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We investigate the response to superlattice modulation of a bosonic quantum gas confined to arrays of tubes
emulating the one-dimensional Bose-Hubbard model. We demonstrate, using both time-dependent density-
matrix renormalization-group and linear response theory, that such a superlattice modulation gives access to
the excitation spectrum of the Bose-Hubbard model at finite momenta. Deep in the Mott insulator, the response
is characterized by a narrow energy-absorption peak at a frequency approximately corresponding to the on-site
interaction strength between bosons. This spectroscopic technique thus allows for an accurate measurement of
the effective value of the interaction strength. On the superfluid side, we show that the response depends on
the lattice filling. The system can either respond at infinitely small values of the modulation frequency or only
above a frequency threshold. We discuss our numerical findings in light of analytical results obtained for the
Lieb-Liniger model. In particular, for this continuum model, bosonization predicts power-law onsets for both
responses.
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I. INTRODUCTION

The one-dimensional Bose-Hubbard model, one of the
most celebrated models of many-body quantum physics,
describes the intriguing interplay of quantum kinetic pro-
cesses and local interaction. Although conceptually simple,
this model is not exactly solvable even in one dimension,
but, thankfully, due to years of hard work, its ground-state
phase diagram is now well understood ([1–6] and references
therein). For commensurate filling, an interaction-induced
Mott insulator and a superfluid state are known to be separated
at a critical value of the interaction strength by a quantum
phase transition of the Kosterlitz-Thouless type, while for
incommensurate filling, the system remains superfluid for
arbitrary interaction strength. Since the first realization of the
Bose-Hubbard model using ultracold atoms in optical lattices
more than a decade ago [7,8], various experimental verifi-
cations of the properties of the one-dimensional model have
been carried out [9–14]. Despite these advances, fully under-
standing the excitation spectrum of the Bose-Hubbard model
still requires more work. In this light, the development of pow-
erful techniques to probe the excitations of cold-atom systems
is extremely promising. Particularly useful are spectroscopic
methods such as radio frequency, Raman, Bragg, or lattice
modulation spectroscopy which give access to single-particle,
density, or kinetic-energy spectral functions [9,11,12,14–18].

The latter method, lattice modulation spectroscopy, mea-
sures the response of a system to a time-dependent modu-
lation of the lattice amplitude. In bosonic gases, the energy
added to the system due to the modulation is extracted from
the broadening of the central momentum peak in a time-of-
flight measurement. Lattice modulation spectroscopy was first
introduced to characterize the excitations across the phase

transition between the superfluid and Mott-insulating states
and has been applied to different geometries, including one-
dimensional lattices [11,14]. A sizable corpus of theoretical
studies has shown that for Bose-Hubbard systems, this mea-
surement technique is an adequate probe of the excitations
at zero quasimomentum transfer [19–26]. Moreover, lattice
modulation spectroscopy was employed to study strongly
interacting bosons loaded in disordered lattices [27,28] and
ladder structures [29] and to reveal signatures of the Higgs
mode in the two-dimensional superfluid system near the tran-
sition to the Mott phase [30,31].

However, most of the previous lattice modulation se-
tups only considered excitations at low momenta as stan-
dard lattice modulation spectroscopy conserves quasimomen-
tum. Here we propose instead to use superlattice-modulation
spectroscopy to probe the excitation spectrum of the Bose-
Hubbard model at finite momenta. Superlattice-modulation
spectroscopy has recently been proposed in fermionic systems
as a technique to measure the temperature of a noninteracting
system [32] and to detect signatures of the exotic bond order
wave phase in the ionic Hubbard model [33]. In contrast
with standard lattice amplitude modulation, this approach
modulates the lattice amplitude in a dimerized fashion such
that a finite momentum π/a is transferred to the atoms (where
a is the lattice spacing). To do so, one should choose the
superlattice configuration such that the bottom offsets stay
approximately constant corresponding to a dimerized modula-
tion of the hopping amplitude. Experimentally, the parameters
of the laser beams forming the optical superlattice config-
uration can be fine tuned such that the equilibrium lattice
is approximated by the simple form V0(x) = V0 sin2(kLx).
Additionally, a time-periodic and site-alternating modulation
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of the lattice height δV (x, t ) ≈ A sin(ωt ) sin(kLx) (for small
amplitude A) can be engineered by periodically tuning in
time the phase between the laser waves generating the optical
superlattice. Here, kL is the magnitude of the wave vector of
the lattice light.

