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Dependence of Rydberg-state creation by strong-field ionization on laser intensity
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We investigate numerically and analytically the intensity dependence of the fraction of electrons that end
up in a Rydberg state after strong-field ionization with linearly polarized light. We find that including the
intensity dependent distribution of ionization times and nonadiabatic effects leads to a better understanding
of experimental results. Furthermore, we observe using classical trajectory Monte Carlo simulations that the
intensity dependence of the Rydberg yield changes with wavelength and that the previously observed power-law
dependence breaks down at longer wavelengths. Our work suggests that Rydberg yield measurements can be
used as an independent test for nonadiabaticity in strong-field ionization.
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I. INTRODUCTION

The liberation of the electron in the process of strong-field
ionization via tunneling [1–3] does not necessarily lead to the
electron leaving the atom for good [4,5]. This effect that is
often referred to as “frustrated tunneling ionization” (FTI) is
understood by the low kinetic energy of some electrons at the
end of the laser pulse which does not allow them to leave the
Coulomb potential but results in their capture in a Rydberg
state.

This process is not only interesting because it produces
neutral excited states, which are found to be useful tools in
the investigation of other strong-field effects [6,7], but it also
leads to a better understanding of postionization dynamics
[6–8].

Even though the detection of neutral excited states poses
some difficulties [4], the fact that about 10% of the liber-
ated electrons end up in a Rydberg state for typical strong-
field parameters makes it a process that needs to be taken
into account in the investigation of many strong-field effects
[9–12]. The fraction of electrons that are tunnel ionized
and which end up in a Rydberg state was found to depend
significantly on parameters of the laser field and the atomic
potential, the experimental and theoretical investigation of
which helped in understanding the underlying process of FTI
better [4,5,13,14].

In the present work, we focus on the intensity dependence
of the ratio of tunnel-ionized electrons which end up in a Ryd-
berg state when using linearly polarized light. This observable
has been previously measured by Nubbemeyer et al. in [4]. In
[5], Shvetsov-Shilovski et al. have presented analytical esti-
mations and numerical calculations for this experimental data.
Here, we build on this work by including nonadiabatic effects,
as well as introducing further corrections and expansions of
the theory. We find an analytical dependence of Rydberg yield
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on intensity that agrees better with the experimental results in
[4]. Additionally, we describe wavelength dependent effects,
which should be experimentally measurable.

The insights gained in the present study are not only
restricted to Rydberg states but address the more general
questions of which approximations are useful to describe
(i) the initial conditions at the tunnel exit and (ii) the move-
ment of the electron in the superposed potential of the laser
and the parent ion. These approximations are the basis of
many classical trajectory methods [15,16], and are fundamen-
tal to our interpretation of many high profile experiments,
including recent attoclock measurements [17,18]. The present
work therefore demonstrates in what way Rydberg atoms can
be used to give answers to these questions and to thus track
the electron motion in a strong-field ionization process.

In particular, our results provide support for the importance
of nonadiabatic effects in strong-field ionization—a much
debated question that has previously been addressed by inves-
tigating photoelectron momenta distributions [19–21]. These
investigations, however, have proved to be inconclusive, with
some experiments confirming adiabatic assumptions [19,21],
while others pointing to relevance of nonadiabatic effects
under typical strong-field ionization conditions [20,22,23].

Since the Rydberg yield is measured under different ex-
perimental conditions and represents a different class of elec-
trons (inaccessible in typical strong-field experiments), its
experimental measurements provide an independent test of
the prominence of nonadiabatic effects in strong-field ion-
ization. Furthermore, this nonadiabaticity manifests itself in
the power-law dependence as a function of intensity. Since
the absolute value of intensity is therefore not important, the
results do not depend on the calibration procedure (something
that has been a serious issue in prior studies [19–21]).

