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The weak-field asymptotic theory (WFAT) of tunneling ionization in a static electric field is limited by the
assumption that tunneling occurs from an isolated state in a compact atomic or molecular system. In this paper, we
generalize the WFAT in two directions: to the cases when tunneling ionization occurs from (i) nearly degenerate
states separated by a small energy distance �E in compact systems, and (ii) an isolated state in heteronuclear
diatomic molecules at large internuclear distances R. The weak-field asymptotic formulas for the ionization rates
in these two cases are obtained. The asymptotics are uniform with respect to �E and R and for sufficiently
large �E and small R, respectively, reduce to the previously known WFAT rate formula. By combining the two
asymptotics, we obtain a formula for the ionization rates from the nearly degenerate 1sσg and 2pσu states of a
homonuclear molecular ion H2

+ at large internuclear distances, which is of particular interest for applications in
strong-field physics. The analytical results are illustrated by calculations for several atomic and molecular models.
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I. INTRODUCTION

The description of tunneling ionization from a bound state
in a given potential caused by an external static electric field is
one of the basic problems in quantum mechanics. If the field is
sufficiently weak compared to a critical field Fc at which over-
the-barrier ionization becomes accessible, the ionization rate
can be sought as an asymptotic expansion in the field strength
F . Such an approach was initiated in Ref. [1], where the
leading-order term in the expansion of the ionization rate from
the ground state in the Coulomb potential was obtained. This
result was then generalized to an arbitrary state in an arbitrary
central atomic potential [2], to excited states in the Coulomb
potential [3,4], and to the first-order [5] and higher-order
[6] terms in the expansion for the Coulomb potential. More
recently, the asymptotic approach was reformulated on the
basis of the method of expansion in parabolic channels [7]. This
enabled one to generalize it to arbitrary molecular potentials
without any symmetry in the leading-order approximation [7]
and including the first-order terms [8], which became known
as the weak-field asymptotic theory (WFAT). The WFAT was
further generalized to many-electron systems in the leading-
order approximation [9] and including the first-order terms
[10,11], but in this paper we discuss only the one-electron
theory. We mention that other analytical approaches to the
problem of tunneling ionization [12–15] were also proposed.

The development of the WFAT originally was and continues
to be motivated by applications in strong-field physics [16].
The ionization of atoms and molecules by strong laser fields
is often treated in the single-active-electron approximation in
which the interaction of the active electron with the parent
ion is modeled by an effective potential. In the adiabatic
regime, when the laser photon energy is much smaller than the
energy distance �E between the initial and the nearest excited
electronic states, the interaction of the active electron with a
laser field can be treated as if the field were static and equal

to the instantaneous value of the laser field [17]. For atoms
and molecules in the ground state, �E is of the order of the
ionization potential Ip ∼ 0.5 a.u., so for a typical wavelength
of λ ∼ 800 nm (photon energy of h̄ω ∼ 0.06 a.u.) the adiabatic
approximation holds. The quantitative performance of the
adiabatic approximation in predicting total ionization yields
[18,19] and complete description of photoelectron momen-
tum distributions [17,20,21] has been multiply confirmed
by comparison with exact solutions of the time-dependent
Schrödinger equation. Furthermore, for typical laser intensities
I ∼ 1013–1014 W/cm2 the field amplitude F ∼ 0.02–0.05 a.u.
is smaller than a typical critical field Fc ∼ 0.1 a.u. This justifies
the success of the WFAT in applications to the analysis of
ionization in strong-field experiments [22–25].

The external static electric field causing tunneling ioniza-
tion simultaneously shifts the energy of the state. The present
version of the WFAT [7] is limited by the assumption that this
Stark shift is small compared to �E. In other words, the WFAT
treats tunneling ionization from an isolated state which is well
separated in energy from the other states of the unperturbed
system. One exception is the results for the hydrogen atom in
degenerate excited states [3,4] reproduced within the WFAT
[7]. However, the Coulomb potential presents a very special
case since the Schrödinger equation describing tunneling in
this case allows separation of variables in parabolic coordi-
nates [1], which amounts to exact decoupling of parabolic
channels within the WFAT [7]. The ionization rates obtained
in Refs. [3,4] are that of parabolic states of hydrogen. These
are the correct zeroth-order eigenstates in an electric field [1],
which suggests a guiding idea for the present study. In this
paper, we generalize the WFAT to the case when tunneling
ionization occurs from a group of nearly degenerate states of
the unperturbed system which can be mixed by even a weak
external field. The physical effect we wish to investigate is how
the mixing of the states affects their ionization rates.
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One of the original goals of this study was to consider
tunneling ionization from the nearly degenerate 1sσg and
2pσu states of H2

+ at large internuclear distances R. It turned
out that in order to treat this system, in addition to the
generalization mentioned above a generalization of the WFAT
in another direction is needed. The present version of the WFAT
[7] treats tunneling ionization from a compact system. The
case of a system of large spatial extent, e.g., a dissociating
molecule, requires special treatment. The system we keep in
mind is a molecule undergoing Coulomb explosion into several
fragments separated by large distances. As an electron initially
localized at one of the fragments tunnels and leaves the system
being driven by the external field, an effective charge it feels
varies from that of the parent fragment ion to the sum of charges
of all fragments. The two charges are generally different,
since the other fragments may be charged. The ionization rate
depends on the parent ion charge, so the variation of the charge
affects its value. In this paper, we show how to take this effect
into account within the WFAT. The combination of the two
generalizations enables us to consider tunneling ionization of
dissociating H2

+.
The developments of the WFAT outlined above, and our

interest in H2
+ at large internuclear distances in particular,

are again motivated by possible applications in strong-field
physics. One could argue that for systems with small energy
spacing �E of interest here the adiabatic approximation may
break down, which is of course true. However, the results of this
paper still contribute to the theory of tunneling ionization in a
static field. Moreover, new laser sources progressing towards
longer wavelengths continue to appear [26], so the present
results may find applications in the future.

The paper is organized as follows. In Sec. II, we summarize
basic equations of the WFAT and illustrate its performance
for tunneling ionization from an isolated state in a compact
system. In Sec. III, we present the generalization to the case
when tunneling ionization occurs from nearly degenerate states
in a compact system. In Sec. IV, the generalization to the
case when tunneling ionization occurs from an isolated state
in a heteronuclear diatomic molecule at large internuclear
distances is developed. In Sec. V, the results of the two previous
sections are combined to obtain tunneling ionization rates from
the nearly degenerate 1sσg and 2pσu states of H2

+ at large
internuclear distances. The weak-field asymptotic formulas for
the ionization rates obtained in Secs. III–V are illustrated and
validated by calculations. Section VI concludes the paper.

II. TUNNELING IONIZATION FROM AN ISOLATED STATE

In this section, we summarize basic equations of the WFAT
for tunneling ionization from an isolated state [7], which is
needed to set up a framework for the following generalizations.
The Schrödinger equation describing an atom or molecule
interacting with a static uniform electric field F = F ez, F � 0,
in the single-active-electron approximation reads (atomic units
are used throughout)[− 1

2 � + V (r) + Fz − E
]
ψ (r) = 0. (1)

The potential is assumed to satisfy

V (r)|r→∞ = −Z

r
+ O(r−2), (2)

where Z is the total charge of the parent ion. In the absence of
the field, F = 0, Eq. (1) has a solution with real energy E0 < 0
and wave function ψ0(r) representing the unperturbed bound
state of the active electron. For F > 0, this state turns into a
Siegert state (SS) in an electric field [27–29]. The SS satisfies
Eq. (1) subject to outgoing-wave boundary conditions in the
asymptotic region z → −∞. The SS eigenvalue is complex,

E = E − i
2 �, (3)

and defines the Stark-shifted energy E and ionization rate � of
the state, and the outgoing-wave tail of the SS eigenfunction
ψ (r) describes tunneled electrons. All properties of the system
related to tunneling ionization can be expressed in terms of
the SS. Within the WFAT, they are obtained in the form of
asymptotic expansions in F for

F → 0. (4)

In this paper we discuss only the ionization rate, since it is of
main interest for applications.

