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Implementing Majorana fermions in a cold-atom honeycomb lattice with textured pairings
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Recent studies in the realization of Majorana fermion (MF) quasiparticles have focused on engineering
topological superconductivity that derives from proximity effects of conventional superconductors and spin
textures. We propose an effective model to create unpaired MFs at a honeycomb lattice edge by generalizing
a two-dimensional topologically nontrivial Haldane model and introducing textured pairings. The core idea is
to add both the spin-singlet and textured spin-triplet pairings to a pseudospin-state-dependent, time-reversal-
symmetry (TRS) noninvariant honeycomb lattice, and to satisfy generalized “sweet spot” conditions as in the
Kitaev chain model. Our model has a gapped superconducting phase and a gapless phase; either phase may
have zero or nonzero topological winding numbers. The discriminant that distinguishes those two phases gives
a measure of TRS breaking and may have more general implications. Effective Majorana zero modes arise at
edges in distinct phases with different degrees of degeneracy. Our theoretical model motivates concepts, such as
“textured pairings” and the “strength” of TRS breaking, that may play important roles in future implementation
of MFs with cold atoms in optical lattices.
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I. INTRODUCTION

Majorana fermions (MFs) have attracted much attention in
recent years due to their implications for particle physics and
potential applications to fault-tolerant topological quantum
computation [1–3]. Many protocols for the realization of MFs
and implementing non-Abelian statistics have been proposed,
yet no single platform has been identified to be ideal for
studies in all aspects [4–12]. In versatile platforms, such as
condensed matter and quantum gas systems, MFs arise as
Bogoliubov quasiparticle excitations at the defect sites (vor-
tices, interfaces, system edges, etc.). Some recently studied
systems are related to topological superconductors that derive
from proximity effects of conventional superconductors and
spin textures [11–18]. Theoretical models of MFs in electronic
materials originate from p-wave pairing states of fermions
with broken parity and time-reversal symmetry (TRS) [19].
Much attention is given to techniques for detection and control
of MFs, such as the preparation of spin-triplet pairing in
p-wave superconductors, and to obviate the need for precise
parameter tuning [12,15,20–22].

Implementation of MFs with cold atoms in optical lattices
is also of interest [6,7,13,22–24]. This possibility is based on
progress in creating topological phases of cold atoms using the
development of synthetic spin-orbit coupling (SOC) and mag-
netic fields, s-wave and p-wave superfluidity and single-site
addressing techniques, etc. [5–7,25–30]. In optical lattices,
most theoretical models begin with Kitaev’s one-dimensional
(1D) p-wave superconducting (SC) quantum wire model [31]
with SOCs, and extend it to two dimensions using multiple
parallel chains with interchain couplings [5–7,32]. Such ap-
proaches yield single or multiple 1D topologically nontrivial

*charles.clark@nist.gov

chains in a background of trivial higher-dimensional optical
lattices; isolated MFs emerge at chain ends in an odd-number-
chain phase. This exotic topology still originates from the
1D Kitaev model, while weak transverse tunneling suppresses
quantum fluctuations and stabilizes the long-range order [7].
It is desirable to identify schemes that naturally include tun-
neling in different directions and incorporate the techniques
in topological fermionic optical lattices to advance research
on MFs.

In this paper, we propose an effective model to create
MFs at an edge of the honeycomb lattice by introducing
textured pairings into a two-dimensional (2D) topologically
nontrivial Haldane model [26]. The key idea is to incorporate
both the spin-singlet and textured spin-triplet pairings in the
pseudospin-state-dependent honeycomb optical lattice which
breaks the TRS with complex next-nearest-neighbor (NNN)
hopping. By tuning the pair coupling strength to match the
amplitude and phase of hopping terms, MFs with flat bands
[also called Majorana zero mode (MZM)] will arise on a
single edge of the lattice. This is similar to the “sweet spot”
conditions in the Kitaev model. This suggests that to realize
such MZMs, it is critical to break the threefold rotational
symmetry of the pairing terms of the Hamiltonian, leading
to a specific type of Majorana coupling. This requirement on
the angular dependence of the sign of the spin-triplet pairing
term is reminiscent of textured pairings in paired states of
fermions [19].