We study here the response of the one-dimensional Bose-
Hubbard model to superlattice modulation using the time-
dependent density-matrix renormalization-group (t-DMRG)
method [34] and linear response theory, the latter approach
being combined with perturbation theory for strong interac-
tion strengths and bosonization for weak interaction strengths.
We demonstrate that the absorbed energy as a response to
superlattice modulation provides precise information on the
excitation spectrum at finite momenta for both the superfluid
and Mott-insulating phases. In the Mott insulator, we find a
narrow and distinct absorption peak at a modulation frequency
h̄ω ∼ U enabling a precise calibration of the interaction
strength U , while on the superfluid side, we show that de-
pending on the lattice filling, the system can either respond at
infinitely small values of the modulation frequency or only
above a frequency threshold. This behavior highlights the
correspondence between the low-energy spectral features of
the weakly interacting Bose-Hubbard superfluid and those of
the Lieb-Liniger model [35,36].

The rest of this article is organized as follows. In Sec. II,
we introduce the theoretical framework. We define the equi-
librium system and the superlattice amplitude modulation. We
then introduce the quasiexact time evolution used to compute
the observable of interest, the absorbed energy, and we show
how this quantity relates to the averaged energy-absorption
rate within linear response theory. In Sec. III, we investigate
the response of the Mott insulator to superlattice modula-
tion. We first introduce in Sec. III A an analytical approach
based on linear response and perturbation theory valid for
large interaction strengths, and then in Sec. III B compare
our analytical predictions to the numerical results obtained
using t-DMRG. In Sec. IV, we investigate the response of
the superfluid to superlattice-modulation spectroscopy. We
first present in Sec. IV A the excitation spectrum expected
within the Lieb-Liniger and Luttinger liquid theories before
discussing how to probe the continuous and gapped parts
of the spectrum. In the subsequent Sec. IV B, we present
the corresponding numerical results obtained using t-DMRG.
Finally, we conclude in Sec. V.

II. SETUP AND THEORETICAL MODEL

We consider ultracold bosonic atoms confined to one-
dimensional tubes which can, for example, be realized using
a strong two-dimensional optical lattice perpendicular to the
tube direction. Along the one-dimensional tube direction, an
additional weaker lattice is applied creating a periodic poten-
tial for the bosonic atoms. For sufficiently deep lattices, each
tube can be described by the one-dimensional Bose-Hubbard
model,

H0 = Hkin + HU

= −J

L−1∑
j=1

(a†
j aj+1 + H.c.) + U

2

L∑
j=1

nj (nj − 1), (1)

FIG. 1. Sketch of the superlattice-modulation spectroscopy. The
amplitude of the equilibrium optical lattice V0(x ) = V0 sin2(kLx )
(gray solid line) is time-periodically modulated in a dimerized
fashion, i.e., the perturbing potential is given by δV (x, t ) ≈
A sin(ωt ) sin(kLx ) with small amplitude A. The lattice amplitude
is modulated between the two configurations indicated by (orange)
dashed and (purple) dash-dotted lines, illustrating that while one
potential barrier is increased the neighboring one is decreased, and
vice versa.

where aj and a
†
j represent the bosonic annihilation and

creation operators at site j , nj = a
†
j aj is the local number

operator, and L is the even number of lattice sites. The
kinetic part of the Hamiltonian Hkin has tunneling amplitude J

and the effective on-site interaction strength U/J can be
tuned over several orders of magnitude by tuning the lattice
height.

In order to create excitations with finite momentum, we
apply an amplitude modulation in a superlattice geometry
(see Fig. 1). The modulation is chosen in such a way that the
bottoms of the potential wells are fixed, while their heights are
modulated in a dimerized fashion. This means that while the
lattice height on one bond increases, it decreases on the two
neighboring bonds. One of the simplest setups approximately
realizing the proposed variation of the lattice barriers is
given by the use of two initially phase-locked beams with
wavelength kL and 2kL and amplitudes V1 and V2. Inducing a
small time-dependent phase shift δν(t ) ∝ sin ωt , the resulting
potential felt by the atoms is V (x, t ) = V1 sin2[kLx +
δν(t )] + V2 sin2(2kLx + θ ). For small values of the time-
dependent phase shift, the lattice potential can be expanded,
leading to

V (x, t ) = V1 sin2(kLx) + V2 sin2(2kLx + θ )

+ δV (t ) sin(2kLx),

where δV (t ) ∝ δν(t ). This time-dependent variation gives the
required superlattice modulation. More elaborate methods in
which several lattice beams interfere can also be used in order
to stabilize superlattice modulations with larger amplitudes.

For small modulations, this setup can be described within
the tight-binding model by a dimerized modulation of the
hopping parameter, i.e., the perturbation can be described by
Hpert = A sin(ωt )Ô where A � J is a small amplitude and
ω is the frequency of the modulation and the perturbation
operator,

Ô =
L−1∑
j=1

(−1)j (a†
j aj+1 + H.c.) = 2i

∑
k

sin(ka)a†
k+ π

a

ak.

