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Long-lived coherence between ground and Rydberg levels in a magic-wavelength lattice
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By confining atoms in a state-insensitive optical lattice, the lifetime of the ground-state–Rydberg coherence
is increased to �20 μs, an order of magnitude improvement over previous experiments using freely diffusing
atoms. Using these enhanced lifetimes, we measure the so-called magic lattice wavelengths for Rb and use
them to extract the 6p3/2-ns1/2 reduced electric dipole matrix elements. Good agreement is found with values
obtained using an effective one-electron potential for principal quantum numbers n between n = 30 and n = 70.
We develop a theoretical model based on quantized motion to map out the ground-state–Rydberg coherence as
a function of time that is in good agreement with the experimental results. The availability of long coherence
times may present new opportunities for high-resolution spectroscopy and quantum information science.
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I. INTRODUCTION

Ground-state–Rydberg-state coherence in ensembles of ul-
tracold atoms plays a critical role in many quantum infor-
mation, quantum communication, and precision metrology
protocols [1–8]. Single-photon generation [9], many-body
Rabi oscillations [10], photon antibunching [11], creation of
entanglement of light and atomic excitations [12], single-
photon optical switches, and interaction-induced phase shifts
[13–17] have been demonstrated based on coupling of en-
sembles of neutral atoms with propagating quantum light
fields. Significant progress has also been made in employ-
ing Rydberg interactions for entanglement [18–20], many-
body interferometry [21], and quantum simulation in arrays
of neutral atoms [22]. All these experiments have relied
on quantum coherence between the ground and Rydberg
states. Prolonging this coherence lifetime is therefore cru-
cial to further advances in increasing the size and com-
plexity of quantum algorithms and the precision of atomic
measurements.

Several physical processes contribute to ground-state–
Rydberg decoherence, including spontaneous decay, black-
body radiation, and coupling to stray electric fields [1]. In the
majority of experiments to date, however, the loss of coher-
ence can be attributed mainly to motional dephasing, limiting
the coherence lifetime to a few microseconds [9,10,18–20,22].
Motional dephasing can be reduced by tightly confining the
atoms in an optical dipole trap. Unfortunately, while typical
off-resonant dipole traps are attractive for ground-state atoms,
they are repulsive for atoms in Rydberg levels. This results
in fast decoherence owing to position-dependent differential
energy shifts, making it necessary to turn off the trapping
fields for the duration of the Rydberg excitation period. To
overcome this problem, the trapping fields can be tuned to a
so-called magic wavelength [23,24] that results in identical
energy shifts for the ground and Rydberg states [12,25]. The
magic wavelength is close to that of the Rydberg level |ns1/2〉
to intermediate level |6p〉 transition.

In this work we exploit the use of the magic wavelength
to obtain a significant enhancement of ground-state–Rydberg
atomic coherence lifetimes over a range of principal quantum
numbers n = 30, . . . , 70. This is achieved by confining the
atomic sample in a one-dimensional, state-insensitive opti-
cal lattice along the axis of propagation of the excitation
light fields. We observe damped oscillations of the collective
ground-state–Rydberg atomic coherence in the lattice poten-
tial. The anharmonicity of the potential leads to a damping of
the visibility of the oscillations, whereas the radiative decay
and blackbody radiation-driven depopulation of the Rydberg
state lead to a damping of the overall signal.

A second component of this paper is the formulation of a
theory that can be used to explain the overall features of the
experimental data. A first-principles calculation of the signal
presents considerable challenges, even when interactions be-
tween Rydberg atoms can be neglected. The reason for this is
that standard methods [26] involving the use of the Maxwell-
Bloch equations or a source-field approach are no longer
applicable when the atoms undergo quantized motion in the
trap potentials. Moreover, if the trap potentials differ for the
Rydberg- and ground-state potentials, any approach assuming
classical motion in the potentials fails if the signal depends on
the coherence between these levels. There have been theories
of phased-matched emission from trapped atoms that have
been developed in the context of atom interferometry [27],
but the formalisms used in those approaches differ somewhat
from what is needed in our problem involving excitation
of Rydberg levels. More closely related to our calculations
are those of Zhao et al. [28] and Jenkins et al. [29], who
considered phase-matched emission from trapped atoms using
Raman transitions. Jenkins et al. [29] used a model in which
the atoms undergo classical motion in a lattice potential. In
contrast to these authors, we present a theory that treats the
atomic motion in the lattice quantum mechanically and allows
for different Rydberg- and ground-state potentials. We first
present a theoretical formalism that can be used to model our
system and then describe its experimental implementation.
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FIG. 1. (a) A cold sample of 87Rb gas is trapped in a 0.5-μm-
period one-dimensional optical lattice formed by a retroreflected
beam EL. Two nearly counterpropagating beams E1 and E2 excite
a spin wave between the |5s1/2, F = 2〉 and |ns1/2〉 levels. After a
storage time Ts , a retrieval pulse ER is applied, creating an array of
atomic dipoles which give rise to a phase-matched emission from the
sample. The actual geometry used in the experiment differs some-
what from that shown schematically in the figure. (b) Relevant 87Rb
energy levels and corresponding fields, with � = ωL − ωns,6p3/2 and
�1 = ωE2 − ωns,6p3/2 . (c) Schematic diagram indicating transitions
between the ground- and excited-state motional levels. (d) Timing
diagram showing the excitation and retrieval pulse sequence.

