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We theoretically investigate the two-dimensional photoelectron momentum distributions (PMDs) of F−

ions in an orthogonal two-color laser field with equal intensities. The PMDs for different atomic orbitals
are simulated by an exact solution to the three-dimensional time-dependent Schrödinger equation and the
strong-field approximation method, respectively. Through the comparison of the calculations of these methods,
we confirm that the asymptotic behavior of initial bound-state wave function plays a crucial role in forming the
main shape of PMDs at large momenta. Based on the saddle-point method and the imaginary time theory, we
show that the PMDs of F− ions can be decoded to reveal the definite imprint of the photoelectron sub-barrier
phase from the subcycle interference structures. We demonstrate the sub-barrier phases from different atomic
orbitals have different impacts on the subcycle interference structures.
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I. INTRODUCTION

Photoelectron momentum distributions (PMDs) of atoms
and negative ions in strong laser fields have been widely
studied in the past decades [1–24]. It has been known that
negative ions play an important role in a number of branches
of physics, such as plasma physics, astrophysics, atmospheric
physics, and accelerator physics [25,26]. With the rapid ad-
vancements in photoelectron imaging spectroscopy, a series
of consequent measurements about angle-resolved electron
spectra for H− ions and F− ions have been completed by
Kiyan et al. [6–12]. For negative ions, the outer electron is
bound by short-range polarization forces and the long-range
Coulomb effect is absent [25,26]. Therefore, the strong-field
approximation (SFA) model, which ignores the Coulomb
force after the ionization, is widely used for studying the pho-
todetachment of negative ions in various strong-field schemes
[6–24]. As far as we know, for the SFA model of F− ions,
the radial wave function of initial state can be given by the
asymptotic wave function [13,24] or the Hartree-Fock–type
wave function [10,27].

Alternatively, within the imaginary time theory, the imagi-
nary part of the sub-barrier action is related to the ionization
probability [28–30], and the real part of the sub-barrier action
is the accumulated sub-barrier phase when electrons tunnel
through the potential. In the comparable-intensity orthogonal
two-color (OTC) laser fields, the effect of the sub-barrier
phase on the interferograms can be amplified and mapped into
the two-dimensional polarization plane [31]. In fact, the PMD
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of negative ions is an ideal platform to reveal the sub-barrier
phase because of the short-range potential.

On the other hand, recently, the effect of atomic orbitals
with different magnetic quantum numbers on the PMD has
been studied experimentally and theoretically [32–36]. The
most recent experiment has verified that the photoelectrons
with an extremely high degree of spin polarization can be
produced in strong-field ionization processes by circularly
polarized ultraviolet fields [36].In addition, Shafir et al. have
demonstrated that each of the three orthogonal 2p states
(i.e., 2px , 2py , and 2pz) of Ne atoms could be selected and
individually imaged in the OTC scheme [37]. However, the
effect of different initial atomic orbitals on the sub-barrier
phase and the photoelectron momentum distributions is rarely
investigated.

In this paper, based on the numerical calculations from
the three-dimensional time-dependent Schrödinger equation
(TDSE) and the SFA model, we show the two-dimensional
PMDs of F− ions for different initial states by an OTC
laser pulse. By comparing the TDSE results, the PMDs from
the SFA model with the asymptotic wave function, and the
PMDs from the SFA model with Hartree-Fock–type wave
function, we confirm that the asymptotic behavior of the initial
bound-state wave function is crucial for the formation of
the main shape of the PMDs of F− ions in the OTC laser
field. Furthermore, based on the saddle-point (SP) method
and the imaginary time theory, we demonstrate that the two-
dimensional PMDs of F− ions can be decoded to reveal
the definite imprint of the sub-barrier phase on the subcycle
interference structures. The effect of the sub-barrier phase
on the subcycle interference structures strongly depends on
the atomic orbital. Atomic units are used in this paper unless
stated otherwise.
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II. THEORETICAL METHODS

A. SFA model

In the SFA model without considering the rescattering
mechanism, the transition probability amplitude from the
atomic or ionic ground state |ψlm〉 to the continuum state |ψk〉
with momentum k is given by [12]

Mlm(k) = −i

∫ +∞

−∞
〈ψk|Hi (t )|ψlm〉dt, (1)

where Hi (t ) = r · E(t ) is the electron-laser interaction in the
length gauge, and E(t ) is the electric field of the laser pulse.
l and m are orbital and magnetic quantum numbers of initial
state, respectively.