(2)

Here we used the Fourier transform of the bosonic
creation operator a

†
j = (1/

√
L)

∑
k exp(iajk)a†

k and k =
2πr/(La) with r = 0, . . . , L − 1. Compared to normal lattice
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FIG. 2. Time evolution of the absorbed energy E(t ) − E0 at
U = 4J in a system of L = 64 sites and filling n̄ = 1 per site for
a modulation amplitude A = 0.01J and two different modulation
frequencies. If this frequency is chosen within the resonant region,
h̄ω = 7.5J (orange), energy is absorbed, whereas when the modu-
lation is off-resonant, h̄ω = 3J (blue), very little energy absorption
takes place.

modulation and rf spectroscopy (which are momentum con-
serving), this operator transfers a finite momentum to the
system, as shown in Eq. (2). In order to quantify the amount
of excitations created, we monitor the time evolution of the
absorbed energy. To do this, we simulate numerically the
time evolution of the initial ground state of H0 under the
Hamiltonian H (t ) = H0 + Hpert. Typical evolutions of the
absorbed energy are illustrated in Fig. 2. The results are
obtained simulating the full time-dependent problem using
the time-dependent density-matrix renormalization group (t-
DMRG) described in Refs. [37,38]. If the system is perturbed
at a frequency far from any resonant excitation, the energy re-
mains approximately constant with slight changes. However,
if excitations can be created resonantly, the energy absorption
displays a steep linear rise followed by a saturation. The linear
rise can often be understood within linear response theory and,
when suitable, we will compare our simulations to analytical
results obtained within this framework. To carry out the time
evolution using t-DMRG, we keep a matrix dimension of D =
128 and the local number of bosons is restricted to σ = 3 for
U � 15J and σ = 7 for U � 10J . We conduct an error anal-
ysis by increasing the matrix dimension to 196 states and the
local number of bosons to σ + 2. In the Trotter-Suzuki time
evolution, we set J�t = 0.01h̄ (except for L = 96, where
we set J�t = 0.005h̄) and we use J�t = 0.005h̄ (J�t =
0.001h̄) to perform the error analysis. In the linear regime,
fitting the time-dependent absorbed energy, we extract the
energy-absorption rate. The error bars provided in the figures
show the maximal uncertainty due to the matrix dimension,
the local boson number, the time step, and variations of the fit
range.

Within linear response, the energy-absorption rate at zero
temperature (corresponding to the slope of the linear rise of

the energy) is

dE(t )

dt
(ω) = π

2
ω|A|2

∑
α

|〈α|Ô|GS〉|2δ(h̄ω + E0 − Eα ).

(3)

Here, Eα are the eigenenergies of the unperturbed Hamilto-
nian H0, |α〉 the corresponding eigenstates, and ω the mod-
ulation frequency. The δ function in this expression ensures
that excitations are created resonantly: the excitation energy
provided by the modulation, h̄ω, needs to equal the difference
between the ground-state energy E0 and one of the excited
states Eα . The amplitude of the created excitations is addi-
tionally set by the matrix element of the perturbation operator
Ô between the ground state of H0, |GS〉, and the excited state
|α〉. The difficulty of the application of this formula in a many-
body context typically lies in determining the eigenstates and
their respective eigenenergies.

III. RESPONSE ON THE MOTT-INSULATING SIDE OF
THE PHASE TRANSITION

In this section, we discuss the response of a
one-dimensional Mott-insulating state to the superlattice-
modulation spectroscopy. We compare our numerical results
to a perturbative approach in J/U and point out how our
modulation scheme differs from normal lattice spectroscopy.

A. Perturbation theory

In the strong-coupling limit of the Mott-insulating phase,
we employ a perturbative approach considering the first non-
vanishing order in J/U to evaluate the energy-absorption rate
within linear response using Eq. (3). We consider HU as the
unperturbed Hamiltonian and Hkin as the small perturbation,
as was performed in Ref. [24] for the normal lattice amplitude
modulation. We sketch here the derivation for the superlattice
modulation.

a. Zeroth order

At commensurate filling n̄ per site, the ground state of
the unperturbed Hamiltonian HU is given by the atomic Mott
insulator |0〉 = |n̄, n̄, . . . , n̄〉. For notational convenience, we
shift the energy scale such that the ground-state energy
vanishes [HU = (U/2)

∑
j (nj − n̄)2], i.e., E0 = 0, and we

consider a system with periodic boundary conditions. The
excited states of HU lowest in energy are created by a particle-
hole excitation, i.e., adding one particle at a chosen site m ∈
[1, . . . , L] and removing a particle from a different site m̃.
Here, m̃ = m + d and d ∈ [1, . . . , L − 1] is the distance to
the right from the site with occupation n̄ + 1 to the site with
occupation n̄ − 1. This excited state can be written as

|m, d〉 = 1√
n̄(n̄ + 1)

am̃a†
m|0〉

and has eigenenergy U . Higher excited states have eigenener-
gies that are multiples of U . Due to the high degeneracy of the
excited states, one needs to employ degenerate perturbation
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theory [39] in order to take into account the perturbation by
the kinetic term Hkin.

b. First order

Up to first order, the ground-state energy remains zero,
while the correction to the ground-state wave function is

|�1
0 〉 = J/U

√
n̄(n̄ + 1)

∑
m

(|m, 1〉 + |m,L − 1〉).