In the weak-field limit (4), one could attempt to solve
Eq. (1) using perturbation theory. This approach results in the
expansions [1]

E = E0 − μzF + O(F 2), (5a)

ψ (r) = ψ0(r) + O(F 1), (5b)

where

μz = −
∫

ψ0(r)zψ0(r) dr (6)

is the z component of the dipole moment in the unperturbed
state. However, Eqs. (5) do not account for tunneling ioniza-
tion. Indeed, all terms in Eq. (5a) are real and all terms in
Eq. (5b) vanish at r → ∞. These power series expansions fail
to reproduce the imaginary part of E and the outgoing-wave tail
of ψ (r) which are exponentially small in F . Yet perturbation
theory plays a role in implementing WFAT since coefficients
in the WFAT expansion of the ionization rate are expressed in
terms of the properties of the unperturbed system appearing in
Eqs. (5). In the following, we assume that these properties are
known.

In the WFAT, Eq. (1) is treated in parabolic coordinates
ξ = r + z, η = r − z, and ϕ = arctan(y/x) [1]. The solution
representing the SS is sought in the form [7]

ψ (r) = η−1/2
∑

ν

fν (η)�ν (ξ, ϕ), (7)

where
�ν (ξ, ϕ) = φν (ξ )

eimϕ

√
2π

(8)

are parabolic channel functions enumerated by the set of
parabolic quantum numbers

ν = (nξ ,m), nξ = 0, 1, . . . , m = 0,±1, . . . , (9)

φν (ξ ) are solutions to the eigenvalue problem

[
d

dξ
ξ

d

dξ
− m2

4ξ
+ Z + Eξ

2
− Fξ 2

4
− βν

]
φν (ξ ) = 0, (10a)

φν (ξ )|ξ→0 ∝ ξ |m|/2, φν (ξ )|ξ→∞ = 0, (10b)
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normalized by the condition∫ ∞

0
φnξ m(ξ )φn′

ξ m
(ξ ) dξ = δnξ n

′
ξ
, (11)

and βν are the corresponding separation constants. The channel
functions (8) are orthonormal with respect to the inner product

〈�ν |�ν ′ 〉 ≡
∫ ∞

0

∫ 2π

0
�ν̄ (ξ, ϕ)�ν ′ (ξ, ϕ) dξdϕ = δνν ′ , (12)

where ν̄ = (nξ ,−m) and ν ′ = (n′
ξ , m

′). In the limit (4), the
solutions to Eqs. (10) can be found using perturbation theory,

βν = β (0)
ν + O(F 1), (13a)

φν (ξ ) = φ(0)
ν (ξ ) + O(F 1). (13b)

The field-free terms in these expansions are given by [7]

β (0)
ν = Z − �

(
nξ + |m| + 1

2

)
, (14a)

φ(0)
ν (ξ ) = �1/2(�ξ )|m|/2e−�ξ/2

√
nξ !

(nξ + |m|)! L(|m|)
nξ

(�ξ ),

(14b)

where � = √−2E0 and L(α)
n (x) are the generalized Laguerre

polynomials [30]. Substituting Eq. (7) into Eq. (1), one obtains
a set of ordinary differential equations defining the coefficient
functions fν (η) [7,8],[

d2

dη2
+ Fη

4
+ E

2
+ βν

η
+ 1 − m2

4η2

]
fν (η)

+1

η

∑
ν ′

wνν ′ (η)fν ′ (η) = 0, (15)

where

wνν ′ (η) = 〈�ν |[Z(r) − Z]|�ν ′ 〉 (16)

is a coupling matrix and

Z(r) = −rV (r) (17)

is an effective position-dependent charge. The asymptotic
region z → −∞, where electrons released from the system fly
away driven by the field, corresponds to η → ∞. As follows
from Eq. (2), the matrix (16) vanishes in this region, Eqs. (15)
become decoupled, and we present them in the form[

d2

dη2
+ Fη

4
+ E

2
+ βν

η
+ O(η−2)

]
fν (η) = 0. (18)

The outgoing-wave solution to this equation satisfies

fν (η)|η→∞ = 21/2fν

(Fη)1/4
exp

[
iF 1/2η3/2

3
+ iEη1/2

F 1/2

]
, (19)

where fν is the ionization amplitude in channel ν. In the limit
(4), the total ionization rate from Eq. (3) is given by [7]

� =
∑

ν

�ν, �ν = |fν |2, (20)

where �ν is the partial rate of ionization in channel ν. The
problem of finding the rate � thus reduces to evaluating the
amplitudes fν .

The perturbation theory solution (5b) also can be expanded
in parabolic channels, as in Eq. (7). In particular, the unper-
turbed bound state can be presented in the form

ψ0(r) = η−1/2
∑

ν

gν (η)�(0)
ν (ξ, ϕ), (21)

where �(0)
ν (ξ, ϕ) are the field-free channel functions obtained

by substituting Eq. (14b) into Eq. (8). We use a different
notation for the coefficient functions in Eq. (21), to emphasize
that they satisfy different asymptotic boundary conditions. For
F = 0, one obtains from Eq. (18)

gν (η)|η→∞ = gνη
β (0)

ν /�e−�η/2, (22)

where gν is the asymptotic coefficient in channel ν.
The ionization amplitudes fν are found by matching the

outer outgoing-wave solution defined by Eqs. (7) and (19) with
the inner perturbation theory solution given by Eq. (5b). Let us
outline briefly the matching procedure, specifying the intervals
of η where the different approximations apply, which is needed
for the following. The solutions are matched on the basis of
the decoupled equations (18). The decoupling approximation
holds at η > ηc, where ηc is the boundary of the coupling or
core region. We first discuss the outer solution. The asymptotic
form (19) holds at η � ηt , where ηt = �2/F + O(F 0) is
the outer turning point for Eq. (18). In the limit (4), the
solution to Eq. (18) satisfying Eq. (19) can be obtained in
the form of the asymptotic expansion in F . To this end, one
should substitute into Eq. (18) perturbation theory expansions
(5a) and (13a). The derivation employs standard techniques
from asymptotic analysis [31,32]; a similar approach is used
in the derivation of the semiclassical approximation [1],
but the asymptotic parameters in the two cases are differ-
ent. The asymptotic expansion can be analytically contin-
ued to the region η � ηt up to the point ηas = 4|β (0)

ν |/�2,
where the fourth term in Eq. (18) becomes comparable with
the third term. Thus, the inner boundary of the interval where
the weak-field asymptotics of the outer solution is known is
ηin = max(ηc, ηas). Now we discuss the inner solution. The
terms containing field in Eq. (18) can be treated as a pertur-
bation. The outer boundary of the interval where perturbation
theory applies can be estimated by equating the second and
fourth terms in Eq. (18), which gives ηPT = 2|β (0)

ν /F |1/2. It
is important to recognize that ηin = O(F 0), ηPT = O(F−1/2),
and ηt = O(F−1), and hence for sufficiently small F these
boundaries satisfy ηin � ηPT � ηt . The expansions in F of the
inner and outer solutions are matched term by term in a region
η = O(F−1/2) lying to the left of ηPT, where both solutions
apply. This yields the asymptotic expansion for fν . In the
leading-order approximation, only terms retained in Eqs. (2),
(5), (13), and (18) are needed for the derivation. Further details
can be found in Ref. [7]; the result is

fν = gν�
1/2

21/2

(
4�2

F

)β (0)
ν /�

exp

[
iπ

4
+ iπβ (0)

ν

�
− �μz − �3

3F

]
.

(23)

The first-order correction to this formula was obtained in
Ref. [8], its derivation requires to extend the expansions in
Eqs. (2), (5), (13), and (18) to the next term.
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Using Eq. (23), one obtains partial ionization rates

�ν = |Gν |2Wν (F, � ), (24)

where

Gν = gνe
−�μz (25)

is the structure factor and

Wν (F, � ) = �

2

(
4�2

F

)2Z/�−2nξ −|m|−1

exp

(
−2�3

3F

)
(26)

is the field factor. Note that under a shift r → r + a of the
coordinate frame in Eq. (1) the dipole moment (6) and the
asymptotic coefficients in Eq. (22) undergo transformations
μz → μz − az and gν → gνe

−�az . Thus, the structure factor
Gν is invariant under the shift, which qualifies it as the primary
property of the system related to tunneling ionization, while
each of the two factors on the right-hand side of Eq. (25) is not
[7]. The different channels have the same exponential factor
but different powers of F in Eq. (26). In the leading-order
approximation only the dominant channel corresponding to
the lowest power should be retained in the sum (20). In the
general case this is the channel with ν = (0, 0), provided that
g00 = 0. Thus

� ≈ G2
00W00(F, � ). (27)

This approximation holds under the condition

F � Fc ≈ �4

8|2Z − �| , (28)

whereFc is the critical field at which over-the-barrier ionization
becomes accessible. This condition specifies the meaning of
the limit (4).

