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F. Grusdt et al. [New J. Phys. 19, 103035 (2017)] recently made a renormalization-group study of a one-
dimensional Bose polaron in cold atoms. Their study went beyond the usual Fröhlich description, which includes
only single-phonon processes, by including two-phonon processes in which two phonons are simultaneously
absorbed or emitted during impurity scattering [Y. E. Shchadilova et al., Phys. Rev. Lett. 117, 113002 (2016)].
We study this same beyond-Fröhlich model, but in the static impurity limit where the ground state is described
by a multimode squeezed state instead of the multimode coherent state in the static Fröhlich model. We
solve the system exactly by applying the generalized Bogoliubov transformation, an approach that can be
straightforwardly adapted to higher dimensions. Using our exact solution, we obtain a polaron energy free of
infrared divergences and construct analytically the polaron phase diagram. We find that the repulsive polaron
is stable on the positive side of the impurity-boson interaction but is always thermodynamically unstable on
the negative side of the impurity-boson interaction, featuring a bound state, whose binding energy we obtain
analytically. We find that the attractive polaron is always dynamically unstable, featuring a pair of imaginary
energies which we obtain analytically. We expect the multimode squeezed state to help with studies that go not
only beyond the Fröhlich paradigm but also beyond Bogoliubov theory, just as the multimode coherent state has
helped with the study of Fröhlich polarons.

DOI: 10.1103/PhysRevA.98.033610

I. INTRODUCTION

An impurity submerged in a cold-atom Bose-Einstein
condensate (BEC) represents an open quantum system. The
concept of a Bose polaron emerges naturally in this system
as an impurity dressed with phonons, where the phonons are
low-energy excitations associated with density fluctuations
of the BEC. That the impurity-phonon coupling in a BEC-
polaron system may be modeled by terms linear in phonon
fields makes the BEC-polaron system the cold-atom analog of
the Fröhlich model for the electron-phonon system [1–3]. The
Fröhlich paradigm has been quite influential in the study of
many exciting phenomena, including high-temperature super-
conductivity in solid-state systems (see [4] for a review). Of
particular interest is the Fröhlich polaron in the regime with
strong coupling between the impurity and phonons. In solid-
state systems, the electron-phonon coupling is fixed by the un-
derlying crystal structure. This limitation makes the Fröhlich
polaron in the strong-coupling regime virtually inaccessible to
solid-state experiments, despite extensive efforts in improving
our theoretical understanding of such polarons [1,2,5,6]. In
contrast, in cold-atom systems the impurity-phonon coupling
can be made arbitrary large by tuning the interspecies interac-
tion across a Feshbach resonance [7]. Cold atoms, then, are an
excellent platform for exploring strongly interacting polarons
(for recent reviews, see [8] and [9]). As such, there has been a
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flurry of theoretical [10–37] and experimental [38–41] activity
devoted to the subject of Bose polarons in cold atoms.

Much of the theoretical work in recent years, however, has
been done within the framework of the Fröhlich paradigm
[15–17,22,24,25,29] and is, therefore, only valid when lin-
earity is maintained in the phonon field operators for the
impurity-phonon coupling. In crystal lattices, this linear rela-
tionship comes about because the electron’s potential energy
is proportional to the displacement of ions from their equi-
librium positions and effects from anharmonicity are usually
negligible [42]. In contrast, the linearity in atomic BECs
comes about because of impurity scattering of bosons between
the condensed and the noncondensed modes. However, the
impurity can also scatter bosons just between noncondensed
modes. As pointed out recently by Shchadilova et al. [43],
when the impurity-boson interaction is strong, an accurate
description requires including such scattering, which, because
both modes are to be treated quantum mechanically, intro-
duces terms bilinear in phonon field operators, leading to a po-
laron model that goes beyond the Fröhlich paradigm [43–45].

Of special relevance to our work here is a recent paper by
Grusdt et al. [45] on Bose polarons in one dimension, which
analyzed the experiment by Catani et al. [38] using a beyond-
Fröhlich model where bosons are described within Bogoli-
ubov theory. Despite the significant simplification afforded by
Bogoliubov theory, as long as the impurity remains mobile,
there is no known way to exactly solve the system (with
arbitrary impurity-boson coupling and in the thermodynamic
limit), be it modeled by the usual or the beyond-Fröhlich
Hamiltonian. We base our study on the same model in the
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paper by Grusdt et al. [45], except we treat the impurity as
static (i.e., localized in space). We carry out a field theoretical
analysis of this static model, which is exactly solvable, irre-
spective of the impurity-phonon coupling strength. We expect
such an exact treatment to offer insights that are valuable
to ongoing efforts of constructing many-body field theoretic
descriptions of (mobile) Bose polarons which go not only be-
yond the Fröhlich paradigm but also beyond Bogoliubov the-
ory. (The term “polaron” is usually reserved for a dressed mo-
bile impurity. Since the static impurity can be viewed as a mo-
bile impurity in the heavy-mass limit, throughout this work we
continue to use the same term for a dressed static impurity.)

Our paper is organized as follows. In Secs. II and III, we
briefly review the model and mean-field solution. In Sec. IV,
following a translation to displace phonon fields by their
mean-field values, we apply the generalized Bogoliubov trans-
formation to diagonalize (and hence solve exactly) the Hamil-
tonian associated with quantum fluctuations around the mean-
field solution. It has been well established that observables in
one-dimensional (1D) systems are plagued by infrared (IR)
divergences which trace their origin to a dramatic increase
in the density of states relative to its higher-dimensional
counterparts. The polaron energy obtained using our exact
solution is automatically free of the IR divergence that Grusdt
et al. [45] managed to eliminate from the mean-field polaron
energy using renormalization-group flow equations. In Sec. V,
we investigate in detail the eigenvalues and corresponding
eigenvectors of the Bogoliubov–de Gennes (BDG) equation
for quantum fluctuations and construct the polaron phase
diagram analytically. In agreement with Grusdt et al. [45],
we find that the repulsive polaron on the attractive side of the
impurity-boson interaction is distinguished by a bound state.
Further, we obtain an analytical expression for the binding
energy of this bound state. For the attractive polaron, quantum
Monte Carlo simulations by Parisi and Giorgini [32] suggest
that for weak boson-boson repulsion, bosons may undergo an
instability towards collapse around the impurity. For our static
case, we show that the attractive polaron branch is always
dynamically unstable within Bogoliubov theory, and further,
we provide an analytical formula for determining the rate at
which perturbations grow. We conclude our study in Sec. VI.