In our model, the cold-atom system has a gapped SC phase
and a gapless phase for parameters in the sweet spot. Either
phase can have a winding number w = 0 or w �= 0. The phase
diagram can be represented in the domain of phase parameters
in the complex NNN hoppings. We demonstrate a method
to reduce the gap-closing condition of the bulk Hamiltonian
to the calculation of the discriminant. This circumvents the
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analytical complexity of a four-band model. The value of this
discriminant distinguishes the gapped SC and gapless phases.
It actually measures the “strength” of TRS breaking, thus
further dividing the TRS-broken class into two groups. In the
gapped SC phase, there always exist two pairs of MZMs while
the winding number of bulk bands, w = ±1, is associated
with extra normal gapless edge states. One of the MZM pairs
can be fully pseudospin-polarized localized at an edge in
special cases, while the other pair usually extends to deeper
layers with exponentially decaying amplitudes. In the gapless
phase, the second pair of MZMs vanishes due to their coupling
with the bulk modes. It remains to be determined whether the
two pairs of MZMs in topological trivial cases will have an
energy splitting in an extended model that incorporates the
interaction of MFs or other coupling channels [33].

This paper is organized as follows: In Sec. II, we introduce
our theoretical model and the intuition of generating MZMs.
In Sec. III, we identify the MZMs from the aspects of the band
structure, density profile, and wave-function symmetry by
numerical simulation. In Sec. IV, the phase diagram of a cold-
atom system is presented and the degeneracy of MZMs in each
phase is discussed. We describe a mathematical method to find
a discriminant that gives the phase boundary between gapped
SC and gapless phases. This discriminant characterizes the
strength of TRS breaking. Finally, our model is compared with
previous models of creating MFs in 2D cold-atom systems.

II. MODEL AND PHYSICAL INTUITION

Our model is based on a generalized Haldane model in
a pseudospin-state-dependent honeycomb optical lattice [26],
which is among many protocols proposed to implement the
topological phases in systems of noninteracting fermions. In
the realization of our system, ultracold atoms with two dif-
ferent hyperfine states would be described as two pseudospin
states (spin-up “↑” and spin-down “↓”), each localized at
one of two inequivalent sublattices (A and B). The natural
tunneling between sites on the same sublattice and the laser-
induced coupling between different sublattices implement the
NNN and nearest-neighbor (NN) hoppings, respectively. To
generate unpaired MFs, we add spin-dependent pair interac-
tions between atoms to obtain the total effective Hamiltonian:

Ĥ = Ĥ0 + Ĥp, (1)

where

Ĥ0 = −t
∑
〈j,m〉

(
a
†
�rj
b�rm

+ H.c.
) − t↑

∑
〈〈j,j ′〉〉

(
eiφAa

†
�rj
a�rj ′ + H.c.

)
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∑
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(
eiφB b

†
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+μ

⎛
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−
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†
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⎞
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∑
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†
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†
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) +
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†
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FIG. 1. Physical intuition of generating unpaired MFs at an edge
in the case of μ = 0. (a) Kitaev’s 1D spinless p-wave SC quantum
wire. The two neighboring MFs constitute a normal fermion. The
blue arrows in the upper chain signify the internal pairing of MFs
with no unpaired MFs remaining. The red arrows in the lower chain
indicate the intercell pairing of MFs with two unpaired MFs at the
ends of the chain. (b) MF coupling at a single armchair edge of a
2D honeycomb lattice. The upper two and lower left subfigures are
for our model in which there is no threefold rotational symmetry
(RS). The solid bonds are the net Majorana couplings contributed by
terms related to (�, t ), (�↑, t↑), and (�↓, t↓) in Ĥ , respectively. The
shaded and colored cells denote the dangling MFs in a hexagon at a
single armchair edge of the lattice. The lower right subfigure shows
an example of unexpected MF couplings in which there is rotational
symmetry, just in comparison with that in our model.

In the equations above, Ĥ0 is the original effective Hamil-
tonian following a unitary basis transformation as described
in Ref. [26]; t is the NN hopping amplitude and t↑ (t↓) is
the NNN hopping amplitude in sublattice A (B). These three
hopping amplitudes are real numbers. The NNN hopping
phases are given by φA (φB), and �rj (�rm) denotes the site index
of sublattice A (B) (note that there is only one spin state at one
site so that �rj and �rm are from different displacement vector
sets). μ denotes half of the chemical potential difference
between sublattices A and B. Ĥp is the spin-dependent pairing
Hamiltonian introduced by our model. � terms denote the
pairings of atoms with opposite spins (spin singlet), while �↑
and �↓ terms denote the pairings of atoms with the same spins
(spin triplet).

For simplicity, we first analyze a special case in which
the on-site staggered potential vanishes, i.e., μ is zero. Then,
the system can be viewed in the Majorana representation
[Fig. 1(b)] by rewriting the Hamiltonian with Majorana
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operators:

a�rj
= 1

2

(
γ�rj ,↑,1 + iγ�rj ,↑,2

)
, b�rm

= 1
2

(
γ�rm,↓,1 + iγ�rm,↓,2

)
.