To illustrate the performance of the WFAT, let us consider
tunneling ionization from the ground state of the hydrogen
atom. The energy E and ionization rate � for this system
as functions of F are shown in Fig. 1. The exact results
are obtained from the SS eigenvalue (3) calculated using the
method and program developed in Ref. [27]. The same applies
to the exact results for the other systems reported below. The
energy is compared with the second-order perturbation theory
result E = −1/2 − 9F 2/4 [1] denoted by PT. The rate varies
by many orders of magnitude in the interval of F where it
was calculated. To eliminate this variation, and thus facilitate
comparison with the WFAT on a linear scale, we plot the ratio
�/W00(F, � ). It may be instructive to know the range of the
variation of the absolute value of the rate; this is indicated in the
figure caption. A similar representation of rates by some ratios
accompanied by the indication of the range of their variation
is used for the other systems considered below. For the present
system Z = 1, � = 1, μz = 0, and g00 = √

2, so G2
00 = 2 and

W00(F, � ) = 2F−1e−2/3F . The exact rate is compared with
the leading-order WFAT result from Eq. (27) given by � =
4F−1e−2/3F [1,3,4,7] and the first-order WFAT result given by
� = 4F−1e−2/3F (1 − 107F/12) [5,6,8] denoted in the figure
by WFAT(0) and WFAT(1), respectively. The leading-order ap-
proximation overestimates the rate; it works quantitatively only
at rather weak fields satisfying (28), where in the present case
Fc ≈ 0.125. The first-order correction considerably improves
the WFAT results, making them applicable up to F ∼ Fc. The

0.0
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1.0

1.5

2.0

0 2 4 6 8 10

exact
WFAT(0)
WFAT(1)

-0.52

-0.51

-0.50

exact
PT

Γ
/W

00
(F

,κ
)
(a

.u
.)

F (10−2 a.u.)
E

(a
.u

.)
FIG. 1. Energy E and ionization rate � divided by the field

factor W00(F, � ), Eq. (26), as functions of field for the ground state
of a hydrogen atom. Solid (black) lines show results of accurate
calculations. The dashed (black) line in the upper panel shows the
second-order perturbation theory results [1]. The dashed (blue) and
dash-dotted (red) lines in the lower panel show the leading-order
[1,3,4,7] and the first-order [5,6,8] WFAT results, respectively. The
rate � varies from ∼10−286 at F = 10−3 to ∼10−2 at F = 10−1.

behavior of the exact and WFAT rates shown in Fig. 1 is typical
for tunneling ionization from an isolated state in atomic [7,8]
and molecular [28,33] potentials.

III. NEARLY DEGENERATE STATES
IN COMPACT SYSTEMS

In this section, we generalize the WFAT to the situation
where tunneling ionization occurs from one of a group of
nearly degenerate states in a compact atomic or molecular
system. Let the system have two closely spaced unperturbed
bound states with real energies Ei < 0 and wave functions
ψi (r), i = 1, 2; the generalization to a larger number of states
is straightforward. For definiteness, we assume that E1 � E2.
The condition that the states are nearly degenerate signifies
that there appears a new small parameter �E = E2 − E1 in
the problem. Our goal is to obtain the weak-field asymptotics of
the ionization rates for these states which is uniform in�E, that
is, remains valid for any �E. To proceed with the derivation,
we need to fix the order of �E in terms of F . We consider the
asymptotics

F → 0, �E = O(F 1). (29)

The meaning of the second relation is clarified below. We
restrict our treatment to the leading-order approximation in
the limit (29).

The main difference of the present situation from the case
of an isolated state discussed in the previous section is that
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the perturbation theory procedure used to construct the inner
solution requires a modification. Namely, instead of dealing
with expansions (5), one should solve the corresponding
secular equation [1]. In the leading-order approximation of
this approach the solution to Eq. (1) is sought in the form
ψ (r) = c1ψ1(r) + c2ψ2(r). Substituting this into Eq. (1) leads
to the eigenvalue problem(

E1 − μ1F − E −dF

−dF E2 − μ2F − E

)(
c1

c2

)
= 0, (30)

where

μi = −
∫

ψi (r)zψi (r)dr (31)

and

d = −
∫

ψ1(r)zψ2(r)dr. (32)

The perturbed eigenvalues and eigenfunctions defined by
Eq. (30) are denoted by E± and ψ±(r). By our convention
E+ � E−, so in the limit (4) for a fixed �E the states − and
+ coincide with the states 1 and 2, respectively. We find

E± = 1
2

[
E1 + E2 − (μ1 + μ2)F

±
√

(�E − �μF )2 + 4d2F 2
]

(33)

and

ψ−(r) = cos φψ1(r) + sin φψ2(r), (34a)

ψ+(r) = − sin φψ1(r) + cos φψ2(r), (34b)

where �μ = μ2 − μ1, φ = arctan(dF/�), and

� = 1
2

[
�E − �μF +

√
(�E − �μF )2 + 4d2F 2

]
. (35)

Thus, the inner solutions in the present case are defined by
Eqs. (33) and (34) which replace Eqs. (5). In other words,
tunneling ionization occurs from the perturbed states. These
states depend on F , and this affects the field dependence of
the ionization rates. Note that, due to the second of Eq. (29),
the difference between the eigenvalues E± and Ei is O(F 1),
and hence remains small at sufficiently weak fields. On the
other hand, � = O(F 1), so φ = O(F 0), which means that
the eigenfunctions ψ±(r) can considerably differ from ψi (r).
In the degenerate case, �E = 0, ψ±(r) do not depend on
F and represent the correct zeroth-order eigenstates of the
unperturbed system [1].

In the leading-order approximation, for matching the inner
and outer solutions it is sufficient to consider only the dominant
ionization channel ν = (0, 0); for brevity, we suppress this
subscript in the following. It is convenient to introduce a
modified notation for the corresponding field-free channel
function (8),

�(ξ ; � ) =
√

�

2π
e−�ξ/2. (36)

According to Eqs. (21) and (22), the unperturbed states satisfy

ψi (r)|η→∞ = giη
Z/�i−1e−�iη/2�(ξ ; �i ), (37)

where �i = √−2Ei and gi are the asymptotic coefficients. In
the present case one cannot expand the perturbed energies

(33) in powers of F , as in Eq. (5a). Instead, one should
solve Eqs. (10) and (18) with E substituted by E±. Then
the perturbed states in the matching region η = O(F−1/2) are
given by

ψ±(r)|η=O(F−1/2 ) = g±ηZ/�±−1e−�±η/2�(ξ ; �±), (38)

where �± = √−2E±. The difference between �± and �i is
O(F 1), so it can be neglected in the matching region. Then
from Eqs. (34) and (37) we obtain

g− = cos φg1 + sin φg2, (39a)

g+ = − sin φg1 + cos φg2. (39b)

Equation (38) defines the inner solutions to be used in the
matching procedure. The rest of the derivation coincides with
that in Ref. [7]. We thus obtain the amplitudes of ionization in
channel ν = (0, 0) from the states ψ±(r),

f± = g±�
1/2
±

21/2

(
4�2

±
F

)Z/�±−1/2

exp

[
iπZ

�±
− iπ

4
− �3

±
3F

]
.

(40)

This result differs from Eq. (23) for the same channel in
two respects. First, field-independent quantities � and g00

characterizing the unperturbed state are replaced by field-
dependent quantities �± and g± characterizing the perturbed
states. Second, the term with μz in the exponent in Eq. (23),
originating from the second term in Eq. (5a), is absorbed into
the last term in the exponent in Eq. (40). Using Eq. (40), we
obtain the ionization rates

�± ≈ �
(as)
± = g2

±W00(F, �±). (41)

This formula generalizes Eq. (27) to the case of nearly
degenerate states.