II. MODEL AND HAMILTONIAN

We consider a cold-atom mixture with an extreme popula-
tion imbalance where minority atoms are so outnumbered by
majority atoms (bosons) that they can be considered impuri-
ties submerged in a bath of bosons. We assume that the two
species have sufficiently different polarizabilities that impu-
rities and host bosons can be independently manipulated by
optical lattices. We specialize to the situation where one opti-
cal lattice traps and localizes impurities while another optical
lattice confines host bosons to a quasi-1D geometry (a tube).
In a nutshell, we base our theory on the experimental setup
described by Knap et al. [46] in their investigation of the An-
derson orthogonality catastrophe with the exception that 1D
bosons instead of 3D fermions constitute the majority atoms.

We model this system, which describes potential scattering
of bosons in one dimension, by the grand canonical Hamilto-

nian in momentum space,

Ĥ =
∑

k

(εk − μ)b̂′†
k b̂′

k + gBB

2V
∑
k,k′q

b̂
′†
k+qb̂

′†
k′−qb̂

′
k′ b̂

′
k

+ gIB

V
∑
k,k′

b̂
′†
k b̂′

k′ , (1)

where V is the quantization length and b̂′
k (b̂′†

k ) is the field
operator for annihilating (creating) a boson of mass mB with
momentum k and energy εk = k2/2mB . The first line in
Eq. (1) is the Hamiltonian for background bosons, with μ

the chemical potential and gBB (> 0) the effective 1D s-wave
interaction strength between two bosons. The second line in
Eq. (1) describes scattering between bosons and a localized
impurity through a delta function potential with an effective
1D strength gIB , which is fixed by the s-wave interaction
between the impurity and a background boson.

Instead of gIB and gBB , we may also measure two-body s-
wave interactions with the corresponding effective 1D scatter-
ing lengths aIB and aBB . In one dimension, a two-body delta
potential with strength g1D can be shown to produce an s-wave
scattering amplitude f (k) = −1/(1 + ika1D), where a1D =
−1/mrg1D and is defined as the 1D s-wave scattering length
and mr is the reduced mass between two colliding particles
[47]. Thus, for the case of an infinitely heavy impurity, the
two descriptions are related to each other according to

gBB = −2

mBaBB

, gIB = −1

mBaIB

. (2)

In cold-atom systems, effective 1D interaction strengths (and
hence also their corresponding scattering lengths) can be
tuned from negative to positive via confinement-induced res-
onance and are related to their 3D counterparts following
well-established recipes, irrespective of whether the impurity
and host bosons experience the same [47,48] or different [49]
trap frequencies.

As in our earlier publication [29], we limit our study to
near-zero temperatures where bosons are assumed to be in
the deep BEC regime, i.e., there is a macroscopic occupation
by bosons of the condensed (k = 0) mode. The Hohenberg-
Mermin-Wagner theorem only prohibits infinite 1D Bose
gases from forming a BEC [50,51] and, thus, does not apply to
quasi-1D Bose gases in actual cold-atom experiments, which
are neither strictly 1D nor infinite in size. By assuming the
existence of a k = 0 BEC mode, we are, in essence, anticipat-
ing future applications of our theory to relatively large trapped
gases in one dimension where true BECs exist at temperatures
near 0 [52].

In the spirit of the Bogoliubov approximation, we separate
out the condensed mode k = 0, treating b̂′

0 as the classical
field (c-number) b′

0, and replace the noncondensed fields
b̂′

k �=0 in favor of the phonon fields b̂k via the Bogoliubov
transformation

b̂′
k = ukb̂k − vkb̂

†
−k, (3)
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where

uk =
√

1

2

(
εk + gBBnB

ωk
+ 1

)
, (4a)

vk =
√

1

2

(
εk + gBBnB

ωk
− 1

)
, (4b)

and

ωk =
√

εk(εk + 2gBBnB ) = vBk

√
1 + (ξBk)2, (5)

where vB = √
nBgBB/mB is the phonon speed and

ξB = 1/
√

4mBnBgBB (6)

is the healing length.
The Bogoliubov approximation divides the boson-boson

interaction—the term associated with gBB in Eq. (1)—into
two pieces that depend on whether or not the condensed
bosons participate in the scattering process. The piece in
which all scattering partners come from noncondensed modes
(and is what Grusdt et al. [44,45] called the phonon-phonon
interaction) is neglected in the Bogoliubov approach. As such,
within Bogoliubov theory, the Bose gas can be approximated
as consisting of a condensate with number (line) density nB =
|b′

0|2/V and chemical potential μ = nBgBB and a collection
of noninteracting phonons that obey the dispersion spectrum
ωk in Eq. (5). This description was shown to hold quite well
by Lieb and Liniger (who solved the 1D Bose system exactly
and analytically) in the weak-interacting regime, where the
dimensionless coupling strength

γ ≡ mB |gBB |
nB

= 2

nB |aBB | (7)

is limited to γ � 2 [53,54]. γ in Eq. (7) is defined as the
ratio of the interaction energy scale nB |gBB | to the kinetic
energy scale n2

B/mB so that in one dimension, the lower
the boson number density, the stronger the interaction. In
the strong-interacting regime, where γ > 2, an accurate de-
scription must go beyond the Bogoliubov theory by including
phonon-phonon interactions [45].

Having separated out the condensed mode, we replace b̂′
k

with the phonon field operator b̂k and change Hamiltonian (1)
into [43–45]

Ĥ = Ĥ1 + Ĥ2, (8)

where

Ĥ1 = nBgIB +
∑

k

ωkb̂
†
kb̂k + 1√

V
∑

k

gk(b̂k + b̂
†
k ) (9)

and

Ĥ2 = gIB

V
∑

k

v2
k + 1

V
∑
kk′

g+
kk′ b̂

†
kb̂k′

+ 1

2V
∑
kk′

g−
kk′ (b̂

†
kb̂

†
k′ + b̂kb̂k′ ), (10)

with gk and g±
kk′ defined as

gk = gIB

√
nBχk, (11a)

g±
kk′ = gIB

2

(
χkχk′ ± χ−1

k χ−1
k′

)
, (11b)

where

χk =
√

εk/ωk. (12)

Ĥ1 in Eq. (9) represents the usual Fröhlich Hamiltonian in
the heavy impurity limit. The second line in Eq. (9), which
is traced to impurity scattering of a boson from the condensed
mode to a noncondensed mode, now represents single-phonon
scattering. Ĥ2 in Eq. (10) represents the part that goes beyond
the Fröhlich paradigm. The term gIB

∑
k v2

k/V arises from
normal ordering. The remaining terms in Eq. (10) describe
two-phonon scattering, which is traced to impurity scattering
of a boson between two noncondensed modes and is therefore
important in the limit of strong impurity-boson interactions.