The electric field of the OTC laser pulses with a cosine-
square envelope is

E(t ) = E0cos2

(
πt

τ

)
[cos(ωt )x̂ + cos(2ωt + �ϕ)ŷ] (2)

for the time interval (−τ/2, τ/2) and zero elsewhere. E0 is
the peak electric field of the laser pulse and ω is the angular
frequency of the fundamental laser field. τ is the total duration
of the laser pulse and �ϕ is the phase delay between the
two colors of OTC pulse. x̂ and ŷ are the unit polarization
vectors of the fundamental field and its second harmonic field,
respectively.

The continuum state is, by the Volkov state, approximately

ψk(r, t ) = exp

(
i[k + A(t )] · r − i

2

∫ t

−∞
[k + A(t ′)]2

dt ′
)

,

(3)

where A(t ) = − ∫
tE(t ′)dt ′ denotes the vector potential of the

laser field.
In spherical coordinates, with the z axis as quantiza-

tion axis, the initial bound-state wave function is given by
ψlm(r) = Rlm(r )Ylm(r̂ ), where the definition of the spherical
harmonics Ylm(r̂ ) is same as in Ref. [38]:

Ylm(r̂ ) = Ylm(�, φ) = exp(imφ)

[
2l + 1

4π

(l − m)!

(l + m)!

]1/2

×P m
l (cos �). (4)

The radial wave function Rlm(r ) can be given by asymp-
totic wave function [13,24] or the Hartree-Fock–type wave
function in some other work [10,27]. For the F− ions with
the asymptotic wave function, we have [13,24]

Rlm(r ) = B
exp(−κr )

r
, (5)

and for the F− ions with the Hartree-Fock–type wave function,
we have [10,27,39]

Rlm(r ) =
∑

i

Ci

(2ζi )ni+1/2

[(2ni )!]1/2 rni−1 exp(−ζir ), (6)

where κ = √
2Ip; Ip = 3.4 eV is the ionization potential of

the F− ion. B = 0.7 is the asymptotic constant. ni , l, and m

represent principal quantum number, orbital quantum number,
and magnetic quantum number, respectively. For F− ions, the

sum of Eq. (6) involves four 2p orbitals and the parame-
ters are given as ni = 2, l = 1, C1 = 0.4704, C2 = 0.3084,
C3 = 0.0988, C4 = 0.2470, ζ1 = 2.0754, ζ2 = 3.9334, ζ3 =
1.4660, and ζ4 = 0.9568 [27,39].

Usually, the transition amplitude Mlm(k) is obtained by
numerically integrating over time. For the F− ions with the
asymptotic wave function of Eq. (5), Mlm can also be evalu-
ated using the SP method as follows [24]:

M1m = −(2π )3/2B
∑

ts

(±1)Y1m(q̂s )
exp [i�(ts )]√−i�′′(ts )

, (7)

where (±1) corresponds to k + A(ts) → ±iκ . q̂s is the
unit vector in the direction of the complex canonical
momentum k + A(ts ).The saddle point ts is the root of
the saddle-point equation [k + A(ts )]2 + 2Ip = 0. �(ts ) =
− ∫ ∞

ts
{[k + A(t ′)]2

/2 + Ip}dt ′ is the classical action and
�′′(ts ) = −2E(ts ) · [k + A(ts )] is its second derivative. Based
on the imaginary time theory [28–30], the action �(ts ) in
Eq. (7) can be separated into two parts; i.e.,

�(ts ) = �sub + �re = −
∫ tr

ts

{
[k + A(t ′)]2

2
+ Ip

}
dt ′

−
∫ ∞

tr

{
[k + A(t ′)]2

2
+ Ip

}
dt ′. (8)

The sub-barrier action �sub is an integral from the complex
saddle-point time ts down to the real time tr = Rets , while �re

is an integral along the real axis to the end of the pulse. The
mathematical treatment of separating the action �(ts ) leads
to an intuitive two-step physical picture. Firstly, an electron
tunnels through the barrier of negative ions, and then the
electron classically moves toward a detector. Actually, the real
part of the sub-barrier action Re(�sub) is related to a phase
shift accumulated under the barrier, and the imaginary part
Im(�sub) is related to the ionization rate [28–30]. In this work,
we are interested in the effect of sub-barrier phase Re(�sub)
on the PMD.