In contrast to Eq. (27), where only the field factor (26)
contains the dependence on F , Eq. (41) depends on F also
through �± and g±. Let us discuss this dependence in more
detail. The situation depends on the relation between �μ and
d. We assume that |�μ| � |d|, which holds for the models
considered in the illustrative calculations below. As can be
seen from Eqs. (33) and (35), under this condition one can
distinguish two regimes in the variation of the perturbed states
with F separated by a field

Fd = �E

2|d| , (42)

where the Stark splitting 2|d|F coincides with the energy
distance �E between the unperturbed states. At weak fields,
F � Fd , the perturbed states only slightly differ from the
unperturbed ones. In this case

E−,+ = E1,2 − μ1,2F + O(F 2), (43a)

g−,+ = g1,2 + O(F 1), (43b)

where− and+ correspond to 1 and 2, respectively. Substituting
this into Eq. (41) and expanding in F , in the leading-order
approximation one obtains the previous result (27) applied to
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FIG. 2. Energies of the 2s and 2p bound states in the potential
(45) as functions of the screening parameter ε.

each of the two unperturbed states treated as if they were
isolated. At stronger fields, F � Fd , the perturbed states
considerably differ from the unperturbed ones. In this case

E± = 1

2
[E1 + E2 − (μ1 + μ2)F ] ± |d|F, (44a)

g± = ∓g1 + g2√
2

. (44b)

Substituting this into Eq. (41) and expanding in F , one
again obtains Eq. (27) with �, μz, and g00 substituted by
�̄ = √−(E1 + E2), (μ1 + μ2)/2 ∓ |d|, and g±, respectively.
Formula (41) describes the transition between the two limits.
Note that in both limits it is invariant under a shift r → r + a
of the coordinate frame in Eq. (1), because d does not change
under the shift. This formula applies in the interval (28), where
� should be substituted by �̄. If Fd � Fc, in this interval
Eq. (41) reduces to Eq. (27), which returns us to the case of
an isolated state. Of main interest for the present analysis is
therefore the situation where the transition between the two
regimes occurs within the interval (28), which is the case if
Fd � Fc. Taking into account Eq. (42), this explains the second
of Eqs. (29).

To illustrate the performance of Eq. (41), we consider
tunneling ionization from the 2s and 2p states in the potential

V (r ) = −1 + εe−r

r
, (45)

where ε is a screening parameter. For ε = 0, the states under
consideration are degenerate. For ε > 0, the degeneracy is
lifted, but the states remain closely spaced for sufficiently
small values of ε. Their energies as functions of ε are shown
in Fig. 2. We associate the 2s and 2p states in the potential
(45) with states 1 and 2 in the above discussion, respectively.
In the present model Z = 1 and μi = 0. The signs of ψi (r) are
chosen in such a way that gi > 0, and consequently d > 0.

The energies E± and ionization rates �± calculated for this
model with ε = 0.05 and 0.2 are shown in Figs. 3 and 4. The
corresponding values of the parameters Ei , gi , and d and the
field Fd are given in captions to the figures. The critical field
estimated using Eq. (28) is Fc ≈ 5.4×10−3 and 5.8×10−3 for
ε = 0.05 and 0.2, respectively, which explains the interval of
field considered in the figures. The exact results are compared

0.8

1.0

1.2

1.4

0 1 2 3 4 5

exact
WFAT

−

+

0.00

0.02

0.04

0.06

0.08

exact
WFAT

−

+

-0.14

-0.13

-0.12

-0.11

exact
PT−

+

Γ
±/

Γ
(a

s)
±

F (10−3 a.u.)

Γ
±/

W
00

(F
,κ

±)
(a

.u
.)

E ±
(a

.u
.)

FIG. 3. Energies E± and ionization rates �± divided by the field
factors W00(F, �±), in the middle panel, and the WFAT rates �

(as)
±

defined in Eq. (41), in the bottom panel, as functions of field for the
2s and 2p states in the potential (45) with ε = 0.05. In this case E2s =
−0.127 370, E2p = −0.125 795, g2s = 0.1857, g2p = 0.1794, and
d = 2.976, so Fd = 2.6×10−4. Solid lines show results of accurate
calculations. Dashed lines in the upper panel show the perturbation
theory results from Eq. (33). Dashed lines in the middle and bottom
panels show the WFAT results from Eq. (41). �− and �+ vary
from ∼10−239 and 10−234 at F = 1.5×10−4 to ∼10−4 and 10−5 at
F = 5×10−3, respectively.

with the perturbation theory results from Eq. (33) denoted by
PT and the weak-field asymptotic results from Eq. (41) denoted
by WFAT. Equation (33) works well in the whole interval of
F considered. The two regimes separated by the field (42) and
described by Eqs. (43a) and (44a) can be clearly seen in the
upper panels of the figures. In the middle panels, we show the
rates �± divided by the field factors W00(F, �±), as in the lower
panel of Fig. 1. Within the WFAT, the ratio is given by g2

±, see
Eq. (41). The asymptotic coefficients for the perturbed states
(39) vary between the two limits (43b) and (44b) as F passes
through Fd , and the dashed lines in the middle panels reproduce
this variation. In the present model, g2s and g2p coincide for
ε = 0 and remain rather close to each other for small values
of ε considered in the figures. Hence g− and g+ are close at
F � Fd , but become quite different at F � Fd , because g+ is
very small there; see Eq. (44b). This results in the characteristic
shape of the dashed lines in the middle panels of Figs. 3 and 4.
The exact results are seen to demonstrate a similar behavior.
However, it is difficult to compare the exact and WFAT results
for the + state, because of the small values of g+ at F � Fd .
To eliminate this drawback of the presentation, in the bottom
panels of the figures we plot the rates �± divided by the WFAT
rates �

(as)
± defined in Eq. (41). Within the WFAT, the ratio for
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FIG. 4. Same as in Fig. 3, but for the potential (45) with ε = 0.2.
In this case E2s = −0.134 795, E2p = −0.128 352, g2s = 0.2145,
g2p = 0.1878, and d = 2.895, so Fd = 1.1×10−3. �− and �+ vary
from ∼10−261 and 10−242 at F = 1.5×10−4 to ∼10−5 and 10−4 at
F = 5×10−3, respectively.

both states ± is equal to 1. Now it is clearly seen that the
results from Eq. (41) converge to the exact results at F → 0,
and the difference grows approximately linearly with F . This
behavior is consistent with the leading-order approximation; a
similar behavior is seen from the comparison of the WFAT(0)
and exact results in the lower panel in Fig. 1. Importantly, the
solid lines in the bottom panels of Figs. 3 and 4 do not exhibit
any change in their behavior around the field Fd , as is the case
in the top and middle panels, which reflects the fact that the
asymptotics (41) is uniform in �E.

To close this section, we point out that the present theory
holds also in the degenerate case, when �E = 0 and Fd = 0.
Consider, e.g., the hydrogen atom described by the potential
(45) with ε = 0. In this case E2s = E2p = −1/8, g2s = g2p =
2−5/2, and d = 3. The correct zeroth-order eigenstates ψ−(r)
and ψ+(r) of the unperturbed atom are the parabolic states
with quantum numbers (nξ , nη,m) = (0, 1, 0) and (1,0,0),
respectively [1]. From Eq. (44b) we obtain g− = 1/4 and g+ =
0. The value of g− coincides with the asymptotic coefficient
in Eq. (22) for the state (0,1,0), see Ref. [7]; substituting it
into Eq. (41), one obtains the correct leading-order WFAT
ionization rate of the state [3,4,7]. The zero value of g+ reflects
the fact that the state (1,0,0) ionizes only in channel ν = (1, 0)
which has a higher power of F in the field factor (26), therefore
within the leading-order approximation considered here its ion-
ization rate (41) turns to zero. We also mention that the present
theory provides the foundation for the treatment of tunneling
ionization from the two degenerate orbitals in molecules CH3F

and CH3Br within the analysis of experimental high-harmonic
spectra reported in Ref. [22].

IV. ISOLATED STATE IN DISSOCIATING MOLECULES

We next discuss tunneling ionization of molecules in the
process of dissociation, when molecular fragments are already
separated by large distances. In this section we consider
tunneling ionization from a state which remains isolated as
the fragments move away from each other. The solution to this
auxiliary problem paves the way for the discussion of tunneling
ionization from states which become nearly degenerate at large
distances between the fragments presented in the next section.

Before we turn to the derivation, it is worthwhile to explain
qualitatively why dissociating molecules require a special
consideration. At large distances between the fragments, the
state from which tunneling occurs is localized at one of them;
let us call it the parent fragment; the other fragments are termed
spectators. As an electron is released from the parent fragment
by the field and starts moving away, at the initial stage of its
motion, when it is still closer to the parent fragment ion than
to spectators, it feels the charge of the parent fragment ion.
However, as the electron moves farther away, it eventually feels
the total charge of the parent molecular ion. The two charges are
generally different, because spectators may be charged, as is
typically the case, e.g., in Coulomb explosion. The field factor
(26), and hence the ionization rate (27), depend on the charge
of the parent ion felt by the outgoing electron. The variation of
this charge during the release of an electron from a dissociating
molecule affects the ionization rate, which is not accounted for
by the theory summarized in Sec. II. In this section we show
how to incorporate this effect into the WFAT.