Even though there are some effects in strong-field excita-
tion, such as certain molecular effects or oscillations due to
channel closings in multiphoton excitation, that can only be
understood based on the time-dependent Schrödinger equa-
tion [11,24–26], it has been found that electrons that were tun-
nel ionized and that end up in a Rydberg state can be described
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very well in a semiclassical approximation [4,5,27–31].
One semiclassical method that is widely used and that also we
will use in this paper is called the classical trajectory Monte
Carlo (CTMC) method [4,5,32–35]. In this framework, the
electron is born at the tunnel exit at a time t0 with an initial
velocity v⊥,0 perpendicular to the polarization direction where
t0 and v⊥,0 are sampled according to a probability distribution
[4]. Each electron is then propagated in the superposed laser
and atomic field solving Newton’s equations. In order to
determine which electron is captured in a Rydberg state, we
evaluate the total electron energy at a time τ when the pulse
has passed. The final total energy E has to be negative in the
case of FTI [4,5]:

E = v2

2
− 1

r
< 0. (1)

Atomic units are used throughout the paper, unless otherwise
specified.

We define the Rydberg yield as the ratio of the number N∗
of electrons which are captured in a Rydberg state to the num-
ber N of all electrons which tunneled through the potential
barrier. As is the case in [5], we initially assume a constant
distribution of ionization phases φ = ωt0 and initial transverse
velocities v⊥,0 in the φ-v⊥,0 plane, meaning the Rydberg yield
is estimated to be proportional to the ratio �∗/� of the areas
�∗ and � which are obtained by integrating in the φ-v⊥,0

plane over the regime of the Rydberg or ionization events,
respectively. The estimate for the area �∗ of Rydberg states
in [5] is derived for ionizations in the central half-cycle giving

�∗ ∝ ω

F0τ 3/2

(
1 − 2

F0

(2Ip )2

)−1

, (2)

where F0 denotes the maximal field strength and Ip the
ionization potential. Furthermore, in [5] the area � is assumed
to be proportional to the width σv⊥ of the distribution of the
initial transverse velocity v⊥,0 as described by [36,37] with

� ∝ σv⊥ ∝
√

F0, (3)

where the relation σv⊥ ∝ √
F0 is not trivial and is discussed in

more detail in Appendix A. Thus the Rydberg yield in [5] is
estimated to be proportional to

N∗/N ∝ ω

F
3/2
0 τ 3/2

(
1 − 2

F0

(2Ip )2

)−1

, (4)

where the last factor can be neglected for 2F0 � (2Ip )2.
Setting all parameters except the intensity I to a constant we
thus arrive at the power law N∗/N ∝ F

−3/2
0 ∝ I−0.75, which

is the result presented in [5].

II. INCLUDING THE WIDTH OF THE IONIZATION PHASE

However, also the width σφ of the ionization phase depends
on the laser intensity and we should take account of that. As
shown in Appendix A and as often used [38,39] the adiabatic
ADK distribution for ionization phases φ = ωt0 [36,37],

P (φ) ∝ exp

(
−2[2Ip(φ)]3/2

3F0| cos(φ)|
)

, (5)

FIG. 1. Rydberg yield for the parameters found in [4]: I = 1.4 ×
1014–1015, FWHM of pulse envelope = 30 fs, λ = 800 nm, and He
atom with Ip = 0.9. The experimental yield (blue dot) was extracted
from [4]. The adiabatic CTMC simulation (red diamond) was done
using the ADK distribution [36,37] and the nonadiabatic simulation
(green square) is based on [40]. The power law used for fitting is
described by N∗/N = a · I b with b given in the legend. The fitting
results are represented by lines. Note that the lower absolute values
of the experimental yields are due to the decay of the excited states
which is not accounted for here (for details see [4]). As the correction
factor between TDSE simulations and experimental data in [4] is
found to be independent of the laser intensity, this correction factor
affects only the prefactor of the power law, but not the power-law
exponent we are interested in here.

can be approximated as a Gaussian function with an intensity
dependent width σφ that can be estimated as being propor-
tional to

√
F0. Consequently, we should set N ∝ σv⊥σφ ∝√

F0
√

F0 = F0 = √
I obtaining N∗/N ∝ I−1. This conclu-

sion enables a better understanding of the adiabatic CTMC
simulation results displayed in Fig. 1 where a power-law fit to
the data yields an exponent of −1.02.

