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Scattering of cold 4He on 4He 6,7Li and 4He 23Na molecules
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We predict s-wave elastic cross-sections σ for low-energy atom-molecule collisions with kinetic energies up
to 40 mK for the 4He collision with weakly bound diatomic molecules formed by 4He with 7Li, 6Li, and 23Na.
Our scattering calculations are performed by using diatomic and triatomic molecular binding energies obtained
from several available realistic models as input in a renormalized zero-range model as well as a finite-range one-
term separable potential in order to quantify the relevance of range corrections to our predictions. Of particular
relevance for possible experimental realization, we show the occurrence of a zero in σ for the collision of cold
4He on a 4He 23Na molecule below 20 mK. Also our results for the elastic collision 4He on 4He 6,7Li molecules
suggest that σ varies considerably for the realistic models studied. As the chosen molecules are weakly bound
and the scattering energies are very low, our results are interpreted on the light of the Efimov physics, which
explains the model independence and robustness of our predictions despite some sensitivity on the potential
range.
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I. INTRODUCTION

The Efimov effect [1] is a peculiar pure quantum-
mechanical effect, expected to occur in three-body quantum
systems, manifested by an increasing number of three-body
bound states when the absolute value of the scattering length
of a two-body subsystem is approaching infinity. This ef-
fect has a long tradition of studies in the nuclear physics
context, sometimes being mentioned as the Thomas-Efimov
effect [2], considering its relation to another property of the
three-body Schrödinger formalism noticed by Thomas [3]
in 1935 when investigating the origin of the nuclear forces
between nucleons. By considering a nonrelativistic two-boson
interaction supporting one bound state, he observed that the
three-body ground-state will collapse to −∞ in the limit
when the range of the interaction is zero. This observation
was essential for the first conclusions on the range of about
1 fm of the nuclear forces. Besides the fact that the initial
investigations on Efimov states in nuclear physics have been
limited to theoretical approaches not experimentally realiz-
able (as the two-body interaction is fixed), we should note
some theoretical efforts in given evidence that some well-
known states could eventually be considered as manifestations
of Efimov states by considering the behavior of such states
when varying the potential parameters such that the two-body
interaction is driven to the unitary limit. In particular, this is
the case of the original proposal that the virtual state of the
s-wave spin doublet trinucleon system is an Efimov state [4].
The interest in verifying manifestations of Efimov physics
in nuclear physics came much later with the discovery of
exotic nuclei [5] having two neutrons far apart from a core
[6–8]. Since then, extensive investigations on universal as-
pects of light halo nuclei are available in the context of Efimov
physics, which can be traced by several reviews. For that,

we can mention Refs. [9–13] in which the updated review
on the halo-nuclei description of Ref. [13] is exploring the
effective field-theory approach. In view of the limitations to
observe indications of the Efimov effect coming from nuclear
physics aspects, most of the initial theoretical studies on
Efimov states have been considered three-atom systems by
using realistic interatomic interactions [14–19]. The trimer
of 4He due to the very weak binding of the corresponding
dimer was long-time predicted in 1977 to present an Efimov
state in Ref. [14] on the basis of a three-body calculation in
momentum space using Faddeev formalism. Their investiga-
tion was followed by several other related works performed
in the same period [15,16]. Later on, in another independent
work within the Faddeev scheme, Cornelius and Glöckle [17]
confirmed the existence of two bound states for the 4He trimer
with the weakly bound excited state having the property of
an Efimov state. The existence of the weakly bound excited
state in helium, established in Ref. [17], also proved to be
a good test for the predicting power of the scaling approach
presented in Ref. [19] (essentially the same result is obtained).
The search for Efimov states in such a system [20–28] has
been motivated by the remarkable low binding energy of the
4He dimer: B4He2 = 1.31 millikelvins (mK) [29]. Finally, in
2015, in Ref. [30], the experimental observation of this long-
time predicted Efimov state was reported. The experimental
success in verifying such a long-time theoretical prediction
together with the results of previous experimental investiga-
tions of Efimov physics in cold atom laboratories [31], which
are extended to mixed atomic-molecular combinations [32],
became highly motivating for deeper theoretical studies with
single or mixed atomic species [33–38]. Quite remarkable
are the advances in the laboratory techniques such that one
can even consider the possibility to alter the two-body inter-
action by using Feshbach resonance mechanisms (originally
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proposed in the nuclear physics context) [39]. In ultracold
atom experiments, the possibility for changing the two-body
scattering length was shown that can alter in an essential way
the balance between the nonlinear first few terms of the mean-
field description which is modeling the atomic Bose-Einstein
condensation [40].