To be specific, we consider a heteronuclear diatomic
molecule aligned along the field and modeled by the potential

V (r) = ZpUa (r ) + ZsUa (|r − Rez|), (46)

where Zp and Zs are the nuclear charges, R is the internuclear
distance, and

Ua (r ) = − 1√
r2 + a2

(47)

is a soft-core Coulomb potential. We consider tunneling ioniza-
tion from the ground 1sσ state in this potential. We use the same
notation for the energy E0 = −�2/2, wave function ψ0(r), and
dipole moment μz of the unperturbed state as in Sec. II. It is
assumed that Zp > Zs , so for large R this state is localized in
the potential well created by the nucleus with charge Zp. This
explains the subscripts of Zp and Zs which refer to the parent
and spectator nuclei, respectively. Taking into account that a
shift of the molecule with respect to the coordinate frame does
not alter the ionization rate, for convenience we have placed
the parent nucleus at the origin. The potential (46) satisfies
Eq. (2) with Z = Zp + Zs . Thus, the charge felt by the electron
during its release from the system varies from Zp to Z. We
wish to investigate the effect of this variation on the ionization
rate. The effect appears only for sufficiently large R, so a new
small parameter 1/R emerges in the problem. Our goal is to
obtain the weak-field asymptotics of the ionization rate which
is uniform in R. Of main interest is the case R ∼ ηt = O(F−1),
when the variation of the charge occurs within the interval of η
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considered in the derivation of Eq. (27). We therefore consider
the asymptotics

F → 0, R = O(F−1). (48)

The second relation specifies the term “dissociating molecule”
in the present context.

The illustrative calculations in this section are performed
with

Zp = 1, Zs = 0.5, R = 8. (49)

The analytical treatment below applies to any values of the
softening parameter a in Eq. (47), including the pure Coulomb
case a = 0. The unperturbed state also can be calculated for
any a. In the case a = 0 we obtain E0 = −0.562 651 and μz =
−0.036 402. The need of softening is dictated by limitations of
a program [27] used to calculate the ionization rate. The present
accurate results for the rate are calculated with a = 0.3. In this
case we obtain E0 = −0.471 019 and μz = −0.073 374.

In the rest of this section, we first formulate equations which
should be considered instead of Eq. (18) for treating tunneling
ionization in the present model (Sec. IV A). Then we obtain
the large R asymptotics of the asymptotic coefficient in the
dominant ionization channel ν = (0, 0) for the state ψ0(r)
(Sec. IV B) and the weak-field asymptotics of the ionization
rate (Sec. IV C).

A. Decoupled equations

In Sec. II, we assumed that in the interval of η where Eq. (15)
are to be considered the potential can be substituted by its
asymptotic form (2), and hence the matrix (16) vanishes, which
has led us to the decoupled equations (18). This is true for
compact systems, but may be not the case for systems of large
spatial extent. The present potential (46) satisfies Eq. (2) at
r � R, so for sufficiently large R the above assumption ceases
to hold. Let us show that in this case one can still neglect the
off-diagonal elements of the matrix (16), but must take into
account its diagonal elements, which modifies the decoupled
equations.

For deriving the ionization rate, we need to consider Eq. (1)
in the region ξ = O(F 0), η = O(F−1). Due to the second of
Eqs. (48), this corresponds to the region

ξ = O(R0), η = O(R1). (50)

The effective charge (17) for the potential (46) in this region
is given by

Z(r) = Zp + Zsη

η + 2R
+ Zsξ

η + 2R

[
1 − η(η − 2R)

(η + 2R)2

]

+O(R−2). (51)

The first and second terms here are O(R0). Their sum varies
from Zp at η � 2R to Z at η � 2R, and this describes the
variation of the charge of the parent ion felt by the outgoing
electron. These terms do not depend on ξ or ϕ and contribute
only to the diagonal elements of the matrix (16). The third
term in Eq. (51) is O(R−1). It contains ξ and hence couples
the different parabolic channels. The order of this term upon
substituting into Eq. (15) is O(η−2). We have neglected such
terms in Eq. (18) for deriving the leading-order WFAT rate (27)

and will do so again in Sec. IV C. However, for the derivation
in Sec. IV B, we need to take this term into account. It is
sufficient to treat it within the first order of perturbation theory,
which amounts to retaining its contribution only to the diagonal
elements of the matrix (16). We thus arrive at the decoupled
equations[

d2

dη2
+ Fη

4
+ E

2
+ βν (η)

η
+ 1 − m2

4η2

]
fν (η) = 0, (52)

where

βν (η) = βν − 2ZsR

η + 2R
+ Zsξν

η + 2R

[
1 − η(η − 2R)

(η + 2R)2

]
(53)

and

ξν = 〈�ν |ξ |�ν〉. (54)

These equations should be solved subject to the same asymp-
totic boundary conditions (22), for F = 0, and (19), for F > 0.
They should be considered instead of Eq. (18) in the present
model. The main difference between the equations stems from
the dependence of the separation constants (53) on η. This
dependence is caused by the spectator; in the absence of the
spectator, Zs = 0, Eq. (52) reduce to Eq. (18).

B. Asymptotic coefficient

Let us begin with the field-free case. The unperturbed state
ψ0(r) is given by Eq. (21), where the coefficient functions
satisfy Eq. (52) with F = 0 and Eq. (22). We consider only
the dominant ionization channel ν = (0, 0). In this section we
derive the asymptotics of the asymptotic coefficient g00 for

R → ∞. (55)

The derivation reveals the effect of the spectator on the value of
g00 and yields the function g00(η) needed for the next section.
We follow a scheme used in Sec. II, namely, we construct inner
and outer solutions and match them in an intermediate region,
where both solutions apply. The main difference is that the
small parameter in the present case is 1/R instead of F .

We first construct the inner solution. Consider Eq. (1) in the
region 1 � r � R. Here, the spectator term in the potential
(46) can be treated as a perturbation. We thus obtain

E0 = E1s − Zs

R
− αZ2

s

2R4
+ O(R−6), (56a)

μz = αZs

R2
+ O(R−4), (56b)

ψ0(r) = ψ1s (r ) + O(R−2), (56c)

where E1s and ψ1s (r ) are the energy and wave function of the
1s state of the parent fragment defined by[− 1

2 � + ZpUa (r ) − E1s

]
ψ1s (r ) = 0 (57)

and α is its static dipole polarizability. This state satisfies

ψ1s (r )|r→∞ = g1s

√
�1s

2π
(2r )Zp/�1s−1e−�1s r , (58)

where �1s = √−2E1s and g1s is the corresponding asymptotic
coefficient. Using Eq. (56c) and the notation (36), we can
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present ψ0(r) in the inner region in the form

ψ0(r)|1�η�2R = η−1/2g00(η)�(ξ ; � ), (59)

where

g00(η) = g1sη
Zp/�−1/2e−�η/2. (60)

We have neglected here the difference between �1s and � =
�1s + Zs/�1sR + O(R−2), which is justified in the region
considered. Equation (59) complies with Eq. (21) where only
one channel ν = (0, 0) is left. For the potential defined by
Eqs. (46) and (49), in the pure Coulomb case a = 0 we have
E1s = −0.5, α = 4.5, and g1s = √

2. From Eqs. (56) we obtain
E0 ≈ −0.562 637 and μz ≈ 0.0352, which closely agree with
the values given below Eq. (49). In the soft-core case a = 0.3
we have E1s = −0.408 257, α = 8.807 614, and g1s = 1.184.
From Eqs. (56) we obtain E0 ≈ −0.471 026 and μz ≈ 0.0688.
The agreement for the dipole moment in this case is worse,
which is explained by a more diffuse function ψ1s (r ).