II. THEORY

There are essentially three ingredients needed to calculate
the signal. First, the ground- and Rydberg-state potentials
produced by the trap fields must be obtained. Second, the
contribution to the signal at the detector produced by a single
atom needs to be derived. Finally, a weighted sum over the
contributions from atoms at different points in the trap poten-
tial and an average over the thermal distribution in the sample
must be carried out. Each atom is modeled as a three-level
system with level 1 corresponding to the ground state, level
2 to the 6p3/2 state, and level 3 to the ns state, as shown in
Fig. 1. The atom interacts with both a classical two-photon
pulse at time t = 0 and a classical readout pulse at time Ts .
The applied pulses propagate in the ±X direction. The first
pulse has an effective k vector (kE1 − kE2 )ux and effective
two-photon frequency ωE31 = ωE1 + ωE2 , while the readout
pulse has a k vector −kRux and frequency ωR ≈ ωE2 . As a
result of these interactions and the interaction with the vacuum
field, a phase-matched signal is generated from the sample.

There is also a trap potential formed by fields coun-
terpropagating in the X direction having wavelength λL =
2π/kL = 2πc/ωL. The detuning of the trap field frequency
from the ns-6p3/2 transition frequency is denoted by �. The
motion of the atoms in the potential wells in the longitudinal
direction is treated quantum mechanically, while the motion
in the transverse trap potential is treated classically. It is as-
sumed that all the atoms are trapped; transitions to continuum
states are not taken into account. Moreover, we neglect any

modifications of the signal resulting from Rydberg-atom–
Rydberg-atom interactions.

A. Optical potentials

We need not consider the optical potential associated with
state |2〉 since it drops out of the calculation of the phase-
matched signal. To arrive at expressions for the optical po-
tentials for states |1〉 and |3〉, we write the y-polarized trap
electric-field amplitude as

E(R, t ) = 1
4 [A+(ρ,X)eikLX + A−(ρ,X)e−ikLX]e−iωLt

+ c.c., (1)

where

A±(ρ,X) = E±,0
w±,0

w±(X)
e−ρ2/w2

±(X), (2)

ρ is the coordinate transverse to X, E±,0 are the field am-
plitudes for the fields propagating in the ±X directions that
constitute the trap, w±,0 are the waist radii of these fields,

w±(X) = w±,0

√
1 + (X − X±,0)2

X2±,r

, (3)

X±,r, = πw2
±,0/λL are Rayleigh lengths, and X±,0 are the

positions of the foci of the beams. We have allowed for
unbalanced beams, that is, the beams propagating in the
±X directions can have different waists and be centered at
different positions.

The time-average field intensity is proportional to

|Ē(R)|2 = 1
8 [4A+A− cos2(kLX) + (A+ − A−)2]

and results in both a transverse (nonlattice) trap potential that
is independent of X and a longitudinal (lattice) cos2(kLX)
trap potential. The nonlattice potential, which traps the
atoms transversely, also results in a spatially dependent light
shift that limits the coherence time of the signal. The position
of the Rydberg electron in a single atom can be taken as R + r,
where R = (ρ,X) is the center-of-mass position vector of the
atom and r its relative electronic coordinate.

The ground-state optical potential, calculated in the dipole
approximation, is

Ug ≈ − 1
2αg|Ē(R)|2

= − 1
16αg[4A+A− cos2(kLX) + (A+ − A−)2], (4)

where αg is the ground-state polarizability. To find the op-
tical potential associated with an atom in the Rydberg state
ns, we break up the interaction potential into a term repre-
senting the A · p contribution and one representing the A2

contribution, where p is the momentum operator associated
with the Rydberg electron and A = A(R, t )uy is the vector
potential (which has the same polarization as the electric field)
given by

A(R, t ) = ie−iωLt

4ωL

[A+(ρ,X)eikLX+A−(ρ,X)e−ikLX]+c.c.

For the A · p term we can use the dipole approximation since
the major contribution to the sum that determines this contri-
bution originates from the 6p intermediate states; however,
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for the A2 term we do not make the dipole approximation
and set

θn = 〈cos(2kLx)〉ns (5)

and 〈sin(2kLx)〉ns = 0, where the average is over electronic
coordinates in the ns state. The total optical potential in the
ns state can then be written as [30]

Un ≈ − 1

16
[4A+(ρ,X)A−(ρ,X) cos2(kLX) + (A+ − A−)2]

× e2

h̄

∑
m�=n

2|ymn|2ωmn

ω2
mn − ω2

L

(
ωmn

ωL

)2

+ |αf |
16

[4θnA+A− cos2(kLX)

+ (A+ − A−)2 + 2A+A−(1 − θn)], (6)

where the first term is the A · p contribution and the second
the A2 contribution. The quantity αf = −e2/mω2