Note that Eq. (7) not only has validity for the case of a
linearly polarized pulse in Ref. [24], but also for the case
of the OTC field discussed here. However, the mathematical
treatments for Ylm(q̂s ) are different for different schemes. To
study the effect of the orbital orientation on the PMD, we
choose the orthogonal orbitals 2px and 2py as the initial
states for F− ions, respectively. In this paper, we are only
interested in the PMDs in the polarization plane of the OTC
driving fields. We neglect the 2pz orbital with the polar axis
perpendicular to the polarization plane of the laser pulse.
The angular components of the 2px and 2py orbitals can be
respectively defined as linear combinations of the spherical
harmonics as follows:

ψ2px
(r̂ ) = Y1−1(r̂ ) − Y11(r̂ )√

2
, (9)

ψ2py
(r̂ ) = i[Y11(r̂ ) + Y1−1(r̂ )]√

2
. (10)
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Therefore, for the initial states with the 2px and 2py

orbitals, the transition probability amplitude Eq. (7) can be
respectively rewritten as follows:

M2px
(k) = −4π3/2B

∑
ts

kx + Ax (ts )

iκ

exp [i�(ts )]√−i�′′(ts )
, (11)

M2py
(k) = −4π3/2B

∑
ts

ky + Ay (ts )

iκ

exp [i�(ts )]√−i�′′(ts )
. (12)

Here kx , ky and Ax , Ay represent the final momenta and
vector potentials, along the polarization directions of the
fundamental field and the second harmonic field, respectively.
The two-dimensional PMDs for the orbitals 2px and 2py are
given by |M2px

(k)|2 and |M2py
(k)|2, respectively.

B. TDSE method

The details about the TDSE used in this paper can be found
in previous work [40–43]. Here we only briefly introduce
the method. Within the single active electron approximation,
the time-dependent Schrödinger equation for an atom or a
negative ion can be written as

i
∂

∂t
ψ (r, t ) = [H0(r) + HI (r, t )]ψ (r, t ), (13)

where H0 = −1/2∇2 + V (r ) is the Hamiltonian of the sta-
tionary Schrödinger equation. For the F− ions, we use the

double Yukawa potential as follows:

V (r ) = −a1
e−a2r

r
− a3

e−a4r

r
, (14)

where a1 = 5.137, a2 = 1.288, a3 = 3.863, and a4 = 3.545
[21]. The above model potential can give the correct ground-
state energy Ip = 3.4 eV [21]. The laser-atom interaction is
described by the term HI (r, t ) in Eq. (13), whose expression
may be given in either the length gauge or the velocity gauge.
We adopt the velocity gauge to describe the laser-atom inter-
action in the present work, but we find that the results for the
two gauges agree well. Equation (13) is solved numerically in
spherical coordinates and the Crank-Nicolson method is used
to propagate the wave function after the operator splitting.
The ground-state wave function can be calculated by solving
the stationary Schrödinger equation in imaginary time as a
diffusion equation for an arbitrary initial trial wave function.
In the calculations presented below, the converged TDSE
results are obtained by setting rmax = 3600 a.u., the radial grid
spacing dr = 0.05 a.u., the time step dt = 0.05 a.u., and the
maximum number of partial waves lmax = 50.

III. NUMERICAL RESULTS AND DISCUSSION

In this paper, we study the two-dimensional PMDs of F−
ions in a few-cycle OTC laser field by the TDSE and the
SFA methods. The OTC field is synthesized by a three-cycle
linearly polarized laser pulse at 1400 nm along the x axis and
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FIG. 1. The two-dimensional photoelectron momentum distributions of F− ions in the polarization plane of a few-cycle OTC laser field
with �ϕ = 0, for the 2px and 2py orbitals, respectively. The values in the first column are calculated by the TDSE method. The values in the
second column are calculated by the SFA method with the asymptotic wave function, and are shown as the AS orbital on the top. The values
in the third column are calculated by the SFA method with the Hatree-Fock–type wave function, and are shown as the HF orbital on the top.
The data are normalized to the maximum probability and the color is plotted on the logarithmic scale.
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FIG. 2. The radial probability density distributions of the initial-
state wave functions used in this work. The solid red line corresponds
to the initial-state wave function of the TDSE, which is obtained
by solving the stationary Schrödinger equation with the double
Yukawa potential in Ref. [21]. The dot-dashed olive line corresponds
to the asymptotic wave function of Eq. (5). The dotted blue line
corresponds to the Hartree-Fock–type wave function of Eq. (6).