Here, {γ�rj ,σ,α, γ�rm,σ ′,β} = 2δ�rj ,�rm
δσσ ′δαβ with each Majorana

operator, γ , having three subscripts denoting the position,
spin, and Majorana type, respectively. In the following discus-
sions, a Majorana coupling usually means an iγ γ ′ term in the
Hamiltonian and is denoted by a bond (double arrow) between
two sites in Figs. 1(a) and 1(b). The Majorana coupling
contributes an ordinary fermion which costs the energy of
a bulk mode in the band structure. Based on the physical
intuition shown in Fig. 1(b), we choose to introduce Ĥp in
the above form, in order to cancel a part of the Majorana
couplings introduced by the t , t↑, and t↓ hopping interactions.
This choice yields the Hamiltonian in Appendix A.

The sweet spot conditions that create dangling MFs at
edges can be deduced. We inherit the key idea of Kitaev’s
1D spinless p-wave SC chain model, which is to choose a
specific type of Majorana coupling and leave unpaired MFs
at the edges of the finite lattice [Fig. 1(a)]. In our model, we
choose to make the net effect of � and t terms be the coupling
γ�rj ,↑,2γ�rm,↓,1 between NN sites, and the net effect of �↑(↓) and
t↑(↓) terms be the two couplings γ�rj ,↑(↓),2(1)γ�rj ′ ,↑(↓),α between
NNN sites with yj < yj ′ and α = 1, 2 [Fig. 1(b)], where yj

and yj ′ are the ŷ components of �rj and �rj ′ , respectively. It
means that the coupling connecting sublattices A and B is
only between type-2 MFs in A and type-1 MFs in B. And
the coupling within sublattice A (B) is only from type-2
(type-1) MFs to MFs of both types with bigger indices in the ŷ

direction. These requirements can be reduced to Eqs. (4)–(6),
which can be called the “sweet spot” in the parameter space:

� = −t, (4)

�↑ = −t↑e−iφA , (5)

�↓ = t↓e−iφB . (6)

So the final result is that the type-1 MFs of atoms in sublattice
A and type-2 MFs of atoms in sublattice B at one armchair
edge [the shaded and colored cells in Fig. 1(b)] are isolated,
i.e., γy1,↑,1 and γy1,↓,2 do not appear in Ĥ , as there are no other
MFs outside the lattice to couple with them.

Therefore, our model has generalized sweet spot condi-
tions analogous to those of a 1D Kitaev chain, and actually
possesses textured pairings analogous to that in the original
model of fermionic paired states [19]. Note first that the �↑(↓)

terms are written in a particular order (yj (m) < yj ′(m′ )) to avoid
mixing definitions. Second, it is critical to break the threefold
rotational symmetry of the net Majorana couplings within a
hexagon [Fig. 1(b)]. Since t is real, the net coupling between
NN A and B sites may be reduced to one bond [the upper
left subfigure in Fig. 1(b)]. However, there is no degree of
freedom to reduce the net coupling between NNN A or B sites
to less than two bonds since tσ is complex. Thus, any pairing
Hamiltonian that has threefold rotational symmetry [such as
the lower right subfigure in Fig. 1(b)] does not allow dangling
MFs at edges. We need to impose requirements on the sign
in the amplitude and phase of �σ to break the threefold
rotational symmetry.

We present the requirement on pairing terms in an alterna-
tive way, which highlights the concept of textures in pairing.
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FIG. 2. Schematic of our physical system. (a) The depictions of
the three vectors (�δj ) connecting NN sites and the three vectors (�rj )
connecting NNN sites for j = 1, 2, 3. (b) Angular distribution of
the sign in the amplitude and phase of the defined pairing which is
similar to the domain wall structure. (c) The distribution of MZMs
at a single armchair edge. The heights of the pillars denote the
amplitudes of wave function at each site.

Following Ref. [26], we choose the Peierls phase associated
with the NNN hopping path a

†
�rj
a�rj ′ to be

φA(j, j ′) = − �p · (�rj − �rj ′ )/2.

A pair creation term in Ĥ is �↑(θ )a†
�rj
a
†
�rj ′ , where θ is the angle

between (�rj ′ − �rj ) and the x̂ axis. Then, we can deduce from
the above requirements

�↑(θ ) =
{−t↑e−i �p·(�rj ′−�rj )/2 (yj < yj ′ )

t↑ei �p·(�rj ′ −�rj )/2 (yj > yj ′ ).