We now construct the outer solution in the region (50). It has
the same form (59), where the function g00(η) is to be found by
solving Eq. (52). For F = 0, we find from Eq. (54) ξ00 = �−1,
so the separation constant is given by

β00(η) = Zp + Zsη

η + 2R
− �

2

+ Zs

�(η + 2R)

[
1 − η(η − 2R)

(η + 2R)2

]
. (61)

To find the asymptotics of g00(η) in the limit (55), we employ
techniques from asymptotic analysis [31,32]. Introducing a
new variable x = η/R, the equation for g00(η) can be written
as [

d2

dx2
− R2ρ(x)

]
g00(η) = 0, (62)

where

ρ(x) = ρ0(x) + R−1ρ1(x) + R−2ρ2(x), (63)

and

ρ0(x) = �2

4
, (64a)

ρ1(x) = −Zp

x
− Zs

x + 2
+ �

2x
, (64b)

ρ2(x) = − Zs

�x(x + 2)
+ Zs (x − 2)

�(x + 2)3
− 1

4x2
. (64c)

We wish to find the solution to Eq. (62) satisfying the asymp-
totic boundary condition (22). The solution is sought in the
form

g00(η) = g00R
Z/�−1/2 exp[Rσ0(x) + σ1(x)

+R−1σ2(x) + O(R−2)]. (65)

Substituting this ansatz into Eq. (62), we obtain

σ ′2
0 (x) = ρ0(x), (66a)

2σ ′
0(x)σ ′

1(x) + σ ′′
0 (x) = ρ1(x), (66b)

2σ ′
0(x)σ ′

2(x) + σ ′′
1 (x) + σ ′2

1 (x) = ρ2(x). (66c)

These equations can be easily solved,

σ0(x) = −�x

2
, (67a)

σ1(x) =
(

Zp

�
− 1

2

)
ln x + Zs

�
ln(x + 2), (67b)

σ2(x) = −ZpZs

�3
ln

(
x + 2

x

)
− (Zp − � )2

�3x

− Zs (Zs − 2� )

�3(x + 2)
− 2Zs

�2(x + 2)2
. (67c)

Substituting this into Eq. (65) gives

g00(η) = g00η
Z/�−1/2

(
η + 2R

η

)Zs/�−ZpZs/�
3R

e−�η/2

× exp

[
− (Zp − � )2

�3η
− Zs (Zs − 2� )

�3(η + 2R)

− 2ZsR

�2(η + 2R)2

]
. (68)

At η � 2R, this function converges to the asymptotic form
(22). On the other hand, in the interval 1 � η � 2R it takes
the form

g00(η) = g00(2R)Zs/�−ZpZs/�
3RηZp/�−1/2e−�η/2, (69)

where we have retained only the leading-order terms in 1/η

and η/R. The dependence of this function on η coincides with
that of the inner solution (60).

The inner and outer solutions are matched in the region
1 � η � 2R. By equating the constant factors in Eqs. (60)
and (69) we find

g00 = g1s (2R)−Zs/�+ZpZs/�
3R. (70)

This formula gives the asymptotics of g00 in the limit (55).
The two terms in the power of 2R are the leading-order and
the first-order terms of the expansion in 1/R. To derive only
the leading-order term it would suffice to neglect in Eq. (52)
terms O(η−2); we retained these terms for obtaining the first-
order correction, which considerably improves the accuracy
of Eq. (70). A rigorist may notice a seeming inconsistency: �

depends on R and should be also expanded in 1/R. However,
the expansion does not account for exchange terms in the
dependence of � on R for homonuclear molecules, e.g., H2

+

considered in Sec. V, which decay exponentially in R. As
a consequence, it does not distinguish gerade and ungerade
states, which reduces the accuracy of Eq. (70).

For the potential defined by Eqs. (46) and (49), in the pure
Coulomb a = 0 and soft-core a = 0.3 cases we obtain from
accurate calculations g = 0.439 and 0.340, while Eq. (70)
predicts the values g = 0.443 and 0.343, respectively. In both
cases Eq. (70) works pretty well even for the present not very
large R.
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Equation (70) reveals a strong dependence of g00 on R

caused by the spectator. Since the ionization rate is proportional
to g2

00, this dependence represents one of the effects of the
spectator on the rate. The other effect accumulated during
tunneling is discussed next.

C. Ionization rate

Here we construct the weak-field asymptotics of the solution
to Eq. (52) satisfying the outgoing-wave boundary condition
(19) for the dominant ionization channel ν = (0, 0) and by
matching it with the inner solution obtained in the previous
subsection find the ionization amplitude f00. Equation (52) is
to be considered in the interval η = O(F−1). We restrict our
treatment to the leading-order approximation in F . In this case,
it is sufficient to retain only two terms in the expansion for the
energy (5a) and neglect the last term in the separation constant
(61) and the O(η−2) term in Eq. (52). The technique of solving
Eq. (52) is similar to that used in Refs. [7,8]. Introducing a new
variable y = Fη/�2, the equation for f00(η) can be written as[

d2

dy2
+ F−2q(y)

]
f00(η) = 0, (71)

where

q(y) = q0(y) + Fq1(y) + O(F 2), (72)

and

q0(y) = �6

4
(y − 1), (73a)

q1(y) = �2

y

[
Z − �

2
− 2ZsRF

�2y + 2RF

]
− μz�

4

2
. (73b)

The solution is sought in the form

f00(η) = f00

(
2

�

)1/2

exp[iF−1s0(y) + is1(y) + O(F 1)].

(74)

Substituting this ansatz into Eq. (71), we obtain

s ′2
0 (y) = q0(y), (75a)

2s ′
0(y)s ′

1(y) − is ′′
0 (y) = q1(y). (75b)

By solving these equations we find

s0(y) = �3

3
(y − 1)3/2, (76a)

s1(y) = i

4
ln(y − 1) − μz�(y − 1)1/2

+ 2Zp − �

�
arctan(y − 1)1/2

+ 2ζZs

�
arctan ζ (y − 1)1/2

− π (2Zp − � + 2ζZs )

2�
, (76b)

where

ζ = �

(�2 + 2RF )1/2
. (77)

Substituting Eqs. (76) into Eq. (74) and setting y � 1, it
can be seen that the solution obtained satisfies Eq. (19). We
analytically continue this solution through the upper half of the
complex y plane to the region y < 1 by substituting y − 1 =
eiπ (1 − y). Setting y � 1 and returning to the original variable
η, we obtain

f00(η) = f00

(
2

�

)1/2(
Fη

4�2

)Zp/�−1/2(1 − ζ

1 + ζ

)ζZs/�

e−�η/2

× exp

[
�3

3F
+ μz� + iπ

4
− iπ (Zp + ζZs )

�

]
. (78)

This form of f00(η) holds in the matching region η =
O(F−1/2), where it is seen to coincide with the inner solu-
tion (69). Note that Eq. (78) is derived in the leading-order
approximation in F , which due to the second of Eqs. (48)
corresponds to the leading-order approximation in 1/R. In this
approximation, one should omit the second term in the power
of 2R in Eq. (69). By matching the inner and outer solutions,
we obtain the ionization amplitude

f00 = g00�
1/2

21/2

(
4�2

F

)Zp/�−1/2

(2R)Zs/�

(
1 + ζ

1 − ζ

)ζZs/�

× exp

[
iπ (Zp + ζZs )

�
− iπ

4
− �μz − �3

3F

]
. (79)

This result should be compared with Eq. (23) for the same
channel. First of all, one can see that the amplitudes coincide
in the absence of the spectator, Zs = 0, and hence the differ-
ence between them is caused by the spectator. An important
parameter in the present theory is the product RF . Due to
the second of Eqs. (48), this product is treated as a constant.
Let us consider the limits of its small and large values. For
RF � 1 we have ζ ≈ 1 − RF/�2, and it can be seen that
Eq. (79) reduces to Eq. (23). This means that as R decreases for
a fixed F , the present theory reduces to the theory summarized
in Sec. II, which is what one would expect. On the other hand,
for RF � 1 we have ζ � 1. In this limit, Eq. (79) again
reduces to Eq. (23), but with Z and g00 substituted by Zp

and g00(2R)Zs/� ≈ g1s , respectively; see Eq. (70). This means
that as R grows for a fixed F , the present theory reduces to
that of Sec. II applied to the parent fragment, as if there is no
the spectator, which is also expectable. Summarizing, Eq. (79)
gives the weak-field asymptotics of f00 which is uniform in R.

Using Eq. (79), we obtain the ionization rate

� ≈
(

RF

2�2

)2Zs/�
(

1 + ζ

1 − ζ

)2ζZs/�

G2
00W00(F, � ). (80)

This formula generalizes Eq. (27) for the present model. The
difference between the two formulas is represented by the first
two factors in Eq. (80). As explained above, these factors turn
to unity as F → 0 for a fixed R. We illustrate the performance
of Eq. (80) for the model defined by Eqs. (46) and (49) in the
soft-core case a = 0.3. We consider only the ionization rate.
The results for the rate divided by the field factor W00(F, � )
are plotted in Fig. 5. The exact rate is compared with the
asymptotic results from Eqs. (27) and (80) denoted by WFAT
and WFAT-R, respectively. The former formula gives for the
ratio shown in the figure a constant value G2

00 ≈ 0.133.
The latter formula converges to this limiting value at F → 0.
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FIG. 5. Ionization rate of the 1sσ state in the potential (46) with
the parameters (49) in the soft-core case a = 0.3 divided by the field
factor W00(F, � ). The solid (black) line shows results of accurate
calculations. The dashed (blue) and dash-dotted (green) lines show
the WFAT results from Eqs. (27) and (80), respectively. The rate �

varies from ∼10−127 at F = 2×10−3 to ∼10−6 at F = 3×10−2.