III. NONADIABATIC EFFECTS

From the experiment reported in [4], the ratio N∗/N can
be extracted for various intensities. These values show an
intensity dependence of

N∗/N ∝ I−0.86, (6)

displayed as a blue line in Fig. 1. So, even though taking into
account the intensity-dependent phase width in the analyti-
cal estimation, which shifted the power-law exponent from
b = −0.75 as obtained in [5] to b = −1, was well captured by
the adiabatic CTMC simulations giving b = −1.02, we still
do not fully understand the experimental result of b = −0.86
in this framework. However, when looking at the adiabaticity
parameter γ = ω

√
2Ip/F0 [1], we find that, for the inten-

sity regime of I = 1.4 × 1014–1015 W/cm2 at λ = 800 nm,
γ ranges from 0.5 to 1.2. This is the typical strong-field
ionization regime where the relevance of nonadiabatic effects
is under debate [19–21].

We now show that nonadiabatic effects can be observed
in Rydberg yield measurements from the power-law depen-
dence alone. This eliminates the concerns about intensity
calibration that has haunted prior experiments attempting to
observe nonadiabatic effects by measuring electron momenta
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FIG. 2. f (γ ) we find in [43] and cy (γ ) as given in [40] with the
respective power-law fits in the γ regime defined by the parameters
listed in Fig. 1.

distributions [19,20]. At this point we want to emphasize
that the correction factor for the ion yield due to the decay
rate into metastable states, which had to be applied in [4] to
match theoretical and experimental results, does not depend
on the intensity. Therefore, it only affects the prefactor of the
power law, but not its exponent, which makes the anyway high
robustness of the exponent of a power-law fit even less subject
to calibration issues.

In Fig. 1, CTMC simulation results are depicted in green
(squares) where the nonadiabatic PPT ionization probability
described in [40,41] was used to generate the initial condi-
tions. For a detailed description of this simulation see [42].
A power-law fit to this data yields N∗/N ∝ I−0.93, which im-
proves the CTMC prediction and gives the closest quantitative
agreement with the experimental value of b = −0.86 of all
discussed models.

These nonadiabatic effects on the intensity dependence of
the Rydberg yield can be explained by the width in the distri-
bution of the starting velocity and the ionization phase, which
both increase more slowly with intensity in the nonadiabatic
theory than in the adiabatic one. Since this affects the denom-
inator of the Rydberg yield, we end up with a less negative
exponent in the power law. In order to estimate the extent of
this effect, we first look at the width σv⊥ = √

ω/(2cy ) of the
transverse velocity distribution for the nonadiabatic case as
given in [40]. It is

cy = τ0 = sinh−1(γ ), (7)

which in the adiabatic limit γ � 1 can be approximated by

cy = τ0 ≈ γ ∝ 1/F0 ∝ I−0.5. (8)

For the nonadiabatic regime used in this paper we fit a
power law to Eq. (7) (Fig. 2) and obtain cy ∝ γ 0.84 and thus
σv⊥ ∝ γ −0.84/2 ∝ F

0.84/2
0 ∝ I 0.84/4. We proceed analogously

with the phase width: in [43] the ionization rate is found to
have the exponential dependence exp ( −2Ip

ω
f (γ, v||, v⊥)), so

we use σφ ∝ 1/
√

f . In a power-law fit to f (γ ) where we set
v|| = 0 and v⊥ = 0 we obtain f (γ ) ∝ γ 0.89 and consequently
σφ ∝ 1/

√
γ 0.89 ∝ F

0.89/2
0 ∝ I 0.89/4 (see Fig. 2).

Consequently, including the nonadiabatic effect both in the
velocity and in the phase width we obtain

N∗/N ∝ 1/
√

I

σv⊥σφ

∝
{

1/I 0.5+0.5 = 1/I 1.0, adiabatic,

1/I 0.5+0.84/4+0.89/4 = 1/I 0.933, nonadiabatic.