To determine the corrections to the particle-hole excitations,
one needs to diagonalize Hkin within the lowest band of
excitations. This yields the diagonal basis [4,24]

|K, q〉 =
√

2

L

L−1∑
d=1

L∑
m=1

eidθ (K ) sin(qxd )eiKxm |m, d〉, (4)

where xm = am, xd = ad, a is the lattice spacing, and
θ (K ) = (n̄ + 1) sin(Ka)/[n̄ + (n̄ + 1) cos(Ka)]. Here, K =
2πb/(La) with b = 1, . . . , L can be interpreted as a
center-of-mass momentum and q = πl/(aL) with l =
1, . . . , L − 1 is related to the relative momentum of the
excess and hole particles. Note that a Fourier transform
corresponding to the distance has to be taken for open
boundary conditions. This basis provides the lowest-order
(zero-order) eigenstates, while the first-order correction to
the energy is given by −2J r (K ) cos(qa) with r (K ) =√

(n̄ + 1)2 + n̄2 + 2n̄(n̄ + 1) cos(Ka), such that the energy
of the lowest-excitation band becomes

EK,q = U − 2J r (K ) cos(qa),

lifting the degeneracy except for a translational invariance in
K by 2π/a.

c. Application to the energy-absorption rate

We determine the energy-absorption rate within linear
response, given by Eq. (3), for the excitations created
around the modulation frequency h̄ω ≈ U . To do so, we
evaluate the resonance condition using the energy expressions
obtained via perturbation theory, i.e., E0 = 0, EK,q = U −
2J r (K ) cos(qa). At the considered order, the relevant matrix
element is |〈�1|Ô|�0〉|, where |�0〉=|0〉+|�1

0 〉+O(J 2/U 2),
and |�1〉 = |K, q〉 − (J/U )

√
2n̄(n̄ + 1)ηl sin(qa)|0〉 +

(J/U )
∑

α |α〉 + O(J 2/U 2), where |α〉 are states, in addition
to the Fock state |0〉, that are directly coupled via the kinetic
term to the states |K, q〉. The squared norm of the transition-
matrix element simplifies as |〈�1|Ô|�0〉|2=|〈K, q|Ô|0〉|2 +
O(J 2/U 2), where 〈K, q|Ô|0〉 = √

2n̄(n̄ + 1) sin(qa)ηlδaK,π

with ηl = [1 − (−1)l]. Using these expressions, the
energy-absorption rate in the continuum limit, L → ∞,
becomes

1

L

dE(t )

dt
= ω|A|2n̄(n̄ + 1)

J

√
1 −

(
U − h̄ω

2J

)2

. (5)

Thus, absorption occurs in the region [U − 2J,U + 2J ] cor-
responding to the width 4J of the lowest band of excitations
for aK = π . The absorption maximum is located at h̄ωpeak ≈
U [1 + (2J/U )2].

FIG. 3. Energy-absorption rates deep in the Mott insulator for
a system of size L = 40 and a modulation amplitude A = 0.01J .
Symbols are t-DMRG results and solid lines show the analytical
result within perturbation theory [see Eq. (5)]. For U = 60J , a com-
parison to the normal lattice modulation is shown (open symbols).
The dash-dotted line is the response to normal lattice modulation
within perturbation theory [24]. The inset shows a comparison to a
system of size L = 96 at U = 60J .

B. Results in the Mott-insulating phase

Energy-absorption rates obtained from t-DMRG and their
comparisons with the perturbative approach are shown in
Figs. 3 and 4 at filling n̄ = 1 for strong and intermediate