III. MEAN-FIELD SOLUTION

In the absence of H2, Ĥ = Ĥ1 in Eq. (9), which has the
same mathematical form as the electron-phonon Hamiltonian
when the electrons are localized in space. This Hamiltonian is
known to have the exact solution [55]

|z〉 =
∏

k

|zk〉, (13)

where

|zk〉 = exp(zkb̂
†
k − z∗

kb̂k )|0〉 (14)

is the coherent state of mode k and zk = −gk/(ωk
√
V ). The

mean-field variational approach [5,20,43] amounts to assum-
ing that even when H2 is included, the ground state continues
to be in the product state, (13), but with zk a variational
parameter to be determined. The expectation value of the
Hamiltonian in the coherent state is

E (z, z∗) = 〈z|Ĥ (b̂, b̂†)|z〉 = Ĥ (z, z∗), (15)

where in the second equality we have used that Ĥ (b̂, b̂†) in
Eqs. (9) and (10) is in a normally ordered form. Minimizing
the energy E (z, z∗) with respect to zk leads to the saddle-point
equation

ωkzk + χk

V gIB

∑
k′

χk′zk′ = − gk√
V

. (16)

In arriving at Eq. (16), we have taken zk to be purely real
because the coupling constant gk is a real number. The mean-
field polaron energy, defined as E0 ≡ E (z, z∗) at the saddle
point, simplifies to

E0 = nBgIB + 1√
V

∑
k

gkzk + gIB

V
∑

k

v2
k. (17)

When zk in Eq. (17) is replaced with the solution to Eq. (16),

zk = − 1√
V

gk/ωk

1 + gIB

V
∑

k
χ2

k
ωk

, (18)
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the mean-field polaron energy takes its final form,

E0 = EM
0 + gIB

V
∑

k

v2
k, (19)

where

EM
0 ≡ nB

1
gIB

+ 1
V

∑
k

χ2
k

ωk

. (20)

The last term, gIB

∑
k v2

k/V , arises from the normal or-
dering of Ĥ2 in Eq. (10) and thus represents vacuum energy
contributed by quantum fluctuations associated with the inter-
action between the impurity and noncondensed bosons. In the
infrared limit, where the low-momentum cutoff, λ, approaches
0, the term gIB

∑
k v2

k/V diverges with λ logarithmically
as −gIB

√
mBnBgBB (ln λ)/2π . This log-divergence can be

traced to the 1D density of states being inversely proportional
to the square root of the energy, leading to a dramatic en-
hancement of quantum fluctuations in the IR limit. This same
enhancement was at the heart of the Hohenberg-Mermin-
Wagner theorem [50,51], which precludes a true BEC from
forming in a true 1D infinite Bose system. Following Grusdt
et al. [45], we remove the divergent term from E0, treating
EM

0 as “the polaron energy in the mean-field theory.” The
quotation marks are meant to indicate that EM

0 , obtained in
such a brute-force manner, should not be regarded as the result
of a consistent theory. That it agrees well with the exact result,
which is presented in the next section, means only that EM

0
may serve as a good measuring stick for our exact theory.

IV. EXACT SOLUTION

In this section, we solve Ĥ exactly and obtain a polaron
energy free of the IR divergence. We start by replacing the
phonon field operators b̂k and b̂

†
k with the shifted phonon field

operators

ĉk = b̂k − zk, (21a)

ĉ
†
k = b̂

†
k − z∗

k, (21b)

which describe quantum fluctuations around zk, the saddle-
point solution in Eq. (18). By virtue of the saddle-point
condition in Eq. (16), the Hamiltonian in terms of the shifted
operators is free of the Fröhlich terms (those linear in ĉk and
ĉ
†
k) and is given by

Ĥ = E0 +
∑

k

ωkĉ
†
kĉk + 1

V
∑
kk′

g+
kk′ ĉ

†
kĉk′

+ 1

2V
∑
kk′

g−
kk′ (ĉ

†
kĉ

†
k′ + ĉkĉk′ ), (22)

which is quadratic and is therefore exactly solvable.
Following the standard procedure, we introduce the quasi-

particle field operator d̂n through the generalized Bogoliubov
transformation

d̂n =
∑

k

(U ∗
nkĉk − V ∗

nkĉ
†
k ), (23a)

d̂†
n =

∑
k

(Unkĉ
†
k − Vnkĉk ), (23b)

where U and V are N × N matrices, with N being the total
number of modes in momentum k space. The nth row of the
U and V matrices contains the nth eigenstate, (Un, Vn)T , of
the eigenvalue equation

M

(
Un

Vn

)
= wn

(
Un

Vn

)
, (24)

where M is the 2N × 2N matrix

M ≡
(

A B

−B −A

)
, (25)

with A and B being the N × N matrices, whose components
are

Akk′ = ωkδk,k′ + g+
kk′

V , (26)

Bkk′ = g−
kk′

V . (27)

Note that the generalized Bogoliubov transformation, (23),
mixes annihilation and creation operators in exactly the same
manner as the multimode squeezing operator in quantum
optics [56]. In the beyond-Fröhlich model, squeezing is traced
to simultaneous creation or annihilation of two noncondensed
bosons by impurity scattering, which are nonlinear matter
wave mixing processes akin to parametric up and down
conversion of light waves, which are responsible for the
squeezing phenomenon in quantum optics.