L is the free-
electron polarizability. For the detunings �/2π � 4.5 GHz
used in our experiment, the dominant contribution to the sum-
mation appearing in Eq. (6) originates from the intermediate
6p3/2 levels (the 6p3/2-6p1/2 transition frequency is about
2.3 THz). As a consequence, we can approximate

e2

h̄

∑
m�=n

2|ymn|2ωmn

ω2
mn − ω2

L

(
ωmn

ωL

)2

≈ D2
n

6h̄�
, (7)

where

Dn = |〈ns||d̂||6p3/2〉| (8)

is a reduced matrix element of the dipole moment operator d̂.
From Eqs. (4) and (6), it then follows that the lattice

potentials for levels 1 and 3 are

U
(l)
1 (ρ,X) ≈ −1

4
αgA+(ρ,X)A−(ρ,X) cos2(kLX), (9a)

U
(l)
3 (ρ,X) = −1

4
A+(ρ,X)A−(ρ,X) cos2(kLX)

×
[

D2
n

6h̄�
− |αf |θn

]
(9b)

and the nonlattice potentials are

U
(nl)
1 = −αg

16
(A+ − A−)2, (10a)

U
(nl)
3 = − D2

n

96h̄�
(A+ − A−)2

+ |αf |
16

[2A+A−(1 − θn) + (A+ − A−)2]. (10b)

Experimentally, the detuning � can be chosen to equate the
lattice potentials of the ground and Rydberg levels; that is, ωL

is adjusted such that

D2
n

6h̄�m,n

= αg + |αf |θn, (11)

where �m,n is the so-called magic detuning for the ns Ryd-
berg level. In this limit, the difference between the Rydberg-

and ground-state nonlattice potentials is

U
(nl)
d = U

(nl)
3 − U

(nl)
1 = |αf |

16
(1 − θn)(A2

+ + A2
−). (12)

As we will see, the nonlattice potential leads to a dephasing
of the signal.

The amplitudes E±,0 can be related to the power P± in each
of the beams via

E±,0 =
√

16cμ0P±
πw2

±,0

, (13)

obtained by integrating the time-averaged Poynting vector in
the X = X±,0 planes. It is convenient to define

U0 = 1

4
αg

16cμ0P

π

1

w+(0)w−(0)
, (14)

where X = 0 denotes the position of the atomic cloud center,
determined by the position of the magneto-optical trap, and

P =
√

P+P−. (15)

For matched ground-state and Rydberg lattice potentials,
the ground- and Rydberg-state lattice potentials can be written
in terms of U0 as

U (l)
g (ρ,X) ≈ −U0

w+(0)w−(0)

w+(X)w−(X)

× e−ρ2/w2
+(X)e−ρ2/w2

−(X) cos2(kLX) (16)

and the differential shift resulting from the nonlattice potential
as

U
(nl)
d (ρ,X) = h̄ωd (ρ,X) = |αf |U0

2αg

(1 − θn)I (ρ,X), (17)

where

I (ρ,X) = w+(0)w−(0)

2

×
[√

1

ξ

e−2ρ2/w2
+(X)

w2+(X)
+

√
ξ
e−2ρ2/w2

−(X)

w2−(X)

]
(18)

and ξ = P−/P+ is the ratio of reflected to incident power.
For different ground and Rydberg potentials, Eqs. (9) and

(10) must be used for the lattice and nonlattice potentials,
respectively. In our experiment, the atomic cloud is centered
at X = 0 and

w+,0 = 33 μm, w−,0 = 68 μm,

X+,0 = 7.9 mm, X−,0 = 23.9 mm,

X+,r = 3.35 mm, X−,r = 14.2 mm,

λL ≈ 1.02 μm, ξ = 0.73. (19)

B. Signal at the detector

The phase-matched signal recorded at a detector located at
position Rd centered at a position along the positive X axis is
proportional to a quantity S defined by

S = 2ε0cR
2
d�d

∫
dt〈E−(Rd ) · E+(Rd )〉, (20)
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where �d is the solid angle subtended by the detector and
E±(Rd ) are the positive and negative frequency components
of the electric-field operator at the detector. The electric field
arises from contributions from all the atoms.

To evaluate S, we must calculate the effects of the exci-
tation field pulse, the retrieval (readout) field pulse, and the
vacuum field on each atom and then sum the contribution
from all atoms. A weak two-photon excitation pulse creates an
atomic coherence for atom j characterized by a density matrix
element ρ

(j )
31 at time t = 0. As a result of atomic motion and

the nonlattice potential, this coherence undergoes dephasing.
At time t = Ts , the retrieval pulse, taken as a square pulse that
is in resonance with the 3-2 transition frequency, is applied to
create the coherence ρ

(j )
21 . The duration of the retrieval pulse

is much longer than the lifetime τ2 = 1/γ2 of level 2. The
phase-matched signal emitted by the sample, which results
from the interaction of the vacuum field with the atoms, is
dependent on the value of ρ

(j )
21 created by the excitation and

retrieval fields. If the Rabi frequency of the retrieval field
is greater than γ2, the signal is emitted in a time of order
τ2, which is assumed to be sufficiently short to neglect any
dephasing while the signal is being emitted.