We can see that the sign in �↑(θ ) in front of the ampli-
tude t↑ and phase �p · (�rj ′ − �rj )/2 is changed across [0, 2π ]
[Fig. 2(b)]. This requirement of the broken rotational symme-
try leads to exotic textures in the pairing terms [19], and the
angular distribution of the sign in the spin-triplet pairing term
has a reorientation similar to that of the domain wall structure
in magnetism [34]. Following the concept of spin textures
strongly related to the topological superconductivity, such as
the vortex, skyrmion, spiral, and helix, this discrete texture
in the pairing we just described is a generalization and may
play an important role in future studies of MFs in honeycomb
lattice structures.

It should be noted that we get our intuition from the
particular case where μ = 0, but the effectiveness of our
model in creating MFs is not limited to this case. The case
where μ �= 0 is discussed in Sec. IV below. Also note that we
just give one particular type of MF coupling. It determines
the location of unpaired MFs which are not necessarily at the
armchair edge of the lattice.
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III. IDENTIFICATION OF MAJORANA ZERO MODES

We can identify MZMs from the aspects of the band struc-
ture, density profile, and wave-function symmetry obtained by
numerical simulations. The geometric definition of our model
is depicted in Fig. 2(a). We use three displacement vectors �δ
to denote the NN hoppings and another three �r to denote the
NNN hoppings:

�δ1 = a

(
1

2
,

√
3

2

)
, �δ2 = a

(
1

2
,−

√
3

2

)
, �δ3 = a(−1, 0),

�r1 = a

(
−3

2
,

√
3

2

)
, �r2 = a(0,

√
3), �r3 = a

(
3

2
,

√
3

2

)
.

Here, a is the side length of a hexagon plaquette and is set as
the unit of length in this paper. Using conventions of current
techniques of implementing the complex NNN hopping by
laser-induced transitions [26], we choose the Peierls phase
associated with a

†
�rj
a�rj ′ to be φA(j, j ′) = − �p · (�rj − �rj ′ )/2 and

similarly φB (m,m′) = �p · (�rm − �rm′ )/2, where �p is the mo-
mentum transfer associated with the laser-induced tunneling.

We calculate the band structure using a momentum space
representation based on a Fourier transformation in the x̂

direction:

â�rj
= 1√

Nx

∑
kx

eikxxj âkx ,yj
,

b̂�rm
= 1√

Nx

∑
kx

eikxxm b̂kx ,ym
,

where xj (m) and yj (m) are the components of �rj (m) in
the x and y directions, respectively. Nx is the num-
ber of cells along the x̂ direction, much larger than
that along the ŷ direction. Thus the basis vector of the
Bogoliubov–de Gennes Hamiltonian of Ĥ for particular kx

becomes (âkx ,y1 , . . . , b̂kx ,y1 , . . . , â
†
−kx ,y1

, . . . , b̂
†
−kx ,y1

, . . .)T , in
which the subscripts denoting the y component range over
all the rows (also called layers in this paper). Then, the band
structure containing both the edge modes and bulk bands is
obtained by the diagonalization of the Hamiltonian in this
basis. The results are shown in Figs. 3(a)–3(d).

Our model has a gapless and a gapped SC phase at the
sweet spot, either of which may have zero or nonzero winding
numbers of the first excited band. As a common feature, there
are two groups of bulk bands (blue curves) in each of the upper
or lower half planes. These are inherited from the Haldane
model due to the number of inequivalent sites in a unit cell.
The gapped SC phase and gapless phase are distinguished by
the gap-closing condition between the zero-energy line and
the first excited band in the upper half plane (“band 1”). In the
gapped SC phase [Figs. 3(a) and 3(b)], there are two pairs of
MZMs with complete flat bands. These are shown by straight
red lines in Figs. 3(a)–3(d), coinciding with each other. By
contrast, the gapless phase holds one pair of MZMs while the
other pair of MZMs partially merges into the bulk modes in
some ranges of kx [Figs. 3(c) and 3(d)]. These “partial” MZMs
that terminate at band closing points are lower-dimensional
Majorana analogs of Fermi arcs in three-dimensional (3D)
Weyl semimetals [32]. Furthermore, each of the gapped SC

FIG. 3. Band structure for μ = 0 in four cases characterized by
different gap conditions and winding numbers w. Fixed parameters:
t = 1, t↑ = 0.4, t↓ = 0.6. (a) �p = (0.9Kx, 0), (b) �p = (0, 3Ky ), (c)
�p = (0.1Kx, 0.2Ky ), and (d) �p = (0.6Kx, 3Ky ), where Kx = 2π/3
and Ky = Kx/

√
3. Each group of blue curves represents a bulk band.