the second harmonic (700 nm) laser pulse along the y axis.
Both the intensities of the fundamental field and the second
harmonic field are fixed at 1.7 × 1013 W/cm2.

First, we test the validity of the SFA method by comparing
with the two-dimensional PMDs from the three-dimensional
TDSE calculation. In Fig. 1, we present the two-dimensional
PMDs of the F− ions in the few-cycle OTC field with �ϕ = 0.
The SFA results are calculated by numerically integrating over
time based on Eq. (1). In Figs. 1(b) and 1(e), the asymptotic
wave functions [i.e., Eq. (5)] are chosen as the initial state
of the SFA method, respectively. By comparing Figs. 1(a)
and 1(b) with Figs. 1(d) and 1(e), one can clearly see that the
two-dimensional PMDs calculated by the SFA method and by
the TDSE agree very well with each other. In addition, the
most striking feature in Figs. 1(a) and 1(d) shows that the
main shape of the two-dimensional PMDs strongly depend on
the atomic orbitals. For the 2px orbital, a typical ∞-shaped
structure is shown in the two-dimensional PMDs [Fig. 1(a)],
but for the 2py orbital, a special structure with four minima on
the edge of the two-dimensional PMDs is present in Fig. 1(d).
Further careful inspection shows that the number of interfer-
ence fringes near the center of Fig. 1(a) is different from that
of Fig. 1(d). There are three interference fringes along the
ky axis near the center of Fig. 1(a) while two interference
fringes along the ky axis appear near the center of Fig. 1(d).
It indicates that the atomic orbital also affects the interference
patterns of the two-dimensional PMDs.

In Figs. 1(c) and 1(f), we show the PMDs obtained from
the SFA method by choosing the Hartree-Fock–type radial
wave function [i.e., Eq. (6)] as the initial state, respectively.
By comparing Figs. 1(a) and 1(d) with Figs. 1(c) and 1(f),
it is found that the SFA results with Hartree-Fock–type wave
function cannot reproduce the TDSE results at large momenta.
However, the number of interference fringes near the center of

FIG. 3. The temporal sketch of the three-cycle OTC field with
�ϕ = 0 and the corresponding saddle-point distributions. The dotted
olive line, dashed blue line, and solid orange line represent the
magnitude of the fundamental field, the second harmonic field, and
the synthesized electric field, respectively. Each group of points
represents the positions of saddle points for a range of photoelectron
energies from 0 to 1.0 a.u. and ejection angles θ = 90◦ and θ = 270◦.
The red (dark gray) points and green (light gray) points indicate the
SPs for θ = 90◦ and θ = 270◦, respectively. The numbers of several
dominant SPs are also marked in the complex-time plane.

Fig. 1(c) is the same as that of Fig. 1(a), while the number of
interference fringes near the center of Fig. 1(f) is the same
as that of Fig. 1(d). It suggests that, at the lower momenta,
the dependence of interference patterns on the orbital is not
changed when we use the Hartree-Fock–type wave function.

We now turn to discuss the reason why the SFA results
with Hartree-Fock–type wave function cannot reproduce the
TDSE results. In Fig. 2, we give the probability density
distributions of three initial wave functions used above. We
take the initial wave function obtained from the TDSE as the
benchmark result, and compare the results from Eq. (5) with
those from Eq. (6). It is found that the Hartree-Fock–type
wave function of Eq. (6) is in good agreement with those from
the benchmark result when the radius r is less than 4 a.u., but
the asymptotic wave function of Eq. (5) is in good agreement
with the benchmark result when the radius r is larger than
4 a.u. It suggests that only the asymptotic wave function
of Eq. (5) can provide the same asymptotic behavior as the
benchmark result. Actually, the results in Fig. 2 are consistent
with those in Fig. 1 of Ref. [27]. It has been predicted that the
asymptotic behavior of the initial bound-state wave function
has an important influence on the multiphoton detachment
of negative ions [13]. From Figs. 1 and 2, it can be clearly
confirmed that the asymptotic behavior of the initial bound-
state wave function plays a dominant role in forming the main
shape of the PMDs of F− ions in the OTC laser field.