FIG. 4. Energy-absorption rates for intermediate interaction
strengths on the Mott-insulating side of the phase transition for a sys-
tem of size L = 64 and a modulation amplitude A = 0.01J . Symbols
are t-DMRG results and solid lines are guide to the eyes. For U = 4J

and U = 10J , dotted lines show that the analytical predictions of
perturbation theory deviate more and more from numerical results as
U is approaching the phase transition to the superfluid state. The inset
shows a comparison to a system size L = 32 at U = 6J . Plateaus in
the absorption rate appear to wash out with increasing system size.
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FIG. 5. The square markers indicate the frequency at which the
maximum of the energy-absorption rate occurs as a function of
interaction strength U within t-DMRG using the same parameters
as in Figs. 3, 4, and 7. Error bars indicate the observed bandwidth.
We define the bounds as the mean between the frequency for which
dE/dt/(A2L) < 0.1/h̄ and the neighboring frequency for which
dE/dt/(A2L) > 0.1/h̄. The dashed blue line indicates the expected
frequency within perturbation theory, h̄ωpeak ≈ U [1 + (2J/U )2],
and the gray shaded region is the corresponding bandwidth (= 4J )
within perturbation theory. The dash-dotted orange line indicates the
naive expectation that h̄ωpeak ≈ U . The inset shows a zoom into the
small-U region.

interactions. For strong interactions, we find very good agree-
ment between the numerical results obtained within t-DMRG
and the perturbative formula given by Eq. (5). A sharp and
narrow absorption peak is found near the frequency ∼U/h̄.
This peak is almost symmetric at large interaction strength and
has a width ∼4J/h̄. It becomes more and more asymmetric at
lower interaction strength. Considering different system sizes
(see inset of Fig. 3), a good convergence is already seen for
systems of length L = 40 and L = 96. Only small differences
arise near the peak maximum.

For decreasing interaction strengths, the perturbative ap-
proach breaks down as this method can no longer accurately
predict the numerical results. The peak position obtained from
t-DMRG moves to the right of the perturbative prediction
and deviates from the naive expectation of h̄ωpeak ≈ U . In
fact, for U � 15J , the peak structure becomes more and
more asymmetric with a steepening on the high-frequency
side. The support of the peak also appears to change with
decreasing interaction strength. Finally, substructures seem to
arise (see inset of Fig. 4). However, confidently characterizing
these substructures would require larger system sizes such
that we will leave this point for further studies. Considering
decreasing interaction strengths within the Mott insulator
approaching the phase transition to the superfluid side, the
peak amplitude drops considerably and its extension to high
frequency shrinks. We will comment further on this behavior
in the next section, where we study the superfluid response.

In Fig. 5, we plot the frequency at which the maximum
energy-absorption rate occurs as a function of the interaction

strength. This value calculated using t-DMRG is compared
to the perturbative result and to the naive expectation of U .
At large interaction strengths, the frequency corresponds to
the naive expectation h̄ω ≈ U and the width of the energy-
absorption rate peak is fairly narrow (approximately 4J ).
Considering smaller interaction strengths U ≈ 10J , this fre-
quency shifts towards slightly larger values, but remains close
to the value of U/h̄. Finally, for even smaller interaction
strengths, the frequency deviates considerably. Therefore, the
frequency at which the maximum energy-absorption rate takes
place can be used to infer the value of the interaction strength
in an optical lattice potential down to intermediate interaction
strengths.

This measurement procedure is more accurate than extract-
ing U using normal lattice modulation (as, for example, is
done in Ref. [40]) as, for the latter, the absorption occurs in
a larger region [U − 2J (2n̄ + 1), U + 2J (2n̄ + 1)] of min-
imum width 12J at n̄ = 1 which corresponds to the lowest
band of excitations for K = 0. The absorption rates given
by Eq. (5) at strong interactions U = 60J and n̄ = 1 for
both superlattice and normal lattice modulations are shown in
Fig. 3. The difference in width and amplitude is evident from
this comparison.

IV. ON THE SUPERFLUID SIDE OF THE PHASE
TRANSITION

In this section, we discuss the response of the superfluid
to superlattice-modulation spectroscopy. At integer filling, the
system is superfluid for weak interaction strengths such that
the system is below the phase transition to the Mott-insulating
state occurring in one dimension at (U/J )c ≈ 3.4 for n̄ =
1 [2]. At incommensurate filling, the system remains super-
fluid for arbitrary interaction strength. In suitable limits, we
analyze the numerical response and the ones obtained for the
Lieb-Liniger model [35,36] and Luttinger liquid [41,42], both
continuous counterparts to the Bose-Hubbard model. Here,
we first summarize the response expected from these two
continuum models, before discussing the numerical results
obtained for the Bose-Hubbard model and highlighting sim-
ilarities and differences between the latter and the continuum
models.