(9)

Although this estimate of b = −0.93 does not agree per-
fectly with the power-law exponent b = −0.86 obtained from
the experimental data we got much closer to it. Also, the
manifestation of nonadiabaticity is even more pronounced at
smaller wavelengths: at a wavelength of 600 nm the power-
law exponent shifts from −0.91 to −0.77 and at 400 nm
from −0.65 to −0.34 from the adiabatic to the nonadiabatic
description. This does not only highlight the relevance of
taking account of nonadiabatic effects, but it also shows in
what way FTI can be used to investigate the initial conditions
at the tunnel exit. In particular, as the discussed effects con-
cern the denominator of the Rydberg yield and thus the total
number of tunneled electrons, they are not only relevant for
Rydberg related studies but for tunnel ionization in general.
For example, the slower growth of the momentum width with
intensity when applying nonadiabatic theories as compared to
adiabatic theories can also be seen in the data presented in
[20,21].

IV. WAVELENGTH DEPENDENCE

For infrared (λ = 800 nm) light the estimation of a power
law with exponent b = −1 matched the adiabatic simulation
results rather well (see Fig. 1, b = −1.02 for the adiabatic
CTMC simulations). Since the adiabatic theory is wavelength
independent, we would expect the same scaling to hold for
larger wavelengths as well—or even better since the system
would be more adiabatic. However, the Rydberg yield from
adiabatic simulations at λ = 1200 nm shows a faster drop
with intensity, which leads to an exponent of b = −1.16 in
a power-law fit (red diamond with orange line in Fig. 3).
For larger wavelengths the drop increases even faster with
increasing intensity. In the following we derive a theory which
explains this effect, thus making predictions about observing
this effect in experimental data as well.

As described in [5], we need the maximal initial transverse
velocity v⊥,0,max and the range �φ of ionization phases for
estimating the area of initial events in the v⊥,0 − φ plane
which end up in a Rydberg state. From [5] it becomes clear
that including Coulomb effects plays a minor role when
dealing with intensity dependence as this effect cancels out
in the derivation of �φ = |φlatest − φearliest| and only shifts the
Rydberg area but does not affect its size. Hence we neglect
the Coulomb potential in the propagation in the following and
“turn on” this potential only at the end of the pulse for the
evaluation of Eq. (1).

We define the ionization phase of φ = 0 to correspond to
ionization at the central field maximum, and set the tunnel
exit to xe = 0. According to the equations of motion in [2] the
position and velocity at a time τ just after the pulse has passed

033415-3



L. ORTMANN, C. HOFMANN, AND A. S. LANDSMAN PHYSICAL REVIEW A 98, 033415 (2018)

FIG. 3. Intensity dependent Rydberg yield at λ = 1200 nm (all
other parameters are chosen as listed in Fig. 1). Purple dashed line:
the adiabatic power law with b = −1 [see Eq. (9)]. Red diamonds:
adiabatic CTMC simulation data with power-law fit (orange line) to
it. Blue dashed-dotted line: estimation by solving Eqs. (14) and (16)
exactly, Green dotted line: approximation given by Eq. (C8).

can be approximated by

x(τ ) ≈ F0

ω2
cos (φ) − F0

ω
sin (φ)τ, (10)

y(τ ) ≈ v⊥,0τ, (11)

vx = −F0

ω
sin (φ), (12)

v⊥ = v⊥,0, (13)

where τ = T/2, with T the time span between the zeros of
the envelope, and the light is linearly polarized in x direction.
Note that these equations of motion differ from the ones used
in [5] by the term F0

ω2 cos (φ) and the λ effect in the intensity
dependence that we derive arises from this discrepancy. This
also explains why the mentioned effect is weakened for longer
pulses where the second term in x(τ ) dominates.