The straight dark red line is the MZM and the brown and green
curves in (b) and (d) are gapless edge modes. In (a) and (b), the zero
modes are fourfold degenerate; in (c) and (d), the zero modes are
twofold degenerate. The inset in (c) zooms in on the split zero modes
(magenta) and flat MZMs (dark red) separately.

and gapless phases can have winding numbers w = 0 or w =
±1 of the band 1. The nonzero-winding-number phase cor-
responds to additional ordinary gapless edge modes between
band 1 and the second excited bulk band in the upper half
plane (band 2).

To further support the correctness of our model, we get the
wave function of the zero modes in the band structure as below
by numerical simulation:

�̂kx
=

∑
yj

(
ukx,yj

, vkx,yj
, ukx,yj

,−vkx,yj

)

× (
âkx ,yj

, b̂kx ,yj
, â

†
−kx ,yj

, b̂
†
−kx ,yj

)T

≈
∑
xj

(
1√
Nx

ukx,y1e
−ikxxj

)
γ̂

(A)
xj ,y1,1

+
∑
xm

(
1√
Nx

vkx,y1e
−ikxxm

)
γ̂

(B )
xm,y1,2, (7)

where ukx,yi
and vkx,yi

are the wave functions for the ith
layer in the ŷ direction using the partial Fourier-transformed
basis. Note that there is a degree of freedom in choosing the
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coefficient in front of a specific eigenstate, which ensures the
above solution is a Majorana. We use the approximation sign
and just keep the wave functions for the first layer in the
above as the numerical simulation indicates that the solution
amplitudes generally decay at an exponential rate [Fig. 2(c)].

The two pairs of MZMs in the gapped SC phase display
some features. One pair can be fully pseudospin-polarized
only localized at an edge layer when μ = 0. Such a pair has
the form(

âkx ,y1 + â
†
−kx ,y1

)|0〉, (
b̂kx ,y1 − b̂

†
−kx ,y1

)|0〉.
It can be shown that they are always two zero-energy eigen-
vectors of the Bogoliubov–de Gennes Hamiltonian of Ĥ in
the partial Fourier-transformed basis, where |0〉 is the vacuum
state. Both of these MZMs persist in the gapless phase,
similar to the persistence of edge MFs in a 1D Kitaev chain
with zero chemical potential (in which the Kitaev chain is
always in a topologically nontrivial phase). The other pair of
MZMs usually extends to deeper layers with exponentially
decaying amplitudes. They have an energy splitting due to
their coupling with bulk modes in the gapless phase. It should
be noted that our model applies to noninteracting fermions
and it suggests a scheme for finding MFs. It remains to be
determined by future research whether the two pairs of MZMs
in topological trivial cases will have an energy splitting when
the interaction between MFs or other coupling channels is
added [33]. If that is the case, there will be detectable effective
MFs only in the w �= 0 phases.

IV. PHASE DIAGRAM AT THE SWEET SPOT

The phase diagram of the cold-atom system at the sweet
spot is worth analyzing. For fixed amplitude parameters (t , t↑,
and t↓), the phase of the system varies with the NNN hopping
phases φA and φB . This is displayed by the phase diagram
in the momentum coordinates px and py , which is shown in
Figs. 4(a) and 4(b). There are a total of four phases associated
with the two alternatives “gapped SC vs gapless” and “w = 0
vs w = ±1.”

As we illustrated in Sec. III, the phase boundary between
the gapped SC phase and gapless phase can be deduced by

FIG. 4. Phase diagram at the generalized sweet spot when μ = 0,
obtained by numerical simulation. (a) The phase boundary between
the gapped SC phase (purple) and gapless phase (light green). (b) The
phase boundary between phases with different winding numbers. The
green region indicates w = 0, the blue region w = 1, and the red
region w = −1. A combination of these two figures shows the full
four-phase diagram.

the bulk-edge correspondence in topological physics. In the
above version of our model, the pseudospin space and the
particle-hole space each contribute two degrees of freedom.
Thus, we have a four-band model, the description of which
requires solutions of a quartic equation, which in general have
complicated analytical forms. To circumvent the mathemati-
cal complexity of analytical band expressions of a four-band
model, we demonstrate a method to rigorously reduce into
a discriminant the parameter conditions of the gap closing
between band 1 and band 2 identified in Sec. III.