If all eigenvalues are real, we can cast Hamiltonian (22)
into the diagonal form

Ĥ = EM
0 +

∑
n

wnd̂
†
nd̂n + 1

2

(∑
n

wn −
∑

k

ωk

)

+ gIB

V
∑

k

v2
k − 1

2

∑
k

g+
kk

V , (28)

which is in terms of d̂n, where the sum over n is only over
eigenstates |wn〉 with positive norm 〈wn|ζ |wn〉 > 0, where ζ

is the 2N × 2N matrix

ζ =
(

I 0

0 −I

)
, (29)

with I the N × N identity matrix. In other words, the sum
over n includes only those eigenmodes which can be normal-
ized to +1 with metric ζ :

〈wn|ζ |wn〉 = 1 (30)

or, explicitly, ∑
k

(|Unk|2 − |Vnk|2) = 1. (31)

The fact that Ĥ in Eq. (22) is exactly solvable by the gen-
eralized Bogoliubov transformation means that the ground
polaron state for the beyond-Fröhlich model is an exact mul-
timode squeezing state.

Equation (24) is the bosonic analog of the Bogoliubov–
de Gennes equation for fermions in the state of superfluid
pairings. In contrast to the matrix in the BDG equation for
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fermions, which is Hermitian, the matrix M in the BDG equa-
tion for bosons [Eq. (24)] is non-Hermitian and its eigenvalues
can be complex. Just as there exists an intrinsic antiunitary
particle-hole symmetry in the fermionic BDG [57], there
exists, in the bosonic BDG equation, (24), an analogous built-
in symmetry,

τMτ−1 = −M, (32)

which maps M to −M , with τ being the orthogonal matrix

τ =
(

0 I

I 0

)
. (33)

As a consequence of this “particle-hole” symmetry, for every
eigenvector |wn〉 = (Un, Vn)T with a nonvanishing eigenvalue
wn, there corresponds an eigenvector

|−wn〉 = τ |wn〉 = (Vn,Un)T (34)

with an eigenvalue −wn. Eigenvalues in our system therefore
appear in pairs with opposite signs

Thus, there arise three possible scenarios for stability of
the system. (a) The system is said to be dynamically unstable
if one or more pairs of eigenvalues are complex—an expo-
nentially small perturbation can cause the system to depart
irreversibly from equilibrium. In the absence of any pairs of
complex eigenvalues; (b) the system is said to be thermody-
namically unstable if one or more eigenvalues associated with
eigenvectors normalizable to +1 with metric ζ are negative—
such a state cannot be created adiabatically by gradually
reducing the entropy associated with the thermal energy; and
(c) the system is said to be thermodynamically stable if all
eigenvalues associated with eigenvectors normalized to +1
with metric ζ are positive.

In cases (b) and (c), i.e., those without complex eigenval-
ues, Eq. (28) holds true. We are thus led to define

E0 = EM
0 + 1

2

(∑
n

wn −
∑

k

ωk

)
− gIB

2V
∑

k

(35)

as the polaron energy in a metastable state for case (b) and the
polaron energy in the ground state for case (c).

In case (a), Eq. (28) does not apply because modes with
complex eigenvalues arise. Such modes always have a vanish-
ing norm with respect to metric ζ and are therefore excluded
from Eq. (35), where the sum is limited only to modes
normalizable to +1 with metric ζ . Thus, for case (a), Eq. (35),
in fact, is well defined. In the present study, we continue
to use Eq. (35) as the “polaron energy” for case (a). For
a polaron system where complex eigenvalues are all purely
imaginary, Eq. (35) gives the exact polaron energy in the limit
of vanishingly small imaginary eigenvalues. In this situation,
for all practical purposes, the polaron can be considered as
dynamically stable. Since in our system, complex eigenvalues
are purely imaginary and have small imaginary parts (as we
discuss in the next section), the use of Eq. (35) for the polaron
energy is not particularly unreasonable.

A comment is in order concerning IR and ultraviolet (UV)
divergences. The last term in Eq. (28), when making use of
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FIG. 1. The top row displays the polaron energy as a function
of η = gIB/gBB ; the bottom row, as a function of 1/η. The exact
polaron energy, E0, is represented by solid black curves, and the
mean field polaron energy, EM

0 , by dashed blue curves. (a), (c)
γ = 0.04; (b), (d) γ = 0.4. The dashed red line marks the critical
value ηc = −2/

√
γ . In each plot I, II, and III indicate phases, which

are explained in Sec. V and in the caption to Fig. 2.

g+
kk in Eq. (11b) and vk in Eq. (4b), becomes

1

2

∑
k

g+
kk

V = gIB

V
∑

k

v2
k + gIB

2V
∑

k

, (36)

which is found to contain an identical IR divergence term,
gIB

∑
k v2

k/V . This explains how the sum of the last two terms
in Eq. (28) eliminates the IR divergence, but it gives rise to
a UV divergence represented by the last term in Eq. (35).
The middle term in Eq. (35) (which, in a Fermi polaron
system [58], is finite because of the Fermi surface) is found
(numerically) to contain a UV divergence that is identical
and therefore cancels the UV divergent term in Eq. (35).
In conclusion, the polaron energy in one dimension, when
quantum fluctuations are taken care of exactly, are free of both
IR and UV divergences.

Figure 1 compares, within the weakly (Bose-Bose) in-
teracting regime, the exact polaron energy E0 (solid black
curves), given by Eq. (35), with the mean-field polaron energy
EM

0 (dashed blue curves), given by Eq. (20). The energies
are given as a function of η, where η is the dimensionless
parameter

η = gIB

gBB

, (37)

which measures the impurity-boson interaction relative to the
boson-boson interaction. For η > 0, the polaron is repulsive
and the energy increases with η monotonically from 0 until it
saturates in the limit of large positive η. For η < 0, the polaron
changes from attractive to repulsive as η decreases across a
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critical value,

ηc = −2/
√

γ , (38)

at which the denominator in EM
0 [Eq. (20)] vanishes, the de-

tails of which we present in the next section. When the polaron
energy is plotted as a function of η−1, it becomes evident that
the two branches of repulsive polarons, which are separated
in η space, are actually adiabatically connected—there is a
smooth crossover when η−1 changes across 0 (unitarity).

It can be seen that quantum fluctuations, which are absent
in the mean-field approach, offset almost entirely the IR-
divergent term in E0, the last term in Eq. (19), so that the
exact polaron energy E0 remains fairly close to EM

0 . That
the two results are very close to each other, even in the limit
of large |η|, is expected to be the case only in the limit of
an infinitely heavy impurity. For a mobile impurity, impurity
recoil contributes additional terms to the Hamiltonian that are
inversely proportional to the impurity mass. As the impurity
becomes lighter, E0 is expected to become increasingly differ-
ent from EM

0 , especially in the strong-coupling regime where
|η| is large [45].