In the following, we investigate the effect of sub-barrier
phase on the PMDs of the F− ions in the few-cycle OTC
laser field, based on the SP method [3,24,44]. All the exact
saddle points can be obtained by solving the saddle-point
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FIG. 4. The PMDs obtained from the SP method by considering five dominant SPs (SPs 5–9), with and without sub-barrier phase,
respectively. The values in the first column are the results for the 2px orbital, and the values in the second column are those for the 2py

orbital. The values in the first row are calculated with the sub-barrier phase. The values in the second row are calculated without the sub-barrier
phase. The white rectangle in (b) marks one of the four minima on the edge of the two-dimensional PMDs for the 2py orbital. The white
rectangle in (c) marks one of the four minima in the PMDs for the 2px orbital when the sub-barrier phase is absent.

equation with the secant method [45,46]. Figure 3 shows the
electric field of three-cycle OTC laser pulses with �ϕ = 0
and the corresponding SP distributions in the upper half plane
of complex time for the fixed angles θ = 90◦ and θ = 270◦.
θ is the ejection angle between the direction of the ejected
photoelectron and the x axis. In Fig. 3, each group of points
depicts the saddle points for the energy from 0 to 1.0 a.u. with
a step size of 0.005 a.u. It is found that there are fourteen SPs
as the solutions of the saddle-point equation. The five central
SPs, i.e., SP5–SP9, are the lowest five SPs in the upper half
plane of complex time. In terms of the imaginary time theory
[28–30], the real parts of saddle points SPs 5–9 in Fig. 3
represent the moments when the electrons are released more
probably. Further inspection shows that the SPs 5, 7, and 9
correspond to both peaks of the fundamental and the second
harmonic fields, while the SPs 6 and 8 only correspond to the
peaks of the second harmonic field. It suggests that the second
harmonic field gives a dominant contribution to SP6 and SP8,
while the synthesized field of the fundamental field and the
second harmonic field dominates the SPs 5, 7, and 9.

Based on the imaginary time theory described in Sec. II, the
action �(ts ) in Eqs. (8) and (9) can be split into two parts, i.e.,
�(ts ) = �sub + �re. The real part of the sub-barrier action
�sub is the accumulated sub-barrier phase when electrons
tunnel through the potential, and the imaginary part of �sub

is related to the ionization probability [28–30]. In Figs. 4(a)
and 4(b), we show the two-dimensional PMDs by considering
coherent superposition of SPs 5–9 with the sub-barrier phase.
The main structures of Figs. 1(a) and 1(d) from the TDSE
calculations can be well reproduced by only considering the
contribution of the SPs 5–9. Therefore SPs 5–9 dominate the
interference patterns of PMDs in the three-cycle OTC laser
pulse with �ϕ = 0.

In Figs. 4(c) and 4(d), we give the PMDs without the
sub-barrier phase. By comparing Figs. 4(c) and 4(d) with
Figs. 4(a) and 4(b), we find that the interference structures at
larger momenta are greatly changed if the sub-barrier phase
is absent. For the 2px orbital, there are four interference
minima at large momenta in the PMDs of Fig. 4(c) (one
of them marked by a white rectangle). Interestingly, for the
2py orbital, the four interference minima on the edge of the
two-dimensional PMDs of Fig. 4(b) [one of them marked by a
white rectangle in Fig. 4(b)] are smoothed out in Fig. 4(d),
when the sub-barrier phase is dropped out. Therefore, the
sub-barrier phase leaves clear fingerprints on the interference
structures. However, the interference structures at lower mo-
menta are almost independent of the sub-barrier phase.