Using a calculation based on a source-field approach mod-
ified to allow for quantized motion of the atoms in the optical
potentials, we find

S(Ts ) = 2ε0c�d

(
ω2

21μ21

4πε0c2

)2 ∫ ∞

0
dτ

×
∣∣∣∣∣∣
∑

j

qmax∑
q,q ′,q ′′

(
A

(j )
31 /2

)
Q̃(j )(τ )e−iω

(j )
d Ts ρ1q ′′,1q ′ (0)

× M
(j )
1q ′;3q (−kux )M (j )

3q;1q ′′ (kux )ei(ω(j1)
q′ −ω

(j3)
q )Ts

∣∣∣∣∣∣
2

, (21)

where k = (kE1 − kE2 ), μ21 is a dipole moment matrix ele-
ment (it is assumed that the excitation and retrieval pulses
are z polarized; the dipole moments that enter are also in
the z direction), A

(j )
31 = ∫ ∞

−∞ �
(j )
31 (t )dt is the pulse area of the

excitation pulse whose two-photon Rabi frequency is defined
by �

(j )
31 (t ) = �

(j )
E1

(t )�(j )
E2

(t )/2�1, ρqq ′ (0) is an initial density

matrix element for the motional lattice trap states, ω
(j )
d is

given by

ω
(j )
d = [

U
(nl)(j )
3 − U

(nl)(j )
1

]
/h̄, (22)

Q̃(j )(τ ) = �
(j )
32√

�
(j )2
32 − γ 2

e−γ τ/2 sin

⎡
⎣

√
�

(j )2
32 − γ 2

2
τ

⎤
⎦, (23)

M
(j )
3q;1q ′ (k) =

∫
dXj [ψ3q (Xj )]∗eik·Rj ψ1q ′ (Xj )

= [M1q ′;3q (−k)]∗, (24)

�
(j )
32 = �

(j )
R is the Rabi frequency of the retrieval pulse,

ψαq (Rj ) is an eigenfunction and h̄ω
(jα)
q an eigenvalue for

atom j moving in the potential U
(j )
α (X) (α = 1, 3) given

in Eqs. (9), U
(nl)(j )
3 (α = 1, 3) are the nonlattice potentials

given in Eqs. (10), and all field strengths and frequencies
now include the variation of field strength with location in
the sample, indicated by the superscript (j ). The sums over
q, q ′, q ′′ are restricted to (quasibound) states; that is, qmax is
the number of bound states in the potential.

C. Final expression for the signal

The numerical calculation of S(Ts ) is time consuming,
since the sum over j in Eq. (21) must be carried out for
each τ , the result squared, and then integrated over τ . To
simplify matters, we assume that Q̃(j )(τ ) can be approximated
as a function of τ times �

(j )
32 . We have verified that such an

assumption leads to errors of at most 10% in the nonlattice
potential contributions to S(Ts ) for times Ts � 40 μs. With
this assumption, the signal at time Ts normalized to that at
Ts = 1 μs can be written as

η(Ts ) = G(Ts )/G(Ts = 1 μs), (25)

where

G(Ts ) =
∣∣∣∣
∫ ∞

−∞
dX

∫ ∞

0
ρ dρ f (ρ,X)N (ρ,X)C(ρ,X, Ts )

∣∣∣∣
2

× e−Ts/τeff , (26)

C(X, ρ, Ts ) =
qmax∑

q,q ′,q ′′
e−iωd (ρ,X)Ts ρ1q ′′,1q ′ (0)M1q ′;3q[−kux]

×M3q;1q ′′ [kux]ei(ω(1)
q′ −ω

(3)
q )Ts , (27)

where N (ρ,X) and τeff are the atomic density distribution
and the effective lifetime of the Rydberg level, respectively.
The frequencies ω

(1)
q ′ and ω(3)

q are implicit functions of ρ and
X. The sum over j has been converted to a spatial integral
over the sample.

The distribution f (ρ,X) appearing in Eq. (26) is equal
to the product of the spatially dependent envelopes of the
excitation and retrieval electric-field amplitudes, namely,

f (ρ,X) =
(

wE1,0

wE1 (X)

)
exp

[
− ρ2

w2
E1

(X)

]

×
{(

wE2,0

wE2 (X)

)
exp

[
− ρ2

w2
E2

(X)

]}2

, (28)

where wi,0 are the transverse waists of the beams at the foci,

wi (X) = wi,0

√
1 + ( X

Xri
)2, and Xri is the Rayleigh length for

beam i (we have taken equal Rayleigh lengths for fields E2

and ER). In our experiment,

wE1,0 = 17 μm, wE2,0 = 15 μm. (29)

It is assumed that the transverse motion is frozen on the
time scale of the experiment. As a consequence, the atomic
density is determined by the transverse Boltzmann distribu-
tion. The transverse trap potential is actually different for the
ground and Rydberg levels. We will assume that the transverse
density distribution is determined by the spatially averaged

033411-4



LONG-LIVED COHERENCE BETWEEN GROUND … PHYSICAL REVIEW A 98, 033411 (2018)