A. Response in the continuum model

The Lieb-Liniger model is one of the simplest models
describing interacting bosonic particles of mass M in a one-
dimensional continuum, assuming a δ-interaction potential of
strength g,

HLL =
∫

dx

{
1

2M
|∂x |�(x)|2 + g

2
[�†(x)]2[�(x)]2

}
,

where � (†)(x) are the bosonic field operators annihilating
(creating) a particle at position x. All quantities are typically
expressed in terms of the dimensionless interaction strength
γ = Mg/n, where n is the density. The Lieb-Liniger model
can be obtained from the Bose-Hubbard model considering
its continuum limit by holding Ja2 constant while a →
0 [43], and using the mapping of the parameters Ja2 = 1/2M ,
Ua = g, and n = n̄/a. The lattice analog of the dimensionless
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FIG. 6. Sketch of the excitation spectrum of the Lieb-Liniger
model for a given interaction strength γ . The Lieb I mode is
soundlike at small momenta and becomes particlelike at larger
momenta. The Lieb II mode exhibits the same soundlike behavior
at small momenta, but it becomes maximal at k = πn and vanishes
again at k = 2πn and reopens at k > 2πn, where n is the density.
The shaded region represents the continuum of excitations bounded
between the two modes. The inset shows a sketch of the onset of the
corresponding energy-absorption rates within linear response for two
different densities (using K = 3/2). The corresponding momentum
transfer �k = π/a (marked by vertical lines in the main plot) either
corresponds to a momentum at which the Lieb II mode is finite
(dashed green line), which leads to a finite onset for the response,
or to a momentum at which the the energy of the Lieb II mode
vanishes (dotted purple line), which leads to a finite response at all
frequencies.

interaction is given by γlat = (U/J )/2n̄. For small values of
γlat, the Lieb-Liniger model was found to accurately describe
the ground state and some properties of the low-energy ex-
citations, such as the sound velocity, of the Bose-Hubbard
model [43]. In contrast to the nonintegrable Bose-Hubbard
model, the Lieb-Liniger model is Bethe ansatz solvable and
therefore many of its properties are well known. In particular,
the model displays two distinct excitations modes, called the
Lieb I and Lieb II modes, sketched in Fig. 6. The Lieb I mode
is soundlike at small momenta and becomes particlelike at
larger momenta. This mode corresponds to the Bogoliubov
mode, well known as it arises in the theory describing weakly
interacting Bose gases in higher dimensions.

A second mode, called Lieb II, arises due to backscattering
in the one-dimensional model. This mode exhibits the same
soundlike behavior at small momenta as the Lieb I, as both
dispersions have the same linear slope corresponding to the
sound velocity u. The Lieb II mode reaches a maximal value
at momentum k = πn and vanishes again at k = 2πn. For
even larger momenta, a gap reopens in the spectrum. Such
a behavior is typical for one-dimensional models and the
low-energy excitations around momenta k = 0 and k = 2πn,
where the dispersion is gapless and linear, are well captured
by a bosonization description.

Within linear response theory, the superlattice-modulation
operator creates excitations with a finite momentum transfer

�k = π/a at a frequency set by the resonance condition h̄ω =
Eα − E0, where Eα is the energy of an allowed excitation and
E0 is the ground-state energy. Assuming the matrix elements
to the corresponding momentum transfer to be nonzero, we
expect two different kinds of excitations. The first and generic
case occurs at densities where �k = π/a corresponds to a
momentum value for which the excitation frequency of the
Lieb II mode is finite. Thus, we expect the response in the
Lieb-Liniger model to the superlattice modulation to set in
above the corresponding frequency threshold given by the
Lieb II mode, and the upper bound to the frequency is given
by the Lieb I mode. The second type of excitation only occurs
if �k = π/a is equal to the momentum k = 2πn where the
energy of the Lieb II mode vanishes. This situation occurs at
a density given by n = 1/(2a). In this case, the superlattice
modulation generates excitations even at infinitesimal small
frequencies, and the upper bound is again set by the frequency
of the Lieb I mode. In order to determine the exact form of
the response, the matrix element of the superlattice operator
with the particular excitation needs to be computed. Such
calculations were performed, for example, in Ref. [44] for the
single-particle spectral function.

These two cases can be further analyzed within a bosoniza-
tion treatment (see Appendix A for details of this calculation)
of the low-energy excitations. This investigation predicts at
the special density point n = 1/(2a) an algebraic onset of the
response for small modulation frequencies ω, i.e.,

1

L

dE(t )

dt
∝ ω2K−1. (6)

The exponent is related to the Luttinger liquid exponent K .
This result implies that the onset becomes slower with weaker
interactions. Additionally, slightly away from this special
point where the response is gapless, bosonization predicts a
response above the threshold ω0 = uδq, where δq = π/a −
2πn and u is the sound velocity, in agreement with the finite
frequency of the Lieb II mode. There the response is given by

1

L

dE(t )

dt

∝ ωA2
( a

h̄u

)[(ωa

2u

)2
−

(
δqa

2

)2
]K−1

�[ω2 − (uδq )2].