V. EIGENVALUE ANALYSIS AND EXACT
PHASE DIAGRAMS

We can gain significant insight into the stability of the
system by analyzing the eigenvalue matrix equation. We now
work to solve the eigenvalue and eigenvector problem from
the coupled equations. (In this section, when no confusion is
likely to arise, we drop the subscript n and write wn,Unk, and
Vnk as w,Uk, and Vk for notational simplicity.) We first define,
for each k, the two variables X±

k as(
X+

k

X−
k

)
= 1

2

(
1 1

1 −1

)(
Uk

Vk

)
(39)

and transform Eq. (24) into

(
X+

k

X−
k

)
= gIB

V

⎛
⎝ χkωk

w2−ω2
k
,

χ−1
k w

w2−ω2
k

χkw

w2−ω2
k
,

χ−1
k ωk

w2−ω2
k

⎞
⎠(

a+

a−

)
, (40)

where a± are constants defined as

a+ =
∑

k

χkX
+
k , a− =

∑
k

χ−1
k X−

k . (41)

This leads to the following linearly coupled homogeneous
equations for a±:(

g−1
IB + I+(w2) wI0(w2)

wI0(w2) g−1
IB + I−(w2)

)(
a+

a−

)
= 0, (42)

where

I0(x) = 1

V
∑

k

1

ω2
k − x

, (43a)

I±(x) = 1

V
∑

k

χ±2
k ωk

ω2
k − x

. (43b)

The eigenvalues follow from the vanishing of the determinant
and, thus, are the roots of the equation

F (w2) ≡ −w2[I0(w2)]2 + [
g−1

IB + I+(w2)
][

g−1
IB + I−(w2)

]
.

(44)

The corresponding eigenvectors are given by

Uk = χk

w − ωk

f√
V

[
1 − g−1

IB + I+(w2)

wχ2
kI0(w2)

]
, (45a)

Vk = −χk

w + ωk

f√
V

[
1 + g−1

IB + I+(w2)

wχ2
kI0(w2)

]
, (45b)

where f is determined by the normalization condition, (31).
The system is dynamically unstable if w is a complex

number. For our system, when complex eigenvalues occur,
numerical simulations suggest that there exists no more than
a single pair. Then the complex eigenvalues must be purely
imaginary, as we explain. In addition to the particle-hole
symmetry, (32), our BDG equation has the time-reversal
symmetry

KMK−1 = M, (46)

where K is the complex conjugate operation. This implies that
for every eigenvector |wn〉 = (Un, Vn)T with nonvanishing
eigenvalue wn, there exists an eigenvector

|w∗
n〉 = K|wn〉 = (U ∗

n , V ∗
n )T (47)

with eigenvalue w∗
n. In consequence, for a complex eigenvalue

wn, in addition to the pair wn and −wn guaranteed by the
particle-hole symmetry, there exists another pair, w∗

n and
−w∗

n, guaranteed by the time-reversal symmetry. For real
eigenvalues the second pair is redundant, since it is identical
to the first pair. For complex eigenvalues, however, only when
they are purely imaginary are the two pairs equivalent. Thus,
in our case where among all pairs of eigenvalues, only one pair
is complex, complex eigenvalues must be purely imaginary.

As a result, our system makes a transition from thermody-
namically stable or metastable to dynamically unstable when
w2 changes from positive to negative, which obviously occurs
at w2 = 0. Since Eq. (44) must be satisfied, we have for
w2 = 0 either

1

gIB

+ 1

V
∑

k

χ−2
k

ωk
= 0 (48)

or

1

gIB

+ 1

V
∑

k

χ2
k

ωk
= 0. (49)

The first possibility, (48), can be shown to be satisfied when

gIB = 0 (50)

(more precisely, gIB = 0−), which is expected to be unique to
one dimension, since in arriving at it, we made explicit use
of the IR divergence—the sum in Eq. (48) equals mB/πλ

in the continuous limit and hence diverges in the IR limit
when λ → 0+. The second condition, (49), coincides with
the mean-field singularity, where the polaron changes from
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FIG. 2. The three phases of our system: thermodynamically sta-
ble (phase I), dynamically unstable (phase II), and thermodynam-
ically unstable (phase III). The phase diagram at the top indicates
where these phases occur in the one-dimensional gIB -parameter
space. The bottom phase diagram equivalently indicates where these
phases occur in the two-dimensional (η, γ )-parameter space.

attractive to repulsive (as mentioned in the previous section)
and is equivalent to

gIB = gc ≡ −
√

4nBgBB

mB

. (51)

Since gIB in one dimension has dimensions of energy ×
length, we define

ḡIB = gIB

1/(mBξB )
(52)

as a unitless parameter that measures the impurity-boson s-
wave interaction in units of 1/mBξB , where ξB is the healing
length defined in Eq. (6). The second critical condition, (51),
is then simply

ḡIB = ḡc ≡ −1. (53)

Thus, the ḡIB-phase diagram is very simple. It is divided into
phase I, where ḡIB > 0; phase II, where −1 < ḡIB < 0; and
phase III, where ḡIB < −1. Further, ḡIB is related to γ (>0)
in Eq. (7) and η in Eq. (37) according to

ḡIB = η
√

γ /2. (54)

As a result, for the (η, γ )-phase diagram, the three segments
in the ḡIB-phase diagram morph into three areas bordered by
η
√

γ = −2, η = 0, and γ = 0. The ḡIB- and (η, γ )-phase
diagrams are shown in Fig. 2.