[that is, with cos2(kLX) → 1/2] ground-state optical poten-
tial given in Eq. (4),

Ug (ρ,X) ≈ − 1

16
αg[2A+A− + (A+ − A−)2]

= −U0I (ρ,X)

2
, (30)

where I (ρ,X) is given in Eq. (18). Moreover, the θ ≈ 5◦
angle between the excitation beams and the X axis results in
an effective length L in the X direction of the atomic sample
that we model using a Gaussian distribution. The transverse
and longitudinal effects combine to produce an atomic density
profile given by

N (ρ,X) = exp

[
U0

2kBT
I (ρ,X)

]
exp

[
−X2

L2

]
. (31)

The factor C(X, ρ, Ts ) in Eq. (27) is the product of a
nonlattice contribution e−iωd (ρ,X)Ts and a lattice contribution
corresponding to motional dephasing. In principle, the mo-
tional dephasing term contains a ρ and X dependence owing
to the spatial dependence of the frequencies ω

(1)
q ′ and ω(3)

q .
However, for the Rayleigh lengths and waists of the trap fields
used in our experiment, it is an excellent approximation to
evaluate these frequencies at the center of the sample, ρ = 0
and X = 0. With this approximation the signal factors and can
be written as

G(Ts ) = Gnl (Ts )Gl (Ts )e−Ts/τeff , (32)

where

Gnl (Ts ) =
∣∣∣∣
∫ ∞

−∞
dX

∫ ∞

0
ρ dρ f (ρ,X)N (ρ,X)e−iωd (ρ,X)Ts

∣∣∣∣
2

,

(33)

Gl (Ts ) =
∣∣∣∣

qmax∑
q,q ′,q ′′

ρ1q ′′,1q ′ (0)M1q ′;3q (−kux )

×M3q;1q ′′ (kux )ei(ω(1)
q′ −ω

(3)
q )Ts

∣∣∣∣
2

, (34)

and the frequencies ω
(1)
q ′ and ω(3)

q are obtained as eigenvalues
of the potentials

U
(l)
1 (X) = −U0 cos2(kLX), (35a)

U
(l)
3 (X) = −U0

αg

cos2(kLX)

[
D2

n

6h̄�
− |αf |θn

]
, (35b)

respectively.
The nonlattice contribution to the signal given in Eq. (33) is

evaluated numerically. Owing to the fact that ωd is a function
of ρ and X, there is an inhomogeneous broadening in the
sample that results in a decrease of Gnl (Ts ) with increasing
Ts . To see the effect of the sample length on Gnl (Ts ), we plot
in Fig. 2(a)

gnl (Ts ) = Gnl (Ts )/Gnl (0)

for U0/kB = 32 μK (U0/h = 0.666 MHz), U0/kBT = 2.75,
|αf |/αg = 0.628, and L = 1, 50, 100, 150, and 500 μm. The
integral over ρ leads to a decay of gnl (Ts ), even for L = 0,
owing to radial inhomogeneities in the nonlattice phase. With
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FIG. 2. (a) Graph of the analytic approximation and exact ex-
pressions of gnl (dashed and solid curves, respectively) as a function
of storage time Ts for U0/kB = 40 μK and different sample lengths:
blue, L = 1 μm; dark green, L = 50 μm; light green, L = 100 μm;
orange, L = 150 μm; and red, L = 500 μm. (b) Graph of gnl for
sample length L = 100 μm and trap depths U0/kB = 5, 10, 20, and
40 μK, represented by increasing line thickness.

increasing L there is an additional contribution to the dephas-
ing from the integral over X. It is evident from the figure
that this contribution to the dephasing becomes important for
L � 50 μm.

If the Rayleigh lengths for all the fields are much greater
than L and if w±(0) � wE1,2,0, it is possible to get an analytic
expression for gnl (Ts ) that is in excellent agreement with
the result obtained using numerical integration. To do so, we
expand

I (ρ,X) ≈ I (0, 0) + aX + bρ2, (36)

where

a = dI (0, X)

dX

∣∣∣∣
X=0

, (37a)

b = 1

2

d2I (ρ, 0)

dρ2

∣∣∣∣
ρ=0

, (37b)

and set f (ρ,X) ≈ f (ρ, 0). With these approximations the
integrals in Eq. (33) can be calculated analytically. In this
manner, we find

gnl (Ts ) ≈ e−2T 2
s /τ 2

X
1

1 + T 2
s

τ 2
ρ

, (38)

where

τX = 2
|αf |U0

2αg
(1 − θn)aL

, (39a)

τρ = 1
|αf |U0

2αg
(1 − θn)b

(
1

w2
E1,0

+ 2

w2
E2,0

− bU0

2kBT

)
. (39b)
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oTs

g l

FIG. 3. Graph of gl (Ts ) as a function of ω0Ts : red solid curve,
cos2(kLX) potential; black dashed curve, harmonic potential.

The Gaussian factor in Eq. (38) results from the longitudinal
integration and the Lorentzian factor from the transverse
integration. Equation (38) for gnl (Ts ), plotted as the dashed
curves in Fig. 2(a), is in very good agreement with the values
of gnl (Ts ) obtained from numerical integration of Eq. (33).