To further explore the effect of the sub-barrier phase on
the shape formation of the PMDs in Fig. 4, it is necessary
to distinguish the contributions of the dominant SPs to the
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FIG. 5. The PMDs for the 2px orbital obtained from the SP method with and without sub-barrier phase, by coherently adding different
saddle points, respectively. The values in the first row are the results obtained by considering SPs 5–7, and the values in the the second row are
obtained by considering SPs 5 and 6. The values in the first column are calculated with the sub-barrier phase. The values in the second column
are calculated without the sub-barrier phase. The white rectangle in (d) marks the minima corresponding to those in Fig. 4(c).

interference patterns of the PMDs. Figures 5(a) and 5(b)
show the PMDs for the 2px orbital by coherently adding
the contributions of SPs 5–7, with and without sub-barrier
phase, respectively. In Figs. 5(a) and 5(b), we can see that the
main shape of the PMDs on the left-half plane of Figs. 4(a)
and 4(c) can be obtained using only three SPs, i.e., SP5–SP7,
except for the absence of the concentric rings centered at
zero momentum in Figs. 4(a) and 4(c). As is well known, the
intercycle interference arises from the coherent superposition
of electron wave packets released at complex times during
different optical cycles, whereas subcycle interference comes
from the coherent superposition of electron packets released
in the same optical cycle [44,47]. In fact, the concentric rings
centered at zero momentum in Figs. 1(a) and 4(c) are asso-
ciated with above-threshold detachment (ATD) rings, which
originates from the intercycle interference from wave packets
for SP5 and SP9 [45]. Therefore, the interference patterns
of Figs. 5(a) and 4(b) on the left-half plane are originated
from the subcycle interference from wave packets for SPs
5–7. Figures 5(c) and 5(d) show the PMDs for the 2px orbital
by coherently adding the contributions of SPs 5 and 6, with
and without sub-barrier phase, respectively. By comparing
Figs. 5(c) and 5(d), it is found that the marked minima in
Fig. 4(c) are due to the destructive interference from wave
packets for SP5 and SP6, if the sub-barrier phase is dropped in
calculations. In fact, we also check the effect of the sub-barrier

phase on the other three minima in Fig. 4(c). For example,
the minima in the lower-left plane of Fig. 4(c) are due to the
destructive interference from wave packets for SP6 and SP7
when the sub-barrier phase is dropped out in calculations.

Figures 6(a) and 6(b) show the PMDs for the 2py orbital
by coherently adding the contributions of SPs 5–7, with and
without the sub-barrier phase, respectively. In Figs. 6(a) and
6(b), it is also found that the main shape of the PMDs on the
left-half plane of Figs. 4(b) and 4(d) originate from the subcy-
cle interference from wave packets for SPs 5–7. Figures 6(c)
and 6(d) show the PMDs for the 2py orbital by coherently
adding the contributions of SPs 5 and 6, with and without the
sub-barrier phase, respectively. We can see that the marked
minima in Fig. 4(b) are due to the destructive interference
from wave packets for SP5 and SP6. In fact, it is found
that all four minima in Fig. 4(b) are due to the destructive
interference. Therefore, at large momenta, the shape of the
interference structure of the PMDs for the both the 2px and
2py orbitals highly depends on the sub-barrier phase.

IV. CONCLUSIONS

In summary, we have carried out a systematical analysis on
the two-dimensional PMDs of F− ions in an OTC laser pulse,
for the 2px and 2py atomic orbitals, respectively. The PMDs
obtained from TDSE are regarded as the benchmark results.
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FIG. 6. The same as Fig. 5 but for the 2py orbital. The white rectangle in (c) marks the minima corresponding to those in Fig. 4(b).

By comparing the TDSE results, the PMDs from the SFA
model with the asymptotic wave function, and the PMDs from
the SFA model with the Hartree-Fock–type wave function,
we find that the interference patterns of the two-dimensional
PMDs is strongly dependent on the atomic orbital, and we
confirm that the asymptotic behavior of the initial bound-state
wave function plays a crucial role in forming the main shape
of PMDs at large momenta in the OTC laser field. Moreover,
we intuitively reveal that the sub-barrier phase leaves clear
fingerprints in the subcycle interference structures, based on
the SP method and the imaginary time theory. Specifically,
at large momenta, the contribution of the sub-barrier phase
will lead to the different subcycle interference structures
for different atomic orbitals. The present work provides a
deep understanding of the subcycle electron dynamics in the

detachment process of negative ions with p-state electrons.
We hope the important effects identified in the present work
can be experimentally observed in the detachment process of
F− ions with the OTC scheme.
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