In the gapped SC phase, the gap between bands 1 and 2
is open due to TRS breaking by complex NNN hoppings,
protecting the MZMs from coupling with bulk modes. In a
certain range, this gap is approximately proportional to the
amplitude of the relative complex hopping | tσ

t
|. At the sweet

spot, the Bogoliubov–de Gennes Hamiltonian in momentum
space, HBdG(�k), reduces to⎛
⎜⎜⎜⎝

−2t↑f− + μ −tg∗ |�↑|h �g∗

−tg −2t↓f+ − μ −�g |�↓|h∗

|�↑|h∗ −�g∗ 2t↑f+ − μ tg∗

�g |�↓|h tg 2t↓f− + μ

⎞
⎟⎟⎟⎠,

where

f+ = f+(�k, �p) =
3∑

j=1

cos((�k + �p/2) · �rj ),

f− = f−(�k, �p) =
3∑

j=1

cos((�k − �p/2) · �rj ),

g = g(�k) =
3∑

j=1

e−i�k· �δj ,

h = h(�k, �p) = 2i

3∑
j=1

e−i
�p
2 · �rj sin(�k · �rj ).

For a general quartic equation in E, F (E) = ∏4
j=1(E −

Ej ) = 0, a twofold root E = 0, corresponding to band-
touching conditions, implies the constraint F (E = 0) =
dF
dE

(E = 0) = 0. The energy eigenvalues, E, can be cal-
culated by solving the characteristic polynomial F (E) =
det(HBdG(�k) − EI4×4) = 0, where det( ) means the determi-
nant. By invoking the sweet spot conditions, Eqs. (4)–(6),
μ = 0, and the band constraint, we get

F (E = 0) = (t↑t↓)2(4f+f− + |h|2)2, (8)
dF

dE
(E = 0) = 2t↑t↓(t↑ − t↓)(f+ − f−)(4f+f− + |h|2). (9)

We make three observations that lead to a fuller under-
standing of the solutions of Eqs. (8) and (9). First, these equa-
tions contain a common non-negative factor (discriminant)

4f+f− + |h|2 = 4

∣∣∣∣∣∣
3∑

j=1

ei�k·�rj cos( �p · �rj /2)

∣∣∣∣∣∣
2

. (10)

Thus, when Eq. (8) vanishes (t↑t↓ �= 0 typically), Eq. (9)
also vanishes. So there must be zero or two bands (or more
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FIG. 5. Regions of the gapped SC phase in the 3D parameter
space (sin �1, sin �2, sin �3). The shaded surface near the 12 edges
of the cube shows the domain in which at least one inequality
| cos �j | + | cos �k| � | cos �l | is violated, where (j, k, l) is a per-
mutation of (1, 2, 3). This surface defines the gapped SC phase.
Note that the only points in this parameter space that have physical
significance are those for which �2 = �1 + �3 (including both the
near-edge and kernel regions).

bands) simultaneously touching the zero-energy line. This is
consistent with the fact that the two intermediate bulk bands
touch the zero-energy line at the same points in the band
structure.

Second, the terms t and g(�k) do not affect the band-
touching condition. Thus, for our particular MF coupling,
there is no net effect of NN interactions on the phase at the
sweet spot.

Third, the effects of geometry and of parameter strengths
are independent. Since t↑ and t↓ are nonzero and unequal in
most cases, we just need to focus on the equality 4f+f− +
|h|2 = 0. As shown in Appendix B, this is equivalent to

| cos( �p · �rj /2)| + | cos( �p · �rk/2)| � | cos( �p · �rl/2)|, (11)

for any (j, k, l) being a permutation of (1, 2, 3).
The above inequalities describe the parameter range of the

gapless phase as compared to the gapped SC phase and actu-
ally give a measure of the “strength” of TRS breaking. The
phase diagram in Fig. 4(a) obtained by numerical simulations
of band structures at every point in the px-py plane is exactly
the same as that obtained according to the three inequalities.
Defining the Peierls phases associated with the complex NNN
hoppings inside a hexagon as �p · �rj /2 = �j (with restriction
�2 = �1 + �3), the distribution of a gapped SC phase in the
(sin �1, sin �2, sin �3) parameter space is shown in Fig. 5.
It can be seen that the gapped SC phase is mainly localized
near the edge of the cube, which indicates that at least two
of the three | sin �j | are near 1. We know that 2tσ sin �j is
the amplitude difference of NNN hopping terms before and
after the TRS transformation. So we claim that the gapped SC
phase corresponds to “strong” TRS breaking in which at least
one of the three inequalities (11) is violated. For strong TRS
breaking, two of the three Peierls phases lead to a relatively
large energy difference after the TRS transformation, and

the energy gap is large enough to protect the MZMs from
coupling with bulk modes. By contrast, the gapless phase
corresponds to “weak” TRS breaking, which is supported
by its occupying the central part near (px = 0, py = 0) in
the phase diagram. Thus, this measure further divides the
TRS-broken class into two groups.