For the calculation of v⊥,0,max we substitute Eqs. (10) and
(11) in the limit of E = 0 in Eq. (1) and set φ = 0,

E = v2
⊥,0,max

2
− 1√

F 2
0

ω4 + v2
⊥,0,maxτ

2
= 0. (14)

Analogously, we set v⊥,0 = 0 in the calculation of φmax in
Eq. (1), which leads to

1

2

(
F0

ω

)2

sin (φmax)2

= 1∣∣ F0
ω2 cos (φmax) − F0

ω
sin (φmax)τ

∣∣ . (15)

This expression can be approximated by

1

2

(
F0

ω

)2

φ2
max − 1∣∣ F0

ω2 − F0
ω

φmaxτ
∣∣ = 0, (16)

since φmax < 0.1 for the parameters used in this work.
Equations (14) and (16) can be solved analytically for
v⊥,0,max and φmax, respectively (see Appendix B for details).
The corresponding Rydberg yield is estimated as N∗/N ∝
φmax(F0, ω, τ )v⊥,0,max(F0, ω, τ )/F0 and the intensity depen-
dence at λ = 1200 nm can be seen in Fig. 3 (blue line), a

power-law fit which gives an exponent of b = −1.15. This
analytical derivation matches the simulation data (red dia-
monds) very well. As the lengthy, full analytical solution of
(14) and (16) (see Appendix B) does not allow for a deeper
understanding of which parameters dominate this wave-
length dependence, we also derive an approximation for it in
Appendix C which yields

N∗/N ∝ ω

F 2
0 τ 2/3

(
1 + F0

24/3ω2τ 2/3

) . (17)

For the case of λ = 1200 nm, the approximation is plotted
in Fig. 3 (green line) and a power-law fit gives an exponent
of b = −1.12. This approximation makes clear that for large
wavelengths and small pulse durations the Rydberg yield as
a function of intensity is less well described by a power law
than for small wavelengths.

V. SUMMARY AND CONCLUSION

In conclusion, we find that including nonadiabatic effects
in the distribution of the ionization times and the initial ve-
locity leads to a different power-law exponent in the intensity
dependence of the relative Rydberg yield, resulting in better
agreement with experimental data. As the two mentioned
corrections affect the denominator of the Rydberg ratio and
thus the total number of electrons that tunneled out of the
atom, these insights and approximations can be used beyond
studies of Rydberg atoms, where one is interested in the
intensity dependence of tunnel ionization in a more general
context. Moreover, we find that the power-law intensity de-
pendence observed for infrared light breaks down for longer
wavelengths. This correction is based on and highlights the
importance of including the offset term F0/ω

2 cos(φ) in the
approximation of the position of an electron that is driven by
a laser field.

All in all, these results show how to use Rydberg atoms
for retrieving information about the tunneling and propagation
step in strong-field ionization processes. In particular, measur-
ing the Rydberg yield can be used as an independent test for
nonadiabatic effects in strong-field ionization. An interesting
twist on Rydberg dynamics is provided by the spatial inho-
mogeneity of electric fields, such as the one resulting in the
vicinity of a nanostructure [44]. Under certain conditions, this
field inhomogeneity may even lead to chaotic orbits, which
should have a significant impact on what fraction of electrons
end up in Rydberg states.
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APPENDIX A

In this section, we show that both the distribution of the
initial transverse velocity v⊥,0 and of the ionization phase φ

are proportional to
√

F0 when describing the ionization prob-
ability by the adiabatic ADK theory [36,37]. The histogram of
ionization phases qualitatively follows a normal distribution
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FIG. 4. Power-law fit (aF b
0 with fitting parameters a and b) to the

intensity dependence of the standard deviation obtained by Gaussian
fits to the histograms of the starting velocities vy and vφ and of the
FWHM of the v⊥ histogram for the parameters listed in Fig. 1.

even though formally Eq. (5) is not Gaussian like. But using
the Taylor expansion

1

F (φ)
= 1

F0cos(φ)
≈ 1

F0

(
1 + 1

2
φ2 + O(φ4)

)
, (A1)

we can rewrite Eq. (5) as

Papprox = exp

(
− φ2

2σ 2
φ

)
with σφ =

√
3F0

25/4I
3/4
p

, (A2)

which makes clear why a normal distribution is a good
approximation for it. The result is shown in Fig. 4, where
Gaussian distributions were used to fit the histogram of ion-
ization phases (generated with ADK probability) for various
field strengths. The corresponding standard deviations σφ are
depicted in blue and the power-law fit (aF b