From Eqs. (39) it follows that the lifetimes decrease with
increasing U0. This feature is seen in Fig. 2(b), where gnl (Ts )
is plotted for L = 100 μm, |αf |/αg = 0.628, and U0/kB =
5, 10, 20, 40 μK, with the ratio U0/kBT = 2.75 kept fixed.

The motional dephasing contribution to the signal given
in Eq. (34) is summed using a thermal ground-state
distribution

ρ1q,1q ′ (0) = exp
[− h̄ω

(1)
q

kBT

]
δq,q ′∑qmax

q=0 exp
[− h̄ω

(1)
q

kBT

] , (40)

where δq,q ′ is a Kronecker delta. The ω(1)
q are obtained by

solving the appropriate Mathieu equation for the potentials
given in Eqs. (35), limited to quasi-bound-state energies. The
matrix elements needed in Eq. (34) have been calculated
using the corresponding Mathieu wave functions. The values
of θn used in fitting the data, calculated using a method to
be described in the following section, are θn = 0.909, 0.705,
0.334, 0.082, 0.059, −0.013, and −0.016 for n = 30, 40, 51,
59, 60, 65, and 70, respectively.

In Fig. 3 we plot

gl (Ts ) = Gl (Ts )/Gl (0) (41)

as a function of ω0Ts for U0/kB = 32 μK and U0/kBT =
2.75. The frequency ω0 is defined by

U0 = 1

2

Mω2
0

k2
L

(42)

such that, for large ratios of U0/kBT and small values of the
trap Lamb-Dicke parameter ηLD = kL

√
h̄/2Mω0, the poten-

tials should approximate those of an oscillator. Superimposed
on the graph is a plot of gl (Ts ) for oscillator potentials
characterized by the same value of ω0. It can be seen that the
anharmonicity both damps the signal and reduces the fringe
visibility that is obtained for harmonic potentials.

The expression for Gl (Ts ) can be cast in a suggestive form
when the ground and Rydberg potentials are identical. In that
limit, Eq. (27) reduces to

Gl (Ts ) = |〈e−ikX̂(Ts )eikX̂(0)〉|2, (43)

where X̂(Ts ) and X̂(0) are Heisenberg operators and the av-
erage is over the quantized motional states of an atom located
at cloud center. We can take a classical limit of Eq. (43) by
ignoring the commutator of X̂(Ts ) and X̂(0) and replacing the
operators by their classical counterparts X(Ts ) and X(0) to
arrive at

Cl ∼ 〈e−ik[X(Ts )−X(0)]〉, (44)

where the average is now a classical average over the initial
conditions. For our experimental parameters, the classical and
quantum results do not differ by more than 10%.

We include three dissipative mechanisms that affect the
ground-state–Rydberg coherence lifetime. The effective pop-
ulation decay lifetime is given by

1

τeff
= 1

τ6p,n

+ 1

τ
(0)
n

+ 1

τ
(bb)
n

, (45)

where τ6p,n, τ (0)
n , and τ (bb)

n are the contributions from the
lattice-induced population decay of the 6p3/2 level, Rydberg
level decay at zero temperature, and blackbody-induced tran-
sitions, respectively. Explicitly,

τ6p,n ≈ αg

U0

24h̄2�2τ6p,0

D2
n(ξ−1/4 + ξ 1/4)2

τ (0)
n = τ (0)(n∗)2.94,

τ (bb)
n = 3h̄(n∗)2

4α3
FSkBT

,

where τ6p,0 = 125 ns, τ (0) = 1.43 ns, T = 293 K,

n∗ = n − 3.13 (46)

is the effective electronic quantum number, and αFS is the fine-
structure constant. At low n, the lifetime is limited mainly by
spontaneous decay and blackbody transitions. With n � 40,
the dephasing produced by the nonlattice potential begins to
reduce the lifetime, an effect that saturates for n � 60. For still
higher values of n, the lattice-induced population of the 6p3/2

begins to play an important role in limiting the coherence
lifetime. The reason for this is that the magic detuning �m,n

decreases with increasing n.

The data have been fit using Eqs. (25), (32)–(34), (40), and
(45) with L = 100 μm. The potential depth is used as a free
parameter to match the oscillation periods of the signals, while
the temperature is chosen to match the fringe visibility.

D. Value of θn and reduced dipole moment matrix elements

1. Value of θn

The polarizability of the Rydberg level is affected by a
breakdown of the electric dipole approximation due to the
finite size of the Rydberg electron orbital. This landscape
factor [31] is calculated by finding the expectation value of
the periodic portion of the trap potential θn = 〈cos(2kLx)〉,
where kL is the wave number of the lattice field and x
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is the longitudinal position of the electron. To calculate θn

we perform an expansion of cos(2kLx) in spherical Bessel
functions to obtain

θn = (2l + 1)
∑

l′=even

(2l′l
′/2−mz )

(
l l′ l

−mz 0 mz

)

×
(

l l′ l

0 0 0

) ∫ ∞

0
dreP

2
nl (re )jl′ (2kLre ),

where the jl′ (2kLre ) are spherical Bessel functions of the first
kind and Pnl (re ) are the Rydberg radial wave functions cal-
culated via Numerov integration of the Schrödinger equation
using quantum-defect potentials. We only consider the l = 0
term which simplifies the expression to

θn =
∫ ∞

0
dreP

2
n,0(re )j0(2kre ).