The exact results also approach this limiting value, but in a way
different from that seen in Fig. 1, not linearly. Equation (80)
reproduces the characteristic behavior of the exact results and
at all fields works better than Eq. (27). For the present value
of R = 8, the product RF is less than 0.24 in the interval of
fields considered, so we are in the regime where Eq. (80) is
still rather close to Eq. (27). To test Eq. (80) in the opposite
regime RF � 1 we would have to drastically increase R, since
F should satisfy the condition (28). Unfortunately, we cannot
do this because of limitations of the program [27] used for
calculating the exact rate. The task of validation of Eq. (80) in
the case RF � 1 remains for future studies.

The following comment is in order here. In the model con-
sidered in this section, tunneling occurs from a state localized
at the lower nucleus. In this case, the electron does not meet the
spectator during or after tunneling. For the opposite orientation
of the same molecule with respect to the field, the electron
would have to pass through the spectator. In this case, the
ionization rate may be affected by the mechanism of resonant
tunneling ionization [34] proceeding via static-field-induced
states [35] of the spectator. The present treatment does not
account for this mechanism.

V. NEARLY DEGENERATE STATES
IN DISSOCIATING MOLECULES

In this section, we combine the theories developed in
Secs. III and IV and apply them to the analysis of tunneling
ionization from a pair of gerade and ungerade states of a
dissociating homonuclear diatomic molecule which are nearly
degenerate at large internuclear distances. The molecule is
modeled by the potential

V (r) = Ua (r ) + Ua (|r − Rez|), (81)

which corresponds to Eq. (46) with Zp = Zs = 1. In the pure
Coulomb case a = 0 this potential describes the hydrogen
molecular ion H2

+. To comply with the formulation of Sec. IV
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E
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.) d
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FIG. 6. Energies of the 1sσg and 2pσu bound states in the
potential (81) (left axis) denoted by g and u and associated with states
1 and 2 from Sec. III, respectively, and the dipole matrix element (32)
between the states (right axis) as functions of the internuclear distance.
Solid and dotted lines show results for the pure Coulomb (a = 0) and
soft-core (a = 0.3) potentials, respectively.

in order to be able to use the results obtained therein, we have
placed the lower nucleus at the origin. We consider tunneling
ionization from the 1sσg and 2pσu states in this potential. For
brevity, these states will be denoted by g and u. We associate
them with states 1 and 2 from Sec. III, respectively, and use the
notation introduced therein. Let us emphasize that the notation
is defined in the coordinate frame of Eq. (81). The unperturbed
energies E1 = Eg and E2 = Eu of the states and the dipole
matrix element d between them as functions of the internuclear
distance R calculated for two values of the softening parameter
a are shown in Fig. 6. Their numerical values for the pure
Coulomb case a = 0 are given in Table I. The dipole moments
(31) are μg = μu = −R/2. The signs of the unperturbed wave
functions ψi (r) are fixed by the condition ψi (0) > 0; then the
asymptotic coefficients g1 = gg and g2 = gu and the dipole
matrix element d are positive. For the present system Z = 2.
The states under consideration become degenerate at R → ∞;
the difference between their energies �E = Eu − Eg decays
exponentially in R. Our goal is to describe tunneling ionization
in the case of small �E and simultaneously large R.

It is more conventional to consider homonuclear diatomics
in the geometrical center frame. Some of the quantities in-
volved in the analysis, e.g., the unperturbed energies Ei , the
dipole matrix element d, and the ionization rate �, do not
depend on the frame, but some others do. The real part of
the SS energy (3) and the asymptotic coefficients in Eq. (22)
do depend on the frame. In the illustrative calculations below,
for convenience of the reader, we present the results for the
asymptotic coefficients in the dominant ionization channel
ν = (0, 0) of the unperturbed states ψi (r) and the energies
of the perturbed states ± in the geometrical center frame,
denoting them by g

(c)
i and E (c)

± , respectively. They are related
to the corresponding quantities gi and E± in the frame used in
Eq. (81) by the transformations

g
(c)
i = gie

�iR/2, (82a)

E (c)
± = E± − RF/2. (82b)
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TABLE I. Characteristics (in atomic units) of the unperturbed
1sσg and 2pσu states of H2

+ [pure Coulomb potential (81) with a = 0]
denoted by g and u, respectively, needed for calculating the ionization
rates (85).Eg andEu are the energies of the states,g(c)

g andg(c)
u are their

asymptotic coefficients in the dominant ionization channel ν = (0, 0)
in the geometrical center frame, and d is the dipole matrix element,
Eq. (32).

R Eg Eu g(c)
g g(c)

u d

0 −2.0 −0.5 2.8284 0.70711 0.37247
1 −1.451 786 −0.564 814 2.6455 0.88625 0.67490
2 −1.102 634 −0.667 534 2.6155 1.3436 1.0499
3 −0.910 896 −0.701 418 2.7946 1.9171 1.4327
4 −0.796 085 −0.695 551 3.2180 2.6267 1.8709
5 −0.724 421 −0.677 292 3.9613 3.5713 2.3607
6 −0.678 636 −0.657 311 5.1455 4.8926 2.8791
7 −0.648 451 −0.639 129 6.9563 6.7942 3.4043
8 −0.627 570 −0.623 606 9.6816 9.5787 3.9259
9 −0.612 307 −0.610 655 13.767 13.702 4.4420
10 −0.600 579 −0.599 901 19.901 19.861 4.9535
11 −0.591 208 −0.590 934 29.131 29.106 5.4619
12 −0.583 502 −0.583 391 43.117 43.102 5.9682
13 −0.577 027 −0.576 983 64.389 64.380 6.4730
14 −0.571 498 −0.571 480 96.891 96.885 6.9768
15 −0.566 716 −0.566 709 146.76 146.75 7.4798
16 −0.562 536 −0.562 534 223.57 223.56 7.9823
17 −0.558 851 −0.558 850 342.30 342.29 8.4843
18 −0.555 578 −0.555 577 526.43 526.42 8.9860
19 −0.552 649 −0.552 649 812.84 812.84 9.4875
20 −0.550 014 −0.550 014 1259.6 1259.6 9.9887

The numerical values of g
(c)
i for the pure Coulomb case are

given in Table I. The error of these results is ∼1%. However,
this error is partially canceled in the difference g(c)

g − g(c)
u

defining g+ at large F , see Eq. (44b), so we give the values of
g

(c)
i with five significant digits.

We begin with the asymptotic coefficients. Formula (70)
was obtained for an isolated state localized at the lower
nucleus. In the present homonuclear case, the unperturbed state
densities ψ2

i (r) at large R are equally distributed between the
nuclei, so the coefficient g1s in Eq. (70) defined by Eq. (58)
should be substituted by g1s/

√
2. We thus obtain

gi = g1s√
2

(2R)−1/�i+1/�3
i R. (83)

In Fig. 7, we compare the exact results for g
(c)
i (coinciding

with the results given in Table I) with the asymptotic results
obtained from Eqs. (82a) and (83) for the pure Coulomb case.
The asymptotic results are seen to quickly converge to the exact
ones as R grows. Note that it becomes prohibitively difficult
to accurately calculate the asymptotic coefficients for large R.
Figure 7 shows that in this case one can use Eq. (83).

The amplitudes of ionization f± in the dominant ionization
channel ν = (0, 0) for the states ± in the present model can be
obtained by combining the derivations presented in Secs. III
and IV. The inner solutions given by Eq. (38) should be
matched in the region η = O(F−1/2) with the outer solutions
given by Eq. (78), where � should be substituted by �±.

0
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20
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exact
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u

g
(c

)
i

(a
.u

.)

R (a.u.)