(7)

From this expression, one sees that an algebraic onset depend-
ing on the Luttinger exponent, (K − 1), is found above the
threshold ω0 = uδq. The response predicted by bosonization
is exemplified in the inset of Fig. 6 both at the special gapless
point k = 2πn and slightly away from this point. For other
models with long-range order, bosonization predicts distinct
features in the response as, for example, a divergence above
a threshold. One should note that for very low densities,
bosonization breaks down.

B. Response of the Bose-Hubbard model in the superfluid phase

We discussed above the expected response of the system
to the superlattice modulation in the limit of low energy
using the continuum model. In contrast, we concentrate here
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FIG. 7. The energy-absorption rate in the superfluid region for
a system of size L = 64 and a modulation amplitude A = 0.01J at
different interaction strengths. The dotted vertical lines indicate the
corresponding energy of the Lieb II mode at momentum ka = π .
The fillings and the corresponding continuum densities n � 1/a are
chosen such that the momentum ka = π appears to the left of the
maximum of the Lieb II branch (see Fig. 6). Solid lines are guides to
the eye.

on the full Bose-Hubbard model for the more generic case of
the response occurring above a finite threshold frequency for
the densities n �= 1/(2a) and present the associated spectral
features. The full numerical results for the response of the
Bose-Hubbard model are shown in Fig. 7 for filling n̄ = 1 and
n̄ = 1.2 and for interaction strengths U within the superfluid
region. For the chosen parameters, the response shows a clear
peak structure at finite modulation frequencies. For low values
of U , only one peak can be seen in the considered frequency
range. Its width approximately corresponds to the width of
the lowest-energy band of the single-particle spectrum of the
Bose-Hubbard model (and, thus, the Lieb I mode cannot be
seen). At intermediate interaction strength, this peak develops
a substructure (see U = 6J ) and then splits up into two
separate peaks at larger interaction strength (see U = 10J ).

In order to connect these results to the low-energy con-
tinuum limit, the corresponding values of γlat are given and
vertical lines indicate the frequency at which the threshold
frequency of the Lieb II mode for k = π/a would be located
for the given parameter sets. The onset of the response in
the Bose-Hubbard model coincides well with the predicted
Lieb gap at low interaction strength γlat. This supports the
continuum description of the low-energy excitations of the
Bose-Hubbard model. However, this agreement breaks down
for larger values of γlat (see U = 10J ) and when the trans-
ferred momentum in units of k/kF becomes larger. Here,
kF = πn̄. In the latter case, the difference might solely be due
to the slow increase of the typical spectral matrix elements
above the threshold [44], such that numerically identifying
the location of the onset is difficult. At larger interaction
strengths, additional response features occur. In particular,
the observed peak separates into two peaks, one of which

lies approximately at h̄ω ≈ U (see U = 10J in Fig. 7). We
attribute this high-energy peak to particle-hole excitations
which arise in the Bose-Hubbard model due to the underlying
lattice structure.

V. CONCLUSION

In this work, we investigated the response of the one-
dimensional Bose-Hubbard model to superlattice modulation.
We demonstrated that features of the excitation spectrum at
finite momenta can be inferred by monitoring the energy-
absorption rate during the time-periodic modulation. Using
this experimentally realizable setup, we examined theoreti-
cally the response of the system in both the Mott-insulating
and superfluid phases. Deep in the Mott insulator, we found
that superlattice modulation creates particle-hole excitations
with finite center-of-mass momentum π/a. These excitations
are confined to a narrow energy band of width 4J well
described within a perturbative treatment valid at large in-
teraction strengths. In fact, this spectral peak is three times
narrower than the one observed at zero-momentum trans-
fer. Superlattice modulation thus enables a more precise ex-
perimental calibration of the interaction parameter U than
normal lattice modulation would. In the superfluid phase,
the response broadens and different features are displayed.
Depending on the filling, the low-energy onset of the response
can either be at infinitesimal frequencies or above a certain
threshold which we showed to be related, for low effective
interaction strength γ , to the spectrum of the Lieb-Liniger
model. Moreover, within bosonization, this onset displays
an interaction-dependent power-law behavior whose exponent
depends on the filling. For filling n̄ ∼ 1, our numerical results
agree well with the onset predicted for the Lieb-Liniger model
within linear response theory. Consequently, we demonstrated
superlattice-modulation spectroscopy to be a versatile and
flexible tool to investigate the finite-momentum excitations of
strongly correlated quantum phases owing to the momentum
transfer introduced by the dimerization. In fact, this mod-
ulation scheme can be extended to an arbitrary momentum
transfer Q by modifying the geometry of the perturbation,
i.e., replacing the dimerization (−1)j = cos(πj ) in Eq. (2)
by cos(Qaj ). This promising extension paves the way to the
investigation of more complex lattice models and quantum
phases using this spectroscopic probe.
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APPENDIX: BOSONIZATION APPROACH