2. Reduced dipole moment matrix elements

Using Eqs. (9)–(11), we can write the lattice potentials
approximately as

U
(l)
1 (X) = −U0 cos2(kLX), (47a)

U
(l)
3 (X) = −U0

αg

cos2(kLX)

×
[

(αg + |αf |θn)
�m,n

�
− |αf |θn

]
(47b)

and the nonlattice potential difference as

h̄ωd (ρ,X) = [
U

(nl)
3 − U

(nl)
1

] = |αf |U0

2αg

(1 − θn)I (ρ,X)

− U0

4
w+(0)w−(0)

(
1 + |αf |θn

αg

)(
�m,n

�
− 1

)

×
(

ξ−1/4 1

w+(X)
e−ρ2/w2

+(X)+

− ξ 1/4 1

w−(X)
e−ρ2/w2

−(X)

)2

, (48)

where �m,n is the magic detuning for state ns. Owing to
the anharmonicity of the potentials and the presence of a
nonlattice potential, the local maxima of the signals do not
necessarily occur exactly at � = �m,n. To extract values for
Dn, we find the value of �m,n that gives the best fit to the
experimental curves of signal strength versus � and then use

1

6

D2
n

h̄�m,n

= αg + |αf |θn (49)

to find Dn. The value of Dn is compared with the correspond-
ing value calculated using wave functions obtained using the
Alkali Rydberg Calculator (ARC) PYTHON package [32]. The
ground-state polarizability was taken from Ref. [23].

III. EXPERIMENTAL RESULTS

The experimental geometry and measurement sequence
are shown in Fig. 1(a). An optical lattice is formed by a

30 40 50 60 70
0.0
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5.0

m
,n

G
H

z

e)

f)

30 40 50 60 70
9.0

9.5
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10.5

n

D
n
(n

* )3/
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.

/2π

/2π /2π

/2π
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π

n

FIG. 4. (a)–(d) Normalized signal η(Ts ) at storage time Ts around the first revival (10–12 μs) as a function of lattice detuning � for
principal quantum numbers 30, 51, 60, and 65. The solid curves, based on the model described in the text, are used to extract the values
of �m,n. The dashed red and solid green vertical lines represent the theoretically expected and the extracted values of the magic detuning,
respectively. Blue and red bands represent fits using temperatures 20% lower and higher than the best-fit value, respectively. (e) �m,n as a
function of the principal quantum number n, with the solid curve based on our theoretical model. (f) Extracted values of the scaled reduced
matrix elements as a function of n.
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y-polarized, retroreflected laser field propagating along the x

axis having power P+ ≈ 0.8 W. The trap field is generated by
a titanium-sapphire laser tunable in the (850–1050)-nm range,
frequency locked to an optical cavity. The laser wavelength is
measured with a wave meter calibrated to 10-MHz accuracy
using a diode laser locked to the Rb 780-nm line. The trap
field is detuned from ωns,6p3/2 by �.

Atoms are loaded into the lattice using a magneto-optical
trap. The maximum depth of the optical dipole potential at
the atoms is U0/kB ≈ 40 μK, with the corresponding axial
and radial oscillation frequencies {νρ, νX} ≈ {0.3, 80} kHz.
The resulting cloud, which has temperature of T ≈ 10 μK,
consists of ∼105 87Rb atoms having radial and axial waists
of σρ ≈ 50 μm and σX ≈ 0.2 mm, respectively. The atoms
are optically pumped to the |5S1/2, F = 2,mF = 0〉 state in a
magnetic bias field B0 = 0.5 mT.

Two nearly counterpropagating z-polarized fields E1 and
E2 excite a spin wave between the |5s1/2, F = 2〉 and |ns1/2〉
levels. The fields imprint a spatial phase coherence between
the ground and Rydberg states varying as proportional to
ei(�k1+�k2 )· �R , where �k1 and �k2 are the wave vectors for the fields

Ts

(a)

(b)

(c)

(d)

FIG. 5. Normalized signal η as a function of storage time for
several principal quantum numbers: (a) n = 30, (b) n = 40, (c)
n = 51, and (d) n = 65. The solid black curve is based on our
theoretical model. Blue and red bands represent temperatures 20%
lower and higher than the best-fit value, respectively. The gray curve
shows loss attributable to blackbody and spontaneous decay from
the Rydberg state. The dashed red curve adds in the contribution
of spontaneous decay from the 6P level. The dashed blue curve
additionally includes the dephasing attributable to the nonlattice
potential. Most experimental error bars are smaller than the shown
markers.