0 with fitting
parameters a and b) to this data gives σφ ∝ F 0.49

0 .
Also, the dependence of σv⊥ on the field strength is not

as trivial as one might think at first glance. Even though the
ionization probability is given by

P (vy,0, vz,0) ∝ exp

(
−v2

y,0 + v2
z,0

2σ 2
v⊥

)
, (A3)

with

σ 2
v⊥ = F0

2(2Ip )1/2
, (A4)

the probability distribution as a function of v⊥,0 =√
v2

y,0 + v2
z,0 has to be transformed into [45]

P (v⊥,0) ∝ 2πv⊥,0 exp

(
− v2

⊥,0

2σ 2
v⊥

)
. (A5)

Since this distribution cannot be approximated by a Gaussian,
we use the FWHM as a measure for the width. As can be
seen from Fig. 4, the power-law fit gives a field strength
dependence on this width of F 0.48

0 and approximating this by√
F0 seems justified.

APPENDIX B

The completely analytical solution to Eq. (16) is given by

φmax =
1 + g + 1

g

3τω
, (B1)

with

g = F 3
0

/(
F 9

0 − 27F 6
0 τ 2ω6 · · ·

+ 3
√

−6F 15
0 τ 2ω6 + 81F 12

0 τ 4ω12
)1/3

. (B2)

Furthermore, Eq. (14) is solved exactly by the following
expression:

v⊥,0,max =
√

−F 2
0

ω4 + F 4
0

ω8h
+ h

3τ 2
, (B3)

with

h = (−F 6
0 + 6ω6(9τ 4ω6 · · ·

+
√

−3F 6
0 τ 4 + 81τ 8ω12

))1/3/
ω4. (B4)

The Rydberg yield is then estimated by plugging these results
into

N∗/N ∝ φmaxv⊥,0,max/F0. (B5)

APPENDIX C

In the following we derive an easy to handle analytical
estimation of the Rydberg yield as calculated from Eqs. (14)
and (16). The idea is to plug the approximate and simpler
results v⊥,0,∗ = (2/τ )1/3 and φ∗ = −( 2

τ
)
1/3 ω

F0
from [5] into

the Coulomb term of Eq. (1), which is analogous to solving
an equation iteratively. For v⊥,0,max this means

v2
⊥,0,max

2
− 1√

F 2
0

ω4 + v2
⊥,0,∗τ 2

≈ 0

⇒ v⊥,0,max ≈
√

2(F 2
0

ω4 + 22/3τ 4/3
)1/4

. (C1)

And for the phase we obtain

1

2

(
F0

ω

)2

φ2 − 1
F0
ω2 − F0

ω
φ∗τ

≈ 0, (C2)

from which follows

|φmax| ≈ (ω/F0)
√

2√
F0
ω2 − F0

ω

[−(
2
τ

)1/3 ω
F0

]
τ

= (ω/F0)
√

2√
F0
ω2 + 21/3τ 2/3

. (C3)
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Setting m = F0
ω2 and n = 21/3τ 2/3 the Rydberg yield can be

expressed as follows:

N∗/N ∝ �∗/�+ ∝ |v⊥,0,max||φmax|
F0

(C4)

=
√

2

(m2 + n2)1/4

√
2(ω/F0)

(m + n)1/2

1

F0
(C5)

= 2ω

F 2
0

√
n
(
1 + m2

n2

)1/4√
n
(
1 + m

n

)1/2 (C6)

≈ 2ω

F 2
0

√
n
√

n
(
1 + 1

2
m
n

) (C7)

∝ ω

21/3F 2
0 τ 2/3

(
1 + F0

24/3ω2τ 2/3

) , (C8)

where in Eq. (C7) a Taylor expansion around m/n ≈ 0 is done
and the terms with O(m2/n2) are neglected. This expansion
to first order seems reasonable since for the studied parameter
regime m < n holds true.
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