We now examine F (w2) in Eq. (44) and solve for its
roots, i.e., the solutions to F (w2) = 0, which allows us to
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FIG. 3. Each row displays the function F (w2), given in Eq. (44),
as a function of w2 for one of the three phases. The roots of F (w2),
i.e., the points at which it crosses the horizontal axis, are the square
of the eigenenergies, w2

n, of the eigenvalue equation, (24). In all plots
γ = 0.04. (a), (c), (e) F (w2) as computed with the discrete sums
in Eqs. (43); (b), (d), (f) F (w2) in the continuous limit where the
discrete sums are replaced with integrals with respect to momentum.
By comparing the left column with the right, we can see how discrete
roots survive in the continuous limit. (a), (b) Phase I with ḡIB =
gIB/(mBξB )−1 = 0.5 (equivalently, η = 5); (c), (d) phase II with
ḡIB = −0.5 (η = −5); (e), (f) phase III with ḡIB = −1.5 (η = −15).

determine the stability properties of the three phases in the
phase diagrams. Figure 3 plots F (w2) as a function of w2. We
find that the function contains poles that are regularly spaced
at the locations of ω2

k with a single root trapped between
adjacent poles. We refer to these as “regular” roots. The
totality of the regular roots when converted to energy forms
the continuum part of the eigenenergy spectrum. Figure 3(a)
illustrates a typical F (w2) in phase I (of the phase diagrams),
in which every root is a regular one sandwiched between
adjacent poles. Figures 3(c) and 3(e) illustrate a typical F (w2)
in phases II and III, respectively. In phase II, in addition to
the regular roots, there emerges an isolated root that lies at
w2 < 0, but close to the origin. In phase III, F (w2) again
maintains the same pattern with respect to the regular roots,
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but now also contains one additional w2 > 0 root, where two
roots lie between adjacent poles. In the continuum k limit,
one of the two roots joins the continuum while the other one
becomes part of the discrete spectrum.

We can determine the discrete spectrum by moving to
the continuous-k limit by converting discrete sums over k in
Eq. (43) to integrals over k, which can be evaluated analyti-
cally. We arrive at the results

In=0,±(x) =
{
I>
n (x) if x > 0,

I<
n (x) if x < 0,

(55)

where

I>
± (x) = (−

√
b2 + x ∓ b)I>

0 (x), (56a)

I>
0 (x) = −√

mB/8√
b2 + x

√
b + √

b2 + x
, (56b)

and

I<
± (x) = [

√−x + (1 ∓ 1)b]I<
0 (x), (57a)

I<
0 (x) =

√
b + √

b2 + x −
√

b − √
b2 + x√

8/mB

√−x
√

b2 + x
, (57b)

with

b = nBgBB. (58)

Figures 3(b), 3(d) and 3(f) show how isolated roots change
as a function of ḡIB . In Fig. 3(b), which illustrates phase I,
there is no isolated root. The isolated negative root can be
seen to emerge as ḡIB decreases from being positive in phase
I to being negative in phase II, as shown in Fig. 3(d). The
isolated root then changes from negative to positive as ḡIB

decreases further and we go from phase II to phase III, as
shown in Fig. 3(f). All of this is in complete agreement with
our previous analysis of F (w2) using discrete sums.

We now look more closely at the discrete roots in phases
II and III. In phase II, the discrete root has w2 < 0, making w

purely imaginary, as explained previously. The value of w is
found, with the help of Eq. (57a), to obey

0 = g−2
IB + 2I<

0 (w2)(b +
√

−w2)
[√−w2I<

0 (w2) + g−1
IB

]
,

(59)

which can be solved analytically with the result

w = ±i
|gIB |mB

2

√
g2

c − g2
IB. (60)

As displayed in Fig. 4, the (absolute) imaginary part of
the root reaches its maximum mBg2

c /4 at gIB = gc/
√

2 but
becomes 0 near the two critical points, which are boundaries
with phases I and III, where the dynamics is expected to un-
dergo a critical slowing-down. Because mBg2

c /4 = γ n2
B/mB ,

for a fixed boson number density, the smaller γ , the smaller
the imaginary part.

A comment is in order concerning the (attractive polaron)
state in phase II always being dynamically unstable, irrespec-
tive of the coupling strength γ . It is well known that bosons,
when subject to an attractive interaction with an impurity,
have a tendency to collapse around the impurity. For small
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10 �d�

wb

FIG. 4. The top row shows the (absolute) imaginary part of the
(purely imaginary) eigenvalue in Eq. (60) in phase II as a function of
gIB when (a) γ = 0.04 and (b) γ = 0.4. The bottom row shows the
bound-state energy, i.e., the single negative eigenvalue wb = −|wb|,
where |wb| is given in Eq. (62), in phase III as a function of gIB

when (c) γ = 0.04 and (d) γ = 0.4 (solid green curves). We include
in the bottom row the exact polaron energy, E0, shown in Figs. 1(a)
and 1(b), as the dashed curves.

γ , the boson-boson repulsion may not be sufficiently strong
to prevent such collapse, but as γ increases, the repulsion
is expected to increase the stability of the attractive polaron.
This trend appears to be confirmed by the quantum Monte
Carlo simulation by Parisi and Giorgini [32], who studied a
1D Bose polaron system with a mobile impurity and a Bose
gas having a finite number of bosons. That our results do not
support this may be an artifact of Bogoliubov theory where
the repulsive phonon-phonon interaction is ignored so that an
increase in γ will not translate into an increased repulsion
between phonons in the cloud surrounding the impurity. Also,
for a mobile impurity, when moving to a frame attached to
the impurity, one can easily see that the impurity motion
induces a phonon-phonon interaction, which seems also to
stabilize the attractive polaron judging from the results of
Grusdt et al. [45].

In phase III, the discrete root has w2 > 0 and is found, with
the help of Eq. (56a), to obey

g−1
IB − 2

√
b2 + w2I>

0 (w2) = 0, (61)

which can be solved analytically with the result

|w| = |wb| ≡ |gIB |mB

2

√
g2

IB − g2
c . (62)

The subscript b in wb is to stress that this is the binding energy
of a bound state, which we now explain.