Moreover, the phase diagram showing “w = 0 vs w = ±1”
[Fig. 4(b)] has threefold rotational symmetry. This phase dia-
gram is obtained by numerically calculating [35] the winding
number, w, for every point in the px-py plane:

w = i

2π

∫
T 2

(〈
∂kx

u1

∣∣∂ky
u1

〉 − 〈
∂ky

u1

∣∣∂kx
u1

〉)
d2k, (12)

where |u1〉 is the eigenstate of band 1 and T 2 is the first
Brillouin zone. Since the sum of the topological invariants of
the neighboring band 1 and band 2 are zero, it is enough to
do such a calculation for one band. In the pattern of the phase
diagram, the center is mainly the topologically trivial region,
w = 0, while the surrounding w = 1 (blue) and w = −1 (red)
nontrivial regions are separated by thin-ribbon regions with
w = 0. The central lines of the six thin-ribbon green regions
indicate �p ⊥ �rj , for which one of the three Peierls phases
is zero. The topological transition only occurs when the gap
between band 1 and band 2 closes so that the topology of
bulk bands intrinsically changes. The bulk bands only touch at
the typical Dirac points (Kx,±Ky ) (Kx = 2π

3 and Ky = 2π

3
√

3
),

which indicates the decoupling of the two sublattices. Band
touching at only one of the two inequivalent Dirac points
entails the change of winding number by 1, while the case
of touching at both has not been observed in this model.
Additionally, when w is nonzero, the system is characterized
by ordinary gapless edge modes connecting band 1 and band
2 at two armchair edges. The interaction between the gapless
edge modes and the Majorana flat bands will be the subject of
a future study.

In general, when μ �= 0, the system displays changes in
both of the gapped SC and gapless phases. When |μ| increases
from zero in the gapped SC phase, the gap between band 1
and the zero-energy line gradually decreases until two MZMs
couple with the bulk modes, leading to a decreasing jumping
of the degeneracy of MZMs. The pair of fully pseudospin-
polarized MZMs that is exactly localized at the first layer
in the μ = 0 case will extend to the deeper layers with
exponentially decreasing amplitudes. In the gapless phase,
the pairing occurs in a partially filled band. The Dirac points
connecting band 1 and band 2 vanish, accompanied by the
relative displacement of the upper and lower Dirac cones.
The gapless property is preserved but the bands are indirectly
closed.

At last, it should be mentioned that our model has several
remarkable differences from previous models for realizing
MFs in 2D optical lattices [5–7]. First, the geometric structure
in our model is not one or more topological chains with
transverse tunneling in a topological trivial background. It
naturally includes the tunnelings in different directions (which
is longitudinal or transverse in a square lattice, and slanted in
a honeycomb lattice).

Second, the commonly used tenfold classification of
fermionic phases [36] may be not directly applicable to our
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model due to its dependence on �p as a parameter. More
mathematical tools may be needed in order to apply the clas-
sification rule, such as constructing new charge, parity, and
time-reversal symmetry operators, which will be addressed in
our future research. In addition, the gapless edge modes in our
model are reminiscent of quantum anomalous edge states [37].
By contrast, most other models can be covered by the tenfold
classification description. They inherit the topological proper-
ties of the 1D TRS-broken chain and have invariants of type
Z2, while the number of effective MFs diversifies with the
number of chains being even or odd.

Third, our theoretical model seems to be ahead of the
development of experimental techniques in fermionic opti-
cal lattices. Some of the necessary techniques have been
well developed as described in the Introduction. The biggest
challenge may be the precise tuning of both the spin-singlet
and spin-triplet pairings. Recent progress in implementing
pairings in cold atoms includes finite-momentum Cooper pair-
ings. These can induce Fulde-Ferrell (FF) states which have
superconducting order parameters with uniform amplitudes
but spatially dependent phases. Protocols for creating such FF
superfluids in spinful [30,38–41] and spinless [42] cold atoms
may be helpful for implementing the crucial Hamiltonian
components in our model, though it is still a big step. Further
experimental progress is needed to realize our model, but
our study of this model Hamiltonian may be insightful for
researchers in cold-atom physics.

