). The DDI terms are treated using a
convolution theorem [54] which allows us to remove the
singular nature of the DDI at the origin. In our case, the LHY
terms controlled by the functions Ij (εdd ) do not require any
special adjustment since such functions are real for εdd

ij < 1.
This is in stark contrast with quantum droplets in a strongly
dipolar single Bose gas, where LHY quantum corrections
need either a low-momentum cutoff [33,34] or the lowest-
order expansion of the functions Q(εdd ) [32,35] in order
to avoid the imaginary parts. The algorithm can be checked
by reproducing the nondipolar mixture and the single BEC
results.

Figure 2 shows that, when the number of particles rises,
the central density and the radius of the droplet increase
until the system reaches its equilibrium (saturation) in good
agreement with the numerical results of Ref. [22] and with
the Monte Carlo simulation predictions [27]. The equilibrium
state occurs at N ∼ 2500 atoms and a12 = −5.5a0, indicating

Ε12
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Ε12
dd 0.5

Ε12
dd 0.3
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ΣΡ units of Ξ

E d
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FIG. 3. Energy as a function of the radial size ρ for different
values of εdd

12 . Parameters are N = 2500 and a12 = −5.5a0.
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FIG. 4. Longitudinal (σz) and horizontal (σρ) droplet widths as a
function of εdd

12 for N = 2500.

that the system is stable where only the size dilates and the
central density remains constant. For N < Ncrit ≈ 85, the
droplet is unstable. We observe from the same figure that
the central density is decreasing with εdd

12 , which may lead to
lowering the critical number of particles.

Augmenting εdd
12 , the strength of the bond is decreasing,

indicating that the droplet becomes less stable as is seen in
Fig. 3. The change in the energy functional minima persists
also in the longitudinal direction (not shown here). Hence,
one can deduce that, for sufficiently large DDI, the local
minimum developed in the energy disappears, and thus the
mixture droplet undergoes instability.

Figure 4 depicts that in the equilibrium regime the droplet
is practically isotropic for small DDI (εdd

12 < 0.1). As εdd
12

increases, the longitudinal (σz) and horizontal (σρ) droplet
widths decrease and the droplet is going to be anisotropic ow-
ing to the anisotropy of the DDI. Such an anisotropy becomes
important for large εdd

12 , for instance, for εdd
12 = 0.8, σz/σρ �

1.25. The widths can be extracted from the extended GP
equation solutions employing σ 2

i = ci

∫
r2
i |φ(r)|2dr, where

i = z, ρ and ci are some normalization constants.
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FIG. 5. The condensed (solid) and noncondensed (dotted) densi-
ties versus the radial distance for several values of temperatures. Pa-
rameters are N = 2500, εdd

12 = 0.5, and a12 = −5.5a0. Black lines:
T = 50 nK. Pink lines: T = 90 nK. Purple lines: T = 150 nK. The
noncondensed density has been amplified ten times for clarity.
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FIG. 6. Condensed depletion ñ/n as a function of T/n1g1 for
several values of εdd

12 . Parameters are the same as those in Fig. 3.

B. Finite temperature: TDHFB equations

Now we extend our study for a mixture droplet with DDI
to finite temperature using our full TDHFB equations which
include in addition to the standard LHY term (40) another
extra term related to the thermal LHY corrections (41). Our
objective is to look at how the equilibrium is affected by such
thermal fluctuations. The energy functional (42) must acquire
temperature dependence. Here we recall that the long-range
exchange terms ñ(r, r′) and m̃(r, r′) are neglected since they
are not important for r �= r′ [20,38].

Figure 5 depicts the condensate and noncondensate density
profiles in the droplet for a range of temperatures below
the transition temperature (the temperature at which the total
number of atoms becomes comparable to the number of
noncondensed atoms). We see that the noncondensed density
increases with increasing temperature, whereas the condensed
density is reduced due to the thermal fluctuations. As the
temperature rises, the atoms evaporate out of the self-bound
droplets due to dissipation forming a broader thermal halo (a
peak) near the edge of the condensate results in the saturation
density and the critical number of particles are lowered which
may cause destabilization of the droplet. We note that a similar
behavior holds in a single-component dipolar droplet [20].

In Fig. 6, we show the temperature dependence of the
condensed depletion ñ/n. At zero temperature, ñ/n is ∼5%
for εdd

12 = 0.3 and does not exceed 10% for the parameters
considered above. For T < 50 nK, the depletion depends
weakly on temperature, while the situation is inverted at
higher temperatures. At fixed temperature, the condensed
depletion is growing with DDI, for instance, at T � 150 nK,
it augments by ∼20% when εdd

12 varies from 0.3 to 0.7.

VI. CONCLUSION AND OUTLOOK

We studied the properties of two-component dipolar Bose
condensates at nonzero temperatures. We showed that such
a system features remarkable properties. Coupled equations
of motion have been derived to describe, in a self-consistent
way, the dynamics of the condensates. These equations can be
considered as a finite-temperature extension of the standard
coupled GP equation for dual condensates with DDIs. In the
case of the homogeneous mixture, the shift to the excitations,
the chemical potential, the ground-state energy, and the com-
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pressibility due to quantum and thermal fluctuations correc-
tions has been precisely determined.

We showed that the developed method is a powerful tool
for investigating the quantum droplet state in a dipolar bosonic
mixture with intraspecies repulsive interactions and attrac-
tive interspecies interaction. We pointed out that, when the
contact interaction dominates the dipolar one, the droplet is
stabilized due to the repulsive first-order LHY corrections.
The anisotropy of the DDI shapes the droplet anisotropic
geometry. The properties of mixture quantum droplets such
as the stability, the density profiles, the energy, and the widths
have been found to be modified owing to the intriguing role
of the DDI. We presented also a detailed analysis of the
temperature dependence of the condensate and noncondensate
density profiles of the self-bound droplet. Our results revealed
that, as the temperature and the DDI are increased, atoms
leave the droplet forming a thermal cloud surrounding the
condensate. This process continues without ceasing until the

temperature reaches its critical value, above which the droplet
becomes unstable.

We hope that the findings of this paper will be useful for in-
spiring future experiments on mixture droplets with DDIs. An
interesting future application of our TDHFB theory includes
the study of the effects of both DDI and temperature on the
collective modes of a mixture droplet and checking whether
the self-evaporation of such a state predicted in Ref. [22]
still remains. Another important aspect is to investigate the
formation of a droplet state in a mixture with repulsive in-
traspecies and attractive interspecies interaction and strong
DDI (εdd

i > 1 and εdd
ij > 1). It is an open question whether

quantum fluctuations can arrest collapse originating from both
attractive forces and dipolar interactions.
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