FIG. 7. Asymptotic coefficients g(c)
g and g(c)

u [in the geometrical
center frame, see Eq. (82a)] in the dominant ionization channel
ν = (0, 0) for the 1sσg and 2pσu states of H2

+ denoted by g and
u, respectively, as functions of the internuclear distance. Solid lines
show results of accurate calculations. Dashed lines show the large R

asymptotic results obtained from Eqs. (82a) and (83).

Omitting further details, the result is

f± = g±�
1/2
±

21/2

(
4�2

±
F

)1/�±−1/2

(2R)1/�±

(
1 + ζ±
1 − ζ±

)ζ±/�±

× exp

[
iπ (1 + ζ±)

�±
− iπ

4
− �3

±
3F

]
. (84)

Here ζ± is defined by Eq. (77) with � substituted by �±. The
corresponding rates are

�± ≈
(

RF

2�2±

)2/�±(
1 + ζ±
1 − ζ±

)2ζ±/�±
�

(as)
± , (85)

where �
(as)
± is defined by Eq. (41). This formula combines the

generalizations of Eq. (27) represented by Eqs. (41) and (80).
We have calculated the energies and ionization rates of the

states ± in a soft-core potential (81) with a = 0.3. The results
as functions of F for two representative internuclear distances
R = 4 and 8 are shown in Figs. 8 and 9. It is instructive to
compare the present model with the model discussed in Sec. III.
The behavior of the energies is similar to that seen in Figs. 3
and 4. One can clearly distinguish two regimes separated by the
field (42) in which the difference between E (c)

± remains almost
constant, at F < Fd , and begins to grow linearly, at F > Fd , in
agreement with Eq. (33). The perturbation theory results from
Eq. (33) denoted by PT closely reproduce this behavior. The
exact rates are compared with the weak-field asymptotic results
from Eqs. (41) and (85) denoted by WFAT and WFAT-R, re-
spectively. The behavior of the ratio shown in the middle panels
of the figures differs from that shown in the middle panels of
Figs. 3 and 4. The difference becomes clear by comparing the
− state in Figs. 3 and 9, which correspond to the smaller �E

in each model. According to Eq. (41), the WFAT result for the
ratio is g2

−, and hence the ratio is expected to become constant
at F > Fd . This agrees with the behavior of the exact results
in Fig. 3, but the exact results in Fig. 9 behave differently
and are more closely reproduced by the WFAT-R results from
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FIG. 8. Energies E (c)
± [in the geometrical center frame, see

Eq. (82b)] and ionization rates �± divided by the field factors
W00(F, �±), in the middle panel, and the WFAT rates �

(as)
± defined

in Eq. (41), in the bottom panel, as functions of field for the ± states
in a soft-core potential (81) with a = 0.3 at the internuclear distance
R = 4. Solid lines show results of accurate calculations. Dashed lines
in the upper panel show the perturbation theory results from Eq. (33).
Dashed and dash-dotted lines in the middle and bottom panels show
the WFAT results from Eqs. (41) and (85), respectively. �− and �+
vary from ∼10−237 and 10−174 at F = 2×10−3 to ∼10−11 and 10−6 at
F = 3×10−2, respectively.

Eq. (85). The difference between the two models with nearly
degenerate states becomes especially clear, now for both states
±, by comparing the bottom panels in Figs. 3 and 9. While
the exact results in Fig. 3 linearly approach unity at F →0,
and this behavior is similar to that seen in the bottom panel of
Fig. 1, the exact results in Fig. 9 demonstrate a characteristic
behavior similar to that seen in Fig. 5. This difference is caused
by the large spatial extent of the present system. Equation (85),
which accounts for this difference, works better for both states
than Eq. (41), which does not.

Let us return to the comment made in the end of Sec. IV.
At large R and simultaneously sufficiently large F , as is the
case for R = 8 at F > 5×10−3, see Fig. 9, the − and +
states in the present system are localized near the bottom
and top nuclei, respectively. Figure 9 shows that the present
theory correctly describes tunneling ionization from both these
states. However, while for the − state the ratio shown in the
bottom panel of Fig. 9 (solid blue line) behaves smoothly,
for the + state this ratio (solid red line) begins to rapidly
vary at F > 2.5×10−2. This variation is caused by an avoided
crossing of the 1s state at the upper nucleus, whose energy
goes up as F grows, with the 2s and 2p states at the bottom
nucleus, whose energies go down. For the present soft-code
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FIG. 9. Same as in Fig. 8, but for R = 8. �− and �+ vary
from ∼10−153 and 10−146 at F = 2×10−3 to ∼10−7 and 10−3 at
F = 3×10−2, respectively.

model E1s ≈ −0.408, E2s ≈ −0.113, and E2p ≈ −0.123, so
the location of the avoided crossing can be estimated as F ≈
(E2p − E1s )/R ≈ 3.6×10−2. A similar avoided crossing in the
2pσ state of HeH2+ was discussed in Ref. [33]. As has been
pointed out above, tunneling ionization from the + (upper)
state near the avoided crossing is affected by the mechanism
of resonant tunneling [34], which is not accounted for by the
present theory.

In Fig. 10 we show the dependence of the energies and
rates of the same states in the same model on the internuclear
distance R at a fixed field F = 0.01. The exact results are
compared with the different approximations in the same way
as in Figs. 8 and 9. As can be seen from Fig. 6 and Table I,
the dipole matrix element d grows linearly in R at large
internuclear distances. Taking this into account, Eq. (33)
predicts that the difference between the perturbed energies E (c)

±
approximately coincides with the unperturbed energy distance
�E = Eu − Eg at sufficiently small R, where �E > 2dF ,
and begins to grow linearly at larger R, where �E < 2dF .
This is confirmed by the exact results shown in the top panel
of the figure. In the middle and bottom panels the exact rates
are compared with the weak-field asymptotic results from
Eqs. (41) and (85). For both states ± in the whole interval
of R considered, the asymptotics (85) which accounts for the
large extent of the system works better than the one (41) which
does not, and this is the main feature to be observed from
the figure. The agreement of Eq. (85) with the exact results
should improve at larger R, however, to check this is beyond
our current computational resources.

The results shown in Figs. 8–10 validate Eq. (85) for a
soft-core potential (81) with a = 0.3. However, this formula
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FIG. 10. Similar to Figs. 8 and 9, but the results are shown as
functions of the internuclear distance R at a fixed field F = 0.01. �−
and �+ vary from ∼10−54 and 10−29 at R = 3 to ∼10−25 and 10−20

at R = 10, respectively.

holds for any a, including the pure Coulomb case a = 0, which
corresponds to H2

+. Since this molecular ion is often consid-
ered as a prototypical molecular system in strong-field physics,
we give in Table I numerical values of its characteristics needed
to implement Eq. (85). The interval of R where the data are
presented is limited by difficulties in calculating the asymptotic
coefficients g

(c)
i .

Let us close this discussion by a comment regarding the
phase of the ionization amplitudes (84). In contrast to Eq. (23),
where the phase is constant, the first term in the exponent
in Eq. (84) depends on both F and R. It is known that
the phase must be included in modeling high-order har-
monic spectroscopy [22,23], and hence can be extracted from

experimental data. Its variation with F and R may thus result
in observable effects.

VI. CONCLUSION

The main results of this paper are presented by Eqs. (41),
(80), and (85) generalizing the previously known WFAT rate
formula (27) to situations characterized by the appearance
of an additional small parameter in the tunneling problem.
Equation (41) gives the weak-field asymptotics of the ioniza-
tion rates from states separated by a small energy distance
�E in a compact system. The asymptotics is uniform in
�E and converges to Eq. (27) for sufficiently large �E,
when the states can be treated as isolated. The physical effect
accounted for by Eq. (41) is the mixing of nearly degenerate
states by the ionizing field. Equation (80) gives the weak-field
asymptotics of the ionization rate from an isolated state in a
heteronuclear diatomic molecule at large internuclear distances
R. The asymptotics is uniform in R and converges to Eq. (27)
for sufficiently small R, when the system becomes compact.
The physical effect accounted for by Eq. (80) is the variation
of an effective parent ion charge felt by the electron as it
tunnels and moves away from the molecule. Equation (85)
describes tunneling ionization from the nearly degenerate 1sσg

and 2pσu states of a homonuclear molecular ion H2
+ at large

internuclear distances. In this system, both effects mentioned
above are present. The effects considered essentially modify
the dependence of the ionization rate on the field strength
comparing to that predicted by Eq. (27). Formulas (41), (80),
and (85) correctly describe the modifications, as confirmed
by the illustrative calculations presented. We believe that
these formulas will find applications in strong-field physics,
as Eq. (27) did.
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