E1 and E2, respectively. The field E1 has a wavelength of
420 nm, while the field E2, produced by a laser diode, is
tunable in the (1012–1026)-nm wavelength range to excite
Rydberg states with principal quantum numbers n � 30. The
field E2 is detuned from ωns,6p3/2 by �1/2π ≈ 12 MHz. The
E1 and E2 fields are focused onto the atoms with beam waists
wE1,0 ≈ 17 μm and wE2,0 ≈ 15 μm and Rabi frequencies
�E1/2π � 0.2 MHz and �E2/2π � 5 MHz, respectively. The
spin wave is stored for a period Ts varied between 1 and 70 μs.
At time Ts the atoms are resonantly driven on the |ns1/2〉 ↔
|6p3/2〉 transition by a (z-polarized) retrieval field ER of Rabi
frequency �R ≈ �E2 , creating an array of atomic dipoles
which give rise to a phase-matched emission from the sample.
The emitted light is collected into a single-mode optical fiber
coupled to a single-photon detector. To avoid damaging the
detectors by the E1 field, a gating acousto-optical modulator
is used. The photon transmission and detection efficiency ηtd

is given by ηtd = ηcηoηf ηd = 0.13, where ηc = 0.89, ηo =
0.39, ηf = 0.66, and ηd = 0.55 are the vacuum cell transmis-
sion efficiency, optics transmission efficiency (including the
gating acousto-optic modulator), fiber coupling efficiency, and
single-photon detection efficiency, respectively. The arrival
times of detected photons are recorded and the number of
detected photons per excitation and retrieval cycle is used as
our signal.

A. Magic wavelengths for the 5s-ns transition

The normalized retrieval signal η(Ts ), given by Eq. (25),
is plotted in Figs. 4(a)–4(d) as a function of �, along with
the experimental data points. The solid green vertical lines
represent the values of the magic detunings �m,n extracted
from the fit of the theoretical curves to the data, while the
dashed red vertical lines represent the values of �m,n obtained
using Eq. (49) and the ARC values of the dipole matrix
elements. The extracted values of �m,n are plotted in Fig. 4(e).
Consistent with the scaling of dipole matrix elements, �m,n

varies approximately as (n∗)−3. The values of Dn(n∗)3/2

obtained from Eq. (49) using the extracted values of �m,n are
shown in Fig. 4(f), superimposed on the expected values of the
matrix elements computed using the ARC values [32]. The 3%
standard deviation band is based on comparing our computed
values of |〈15s1/2||d̂||np〉| reduced matrix elements with the
values for these matrix elements given in Ref. [23].

B. Dynamics of the ground-state–Rydberg coherence

The signal as a function of Ts serves as a measure of the
dynamics of the stored spin wave. With � = �m,n, the signal
as a function of storage time Ts , normalized to its value at
Ts = 1 μs, is plotted in Fig. 5, along with the theoretical
curves. The oscillations result from the nearly periodic motion
of the atoms along the optical lattice. The oscillation visibility
decreases with time owing to the anharmonic nature of the
potential. Moreover, the anharmonicity adds a small damping
component to the signal and its contribution becoming more
pronounced with increasing temperature.

In Fig. 6 we compare the n = 40 signal with its counter-
part obtained by exciting the atoms with 795- and 475-nm
fields via the |5p1/2, F = 1〉 intermediate level. The effective
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Ts

ωE

ωE ωE

ωE

ωE ωE

FIG. 6. Normalized signal η as a function of storage time for
n = 40 for (420–1018)-nm (green circles) and (795–475)-nm (or-
ange diamonds) excitation, with the corresponding atomic transitions
shown in the inset. The solid curves are the result of a numerical
simulation of atomic motion using the model described in the text.
The black curve is the same as in Fig. 5. Most experimental error
bars are smaller than the shown markers.

two-photon excitation wavelength for the latter λ2ph =
1.2 μm, longer than the λ2ph = 0.72 μm for the (420–1018)-

nm excitation. As one would expect, the (795–475)-nm ex-
citation exhibits lower visibility of oscillations as a result
of decreased motional dephasing for the longer-wavelength
spin wave. The role of trap anharmonicity also decreases with
longer spin-wave period, whereas the nonlattice contribution
to the dephasing contribution is unaffected by it.

IV. CONCLUSION

We have demonstrated ground-state–Rydberg atomic co-
herence lifetimes in excess of 20 μs using a state insensitive
optical lattice. A theory has been developed to account for
the quantized motion of atoms in the trap potentials. The
theoretical line shapes that are derived are in good agreement
with the experimental results and can be used to extract values
for the ns-6p3/2 reduced electric dipole matrix elements.
Our approach should be of use for precision measurements
and quantum information studies involving atomic Rydberg
states.

ACKNOWLEDGMENTS

We thank A. Derevianko for helpful discussions and M.
Winchester for laboratory assistance. This work was sup-
ported by the ARL Center for Distributed Quantum Informa-
tion, AFOSR, and the National Science Foundation.

[1] T. F. Gallagher, Rydberg Atoms (Cambridge University Press,
Cambridge, 1994).

[2] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82,
2313 (2010).

[3] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D.
Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901
(2001).

[4] M. Saffman and T. G. Walker, Phys. Rev. A 66, 065403 (2002).
[5] P. Kómór, T. Topcu, E. M. Kessler, A. Derevianko, V. Vuletić,
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