In this appendix, we sketch the derivation of Eqs. (6) and
(7) using a bosonization treatment. The low-energy physics
of a one-dimensional gas of spinless bosons with repulsive
interactions is described by the bosonized Hamiltonian [45]

H0 =
∫

dx

2π

{
uK[π�(x)]2 + u

K
[∂xφ(x)]2

}
,
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where φ(x) is the bosonic field with conjugate momentum
π�(x). The velocity of excitations is given by u and K is the
dimensionless Luttinger parameter related to the parameters
of the original Hamiltonian. In the above formula, and in the
remainder of this appendix, we set h̄ ≡ 1. We consider a su-
perlattice modulation with momentum π/a given by Eq. (2).
In the following, we derive a bosonization representation of
the corresponding perturbation operator. Using the Haldane
representation [45] of boson annihilation operators,

aj ∼ eiθ (ja)
∞∑

m=0

Am cos 2m[φ(ja) − πnja],

where ∂xθ (x) = π�(x), n is the density of atoms, a the lattice
spacing, and Am are amplitudes that depend on the details of
the microscopic model, we derive

a
†
j aj+1 + H.c. ∼ C�2(ja) + D(∂xφ)2(ja)

+
∑
m�=0

Bmei2m[φ(ja)−πna(j+1/2)] + H.c.

The terms with C and D contribute to the kinetic energy, while
the terms with Bm contribute to the bond order wave of wave
vector 2πmn. These Bm terms can also be interpreted as the
staggered density in the middle of the bond (j, j + 1). For
|qa| > 1, the terms proportional to C and D can be neglected
and the perturbation operator given by Eq. (2) becomes

Ô ∼
∑
m�=0

∫
dxB ′

meiδqxe2imφ(x) + (B ′
m)∗e−iδqxe−2imφ(x),

(A1)

where phases have been absorbed into the phase of B ′
m and

δq = π/a − 2πmn. The only terms in the sum that may
oscillate slowly on the scale of the lattice and contribute at
low energies are those with the integer m̄ being the integer
value closest to the value 1

2an
. For reasonably large densities

n, we thus have at most one value of m = m̄ for which
|δqa − 2πmna| � 1 and we obtain the dominant contribu-
tions in Eq. (A1), otherwise the response vanishes. For the
nonvanishing response, the perturbation becomes

Hpert ≈ A|B ′
m̄| sin(ωt )

∫
dx cos[2m̄φ(x) − δqx + ψ],

where ψ is a phase that can be set to zero by shifting the origin
of coordinates. When A is small enough, we can use linear
response theory [46] to calculate the rate of the absorbed

energy,

dE(t )

dt
∝ ω

(A|B ′
m̄|)2

8
[Imχm̄(δq, ω + i0+)

+ Imχm̄(−δq, ω + i0+)],

where χm̄ is the retarded response function. To calculate χm̄

at zero temperature, we use the Matsubara technique. We
have [42]

χm̄(δq, iωn)

=
∫ ∞

−∞
dxe−iδqx

∫ ∞

−∞
dτeiωnτ

[
a2

x2 + (u|τ | + a)2

]m̄2K

.

(A2)

We first perform the integration over x in Eq. (A2) using
Eq. (9.6.25) of Ref. [47] and then we use Eq. (9.6.23) of
Ref. [47] to rewrite Eq. (A2), and obtain

χm̄(δq, iωn) = πa(a|δq|/2)2m̄2K−1

�(m̄2K )2

×
∫ +∞

1

[
dw(w2 − 1)m̄

2K−1e−w|δq|a

×
(

1

u|δq|w − iωn

+ 1

u|δq|w + iωn

)]
.

Such an expression allows us to straightforwardly find the
analytic continuation iωn → ω + i0+ using

lim
ε→0+

1

x + iε
= P

(
1

x

)
− πδ(x),

where P is the principal part and δ is the Dirac delta distribu-
tion. We then obtain

Imχm̄(δq, ω + i0+)

= π2a2sign(ω)

2u�(m̄2K )2
e− |ω|a

u

[(ωa

2u

)2
−

(
δqa

2

)2
]m̄2K−1

×�[ω2 − (uδq )2],

showing that the short-distance cutoff in the denominator
simply leads to exponential decay for large ω. For |δq| > 0
at low frequencies, we have an absorption threshold at ω0 =
u|δq|. The rate of the absorbed energy has a divergence at
the onset ω0 when m̄2K < 1 and a monotonous rise when
m̄2K > 1. In the case of the Lieb-Liniger gas (or for the
Bose-Hubbard model at low filling), K > 1 and m̄ = 1 such
that only the rise is seen.
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