Recall from Sec. IV that for every real eigenvalue, there
corresponds a partner eigenvalue with opposite sign, but only
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FIG. 5. Boson number density profiles for (a) gIB/(mBξB )−1 = −3, (b) gIB/(mBξB )−1 = −1.5, (c) gIB/(mBξB )−1 = −0.3, (d)
gIB/(mBξB )−1 = 0.3, and (e) gIB/(mBξB )−1 = 1.5. For all plots γ = 0.4. (a), (b) Phase III, (c) phase II, and (d), (e) phase I.

the eigenvalue whose eigenvector has positive norm (with
respect to metric ζ ) is physically meaningful and is retained in
calculations. To determine whether it is w = +|wb| or −|wb|
that is physically meaningful, we first use Eqs. (45) to evaluate
Uk − Vk and Uk + Vk, which simplify, under condition (61),
to

Uk − Vk = 2χkwb

w2
b − ω2

k

f√
V

(
1 − ω2

k

εk

2

g2
IBmB

)
(63)

and

Uk + Vk = 2χkωk

w2
b − ω2

k

f√
V

(
1 − 2w2

b

εkg
2
IBmB

)
. (64)

Further algebraic manipulation of the product of Eqs. (63) and
(64) and the substitution of w2

b in Eq. (62) into the parentheses
in Eq. (64) yields

U 2
k − V 2

k = −wb

f 2

V
8

mBg2
IB

[
εk − mB

2

(
g2

IB − g2
c

)]2(
w2

b − ω2
k

)2 , (65)

which always has the opposite sign as wb (regardless of
the momentum mode). We thus conclude that the physical
solution corresponds to the bound state with negative energy
−|wb|.

In one dimension, it is well known that for an atom in
a negative delta function potential −|gIB |δ(x), there exists
a single bound state with energy −g2

IBmB/2, which, for a
mobile impurity, becomes the energy of a dimer, −g2

IBmr/2,
where mr is the reduced mass between the impurity and the
atom. It is thus not surprising that wb in Eq. (62) approaches
this energy in the limit where bosons in the bath do not
interact with each other (gBB = 0 = gc). Figure 4 illustrates
the bound-state energy, Eq. (62), as a function of gIB . As
can be seen, the state is deeply bound when gIB is tuned
far less than gc and becomes shallowly bound when gIB is
tuned close to gc from below. The mean-field polaron energy
develops a singularity when the bound-state energy is tuned
right at and therefore is on resonance with the continuum
threshold, reminiscent of Feshbach resonance, which occurs
when a bound state in the closed channel drops below the
continuum of the ground state.

In summary, the energy spectrum in phase I consists only
of the continuum and phase I is thermodynamically stable
and supports stable ground polaron states. In phase II, there
is a pair of imaginary eigenvalues and states in phase II
are dynamically unstable. Finally, the energy spectrum in
phase III contains a bound state isolated from the continuum

and phase III is thermodynamically unstable and therefore
supports metastable polaron states.

We conclude this section by taking a look at the bo-
son number density profile in each phase, with the detailed
derivation being left to Appendix A. Figure 5 samples the
density profile, n(x), for a quasi-1D Bose gas along the x

dimension. In phase I where gIB > 0, the ground state is a
repulsive polaron (E0 > 0) and indeed the impurity (located
at the origin x = 0) repels nearby bosons, creating a hole
at its location. As gIB drops from positive to negative, the
system enters phase II, where the polaron becomes attractive
(E0 < 0) and indeed the impurity pulls nearby bosons towards
it, causing bosons to pile up at the impurity location. As gIB

is lowered below gc, the system enters phase III, where the
state becomes a repulsive polaron again (E0 > 0), but with a
more intriguing density profile. In phase III, in addition to a
peak at the impurity location, a hole near (but not exactly at)
the impurity location develops. As gIB gets farther away from
the critical point gc, the peak at x = 0 continuously decreases
while the hole becomes deeper and gets close to the impurity.
As such, at the extreme end of phase III, where gIB = −∞,
the density profile looks identical to that at the extreme end
of phase I, where gIB = +∞, demonstrating once again that
there is a smooth crossover between the two repulsive phases,
as we saw in the polaron energy diagram in Fig. 1.

VI. CONCLUSION

We considered a 1D Bose polaron in the static limit where
the Bose gas is described within Bogoliubov theory but the
impurity-phonon coupling is modeled by terms that go beyond
the Fröhlich paradigm. We diagonalized exactly the beyond-
Fröhlich Hamiltonian by applying the generalized Bogoliubov
transformation. With our exact solution, we computed boson
number density profiles and a polaron energy that is free of
divergences common to 1D systems. In Appendix B we use
the quasiparticle residue as an example to illustrate that other
polaron properties can also be obtained exactly within our ap-
proach. Following a detailed stability analysis, we constructed
analytically the polaron phase diagram. We found that the
repulsive polaron on the negative side of the impurity boson
interaction is always thermodynamically unstable due to the
presence of a bound state existing slightly above the vacuum
dimer energy, whereas the attractive polaron on the negative
side of the impurity-boson interaction has a pair of imaginary
energies and is therefore always dynamically unstable.

A vast number of problems in many-body physics are too
complex to undergo exact treatment. Exactly solvable models,
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though small in number, are extremely useful. A good grasp of
an exactly solvable model helps one to gain insight into, and
therefore find ways to solve approximately, more complicated
models that can be reduced to the exactly solvable one under
limited (but often extreme) conditions. There are many ways
in which the present study can benefit research in Bose
polarons in cold atoms. Our exact treatment can be adapted
straightforwardly to static models in higher dimensions. The
ideas behind our exact ansatz can be explored for developing
variational ansatzes that approximate, more accurately, the
ground states of mobile polarons. The present study provides
insight for developing and understanding more realistic mod-
els where phonon-phonon interactions are included. When
equipped with the local density approximation, our approach
can be adapted to treat polarons in traps of sizes much larger
than the healing length.

APPENDIX A: BOSON NUMBER DENSITY PROFILES

The boson number density in position space, n(r), is
defined as

n(r) = 〈�̂†(r)�̂(r)〉, (A1)

where �̂(r) = ∑
k b̂′

ke
ik·r/

√
V is the boson field operator in

position space. After singling out the condensed mode, we
express the number density in terms of the noncondensed field
modes b̂′

k �=0 as

n(r) = nB +
√

nB

V
∑

k

(〈b̂′
k〉eik·r + H.c.)