V. CONCLUSION

We have proposed a method for creating Majorana
fermions at the edge of a honeycomb optical lattice of
ultracold atoms. This is done by generalizing a 2D topo-
logically nontrivial Haldane model and introducing textured
pairings. Both the spin-singlet and textured spin-triplet pair-
ings are added to a pseudospin-state-dependent lattice, whose
time-reversal symmetry is broken by complex next-nearest-
neighbor hoppings. If generalized “sweet spot” conditions
are satisfied, Majorana zero modes will arise on a single
edge of the lattice. We have analyzed their properties, such
as pseudospin polarization. We find that this system has a
gapped superconducting phase and a gapless phase, each of
which can have zero or nonzero winding numbers, and we
have calculated the phase diagrams of the system. We have
simplified the understanding of the band-gap-closing condi-
tion of the bulk Hamiltonian by identifying a discriminant that
distinguishes the gapped superconducting and gapless phases,
and provides a measure of the “strength” of time-reversal-
symmetry breaking. Further developments of this model may
include interactions between Majorana fermions and the in-
teraction between Majorana zero modes and ordinary gapless
edge modes.
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APPENDIX A: HAMILTONIAN IN MAJORANA
REPRESENTATION

Here we show our Hamiltonian Ĥ expressed as a sum
of products of Majorana operators, γ . The generalized
sweet spot conditions are apparent in this representation. In
our model, we choose to make the terms of γ�rj ,↑,1γ�rj ′ ,↑,1,
γ�rj ,↑,1γ�rj ′ ,↑,2, γ�rj ,↓,2γ�rj ′ ,↓,2, and γ�rj ,↓,2γ�rj ′ ,↓,1 vanish, which
will lead to Eqs. (4)–(6):

Ĥ = i

2

∑
〈j,m〉

[
(−t − �)γ�rj ,↑,1γ�rm,↓,2 + (t − �)γ�rj ,↑,2γ�rm,↓,1

]

+ i

2

∑
〈〈j,j ′〉〉,yj <yj ′

∑
σ=↑,↓

[
(−tσ sin φσ

+ Im(�σ ))γ�rj ,σ,1γ�rj ′ ,σ,1

+ (−tσ sin φσ − Im(�σ ))γ�rj ,σ,2γ�rj ′ ,σ,2

+ (−tσ cos φσ − Re(�σ ))γ�rj ,σ,1γ�rj ′ ,σ,2

+ (tσ cos φσ − Re(�σ ))γ�rj ,σ,2γ�rj ′ ,σ,1
]
. (A1)

APPENDIX B: DERIVATION OF THE PHASE
BOUNDARY BETWEEN GAPPED SC AND

GAPLESS PHASES

This section derives the expression for the phase boundary
between gapped SC and gapless phases in the px-py plane
when other parameters in our model are fixed. The results
are in close agreement with the phase diagram [Fig. 4(a)]
that was obtained by numerical simulations of band structures
for every point in the px-py plane. This supports the cor-
rectness of our mathematical analysis, exemplifies the bulk-
edge correspondence in topological physics, and provides
the basis for our identification of “strong vs weak” of TRS
breaking.

According to the results of Sec. IV, the band touch-
ing condition reduces to the vanishing of the discriminant
given in Eq. (10). We now show the steps of deriving
inequality (11).

Let zj = ei�k·�rj , aj = cos( �p · �rj /2), for j = 1, 2, 3. Note
that z2 = z1z3 since �r2 = �r1 + �r3. For any (z1, z3) such that
|z1| = |z3| = 1, the corresponding vector �k = (kx, ky ) can be
determined. Thus, we have converted the problem of finding
such a �k to a problem of finding zj . Using “⇔” to denote
equivalence, it is easy to show that

3∑
j=1

zjaj = 0 ⇔ z1 = −a3

a1z
−1
3 + a2

.

So |zj | = 1 (j = 1, 2, 3)

⇔ there exists a z3 with |z3| = 1

such that |a3| = |a1z
−1
3 + a2|.
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Considering that ||a1| − |a2|| � |a1z
−1
3 + a2| � |a1| + |a2|

for |z3| = 1, the above requirement

⇔ ||a1| − |a2|| � |a3| � |a1| + |a2|
⇔ |a1| − |a2| � |a3|, |a2| − |a1| � |a3|, |a3| � |a1| + |a2|.

Therefore, the band touching condition is finally reduced
to

|aj | + |ak| � |al|,
for any (j, k, l) being a permutation of (1, 2, 3). This is
inequality (11). Any special case with singularities can be
verified to satisfy these conditions.
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