+ 1

V
∑
k,k′

〈b̂′†
k b̂′

k′ 〉e−i(k−k′)·r. (A2)

With the help of Eqs. (3) and (21), we write b̂′
k in terms of the

shifted phonon field operator ĉk as

b̂′
k = (ukzk − vkzk ) + (ukĉk − vkĉ

†
−k ), (A3)

where uk and vk are defined in Eqs. (4). It then becomes an
easy exercise to show that the expectation values of b̂′

k, and
b̂

′†
k b̂′

k′ in Eq. (A2) are given, respectively, by

〈b̂′
k〉 = ukzk − vkzk (A4)

and

〈b̂′†
k b̂′

k′ 〉 = (ukzk − vkzk )(uk′zk′ − vk′zk′ ) + 〈. . . 〉, (A5)

where

〈. . . 〉 = vkvk′δk,k′ + ukuk′ρk′k − ukvk′κk,−k′

− vkuk′κk′,−k + vkvk′ρ−k,−k′ , (A6)

with

ρkk′ = 〈ĉ†k′ ĉk〉 =
∑

n

VnkVnk′ (A7)

the single-particle density matrix element and

κkk′ = 〈ĉk′ ĉk〉 =
∑

n

VnkUnk′ (A8)

the single-particle pair matrix element. Finally, replacing 〈b̂′
k〉

and 〈b̂′†
k b̂′

k′ 〉 in Eq. (A2) with Eqs. (A4) and (A5), respectively,
we arrive at the boson density profile

n(r)

nB

= nM (r)

nB

+ 1

nBV
∑

k

v2
k

+ 1

nB

∑
n

[
I n
uV (r)2 + I n

vV (r)2 − 2I n
uV (r)I n

vU (r)
]
,

(A9)

where

nM (r)

nB

= 1 + 2√
nB

I (r) + 1

nB

I (r)2 (A10)

is the boson number density profile in the mean-field theory.
In the above equations, we introduced four summations,

I (r) = 1√
V

∑
k

zk(uk − vk ) cos (k · r), (A11)

I n
uV (r) = 1√

V
∑

k

ukVnk cos (k · r), (A12)

I n
vV (r) = 1√

V
∑

k

vkVnk cos (k · r), (A13)

I n
vU (r) = 1√

V
∑

k

vkUnk cos (k · r), (A14)

which become integrals over the momentum in the thermody-
namic limit. The density profiles in Fig. 5 are produced using
these equations for a 1D Bose gas along the x dimension.

APPENDIX B: QUASIPARTICLE RESIDUE

Our exact solution allows observables that are of experi-
mental interest to be evaluated in systems described by the
beyond-Fröhlich Hamiltonian. In this Appendix we demon-
strate the utility of our exact solution by computing a quantity
called the quasiparticle residue, whose definition we review.
At zero temperature, phonons are in the phonon vacuum state
|0〉 in the absence of the impurity but are in the interacting
ground state |φ〉 in the presence of the impurity. The modular
square of the overlap integral, 〈0|φ〉, between the ground
phonon state with and without impurity scattering,

Z = |〈0|φ〉|2, (B1)

is defined as the quasiparticle residue. The quasiparticle
residue quantifies the amount of bare impurity (vacuum) that
remains in the interacting ground state.

The present problem has a fermionic analog—a localized
impurity immersed in a bath of fermionic atoms at zero
temperature. In solid-state physics, a well-known example
is x-ray absorption, which creates a core hole in the midst
of conduction electrons [55]. Treating the core hole as a
localized impurity represented by a static potential, Anderson
[59] studied the influence of this static potential on a Fermi
sea by computing the quasiparticle residue where state |0〉 in
Eq. (B1) is treated as the Fermi sea. The result is summarized
in the well-known formula

Z = C0N
−(δF /π )2

F , (B2)
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where NF is the total number of fermions, δF =
− tan−1 (gIF πnF ) (with nF the number density) is the
phase shift stemming from the s-wave scattering of electrons
by the impurity with strength gIF , and C0 is a prefactor
which, though complicated, has an analytical expression [60].

The question we address in this Appendix is, What is the
analog of Eq. (B2) for our system described by the beyond-
Fröhlich Hamiltonian? We begin by observing that state |φ〉
can be obtained from the phonon vacuum |0〉 after two succes-
sive unitary transformations. The first unitary transformation,
D(z), is defined by

ĉk = D(z)b̂kD
†(z),

ĉ
†
k = D(z)b̂†kD

†(z), (B3)

where D(z) is found, with the help of Eqs. (21), to be the
well-known displacement operator

D(z) = exp

[∑
k

(ẑkb
†
k − z∗

kb̂k )

]
. (B4)

D(z) transforms Ĥ , the Hamiltonian in Eq. (8), to

Ĥ ′ = D†(z)ĤD(z), (B5)

where Ĥ ′ is identical to Ĥ in Eq. (22) except ĉk (ĉ†k) in
Eq. (22) is replaced with b̂k (b̂†k), which are now interpreted
as the field operators in the Hilbert space defined by D(z).

The second unitary transformation, S, is defined by

d̂n = Sb̂kn
S†, (B6)

d̂†
n = Sb̂

†
kn

S†, (B7)

which can be solved, in principle, from the Bogoliubov trans-
formation, (23) [but with ĉk (ĉ†k) replaced with b̂k (b̂†k)], in
terms of operators defined in Fock space. S transforms Ĥ ′ in
Eq. (B5) to

Ĥ ′′ = S†Ĥ ′S, (B8)

where Ĥ ′′ is identical to Ĥ in Eq. (28) except d̂n (d̂†
n) in

Eq. (28) are replaced with b̂kn
(b̂†kn

), which are now interpreted
as field operators in the Hilbert space defined by S.

As a result, the interacting polaron state is given by

|φ〉 = D(z)S|0〉, (B9)

where S|0〉 is a normalized state given by [61]

S|0〉 =
exp

(
1
2

∑
k,k′ b̂

†
kWkk′ b̂

†
k′

)
4

√
det

(
U †U

) |0〉, (B10)

where W is a matrix defined as

W = U ∗−1V ∗. (B11)

The quasiparticle residue Z in Eq. (B1) becomes the
overlap between coherent state | − z〉 and state S|0〉: Z =
|〈−z|S|0〉|2 or, explicitly,

Z = exp
[∑

k

(∑
k′ zkWkk′zk′ − z2

k

)]
|det U | , (B12)

where the use of 〈−z|0〉 = exp(−∑
z2

k/2) is made and all
variables involved are assumed to be real. Equation (B12)
is the analog of Eq. (B2) we sought for our model. As
expected, Eq. (B12) simplifies to the mean-field result Z =
exp (−∑

k z2
k ) [20,45] in the absence of quantum fluctuations,

where V is a null matrix and U is an identity matrix.
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