In the present paper, by following previous studies on
triatomic molecules involving the helium atom, in particular,
considering available results reported in Ref. [41] for realistic
interactions, we are studying the cold atom-dimer elastic
collision. Our paper is focused on the cases where the three-
body system is composed of a mixture with 4He and another
atomic species chosen as being 6Li, 7Li, and 23Na. In all the
cases, we assume 4He as the colliding particle with the dimer
formed by the remaining two-body subsystem. For the present
paper, we consider the Faddeev formalism using finite-range
(FR) separable two-body interactions as well as the renormal-
ized zero-range (ZR) model [8]. The main observables that
we are concerned with as relevant for possible experimental
investigations are the s-wave phase shifts and the elastic s-
wave cross section for different colliding and dimer energies.
In order to help us with the analysis of the s-wave elastic-
scattering amplitude, the results for the absorption parameter
are also presented in some relevant cases.

As we are concerned with relatively low kinetic colliding
energies with the lowest partial wave being more relevant
for the Efimov physics, we focus our paper on the s-wave
contribution to the total cross section. The corresponding
contributions due to higher partial waves, such as from p and
d waves, which should appear for increasing kinetic energies,
are left to be explored in a future related investigation. How-
ever, as will be shown here, the more interesting outcome is
verified for kinetic energies where the s wave is expected to
dominate.

In the next section, we present the formalism. The main
results with a corresponding discussion are given in Sec. III.
In Sec. IV we give our final remarks and conclusions.

II. FADDEEV THREE-BODY FORMALISM

In the present section, we fix our notation and include the
standard formalism for the elastic-scattering amplitude of a
particle α colliding to a dimer (αβ ), which is formed by the
same particle α with another particle β. For convenience, as
explained in our Introduction, we choose α as the 4He atom
with β being 7Li, 6Li, or 23Na. In the following formalism,
we are always considering that the three-body system (ααβ )
as well as the subsystems (αβ ) and (αα) are bound such
that we can take advantage of the corresponding available
data as inputs coming from different realistic models as well
as from experimental considerations. Therefore, everywhere
along this presentation we are assuming as fixed the 4He2

binding energy and corresponding scattering length such that
Eαα = −Bαα = −1.31 mK and aαα = 100 Å. The other input
binding energies are obtained from specific models, which
will be discussed. In particular, we should note the good
agreement among most of the realistic models on the other
dimer binding energies αβ such that the discrepancies coming
from the model results are mainly verified for the respective
three-body energies.

In the formalism, following Ref. [42], we assume units
such that h̄ = 1 (with energies given in mK) with m ≡ mα =
m4He and a mass ratio which is defined by A ≡ mβ/mα

such that μαα = m/2 and μαβ = Am/(A + 1) are the reduced
masses for the αα and αβ subsystems, respectively, with the
corresponding three-body reduced masses given by μα(αβ ) =
m(A + 1)/(A + 2) for α − (αβ ); and μβ(αα) = m(2A)/(A +
2) for β − (αα). The bound-state energies for the two- and
three-body systems are given by Eαα ≡ −Bαα, Eαβ ≡ −Bαβ ,
and E3 = −B3, respectively, with the energy of the s-wave
elastic colliding particle given by Ek . In the following, we
first recover the bound-state three-body formalism, restricted
to the s-wave case when all the subsystems being bound. Next,
by introducing the appropriate boundary conditions we extend
the formalism to atom-dimer collision.

A. Three-body ααβ bound state

The bound-state coupled equation for separable potentials
is usually written in terms of the spectator functions for the
particles α and β

χα (q ) = τα (q; E3)
∫ ∞

0
dk k2[K2(q, k; E3)χα (k)

+K1(q, k; E3)χβ (k)],

χβ (q ) = 2τβ (q; E3)
∫ ∞

0
dk k2K1(k, q; E3)χα (k), (1)

where χα (q ) ≡ χα (q; E3) and χβ (q ) ≡ χβ (q; E3). τα and τβ

are the respective two-body t matrices for the αβ and αα

subsystems with K1 and K2 being the appropriate kernels,
which will be explicitly given in the following according
to the kind of form factors one considers for the two-body
interactions.

By considering the definitions,

k2
α

2μα(αβ )
≡ E3 − Eαβ,

k2
β

2μβ(αα)
≡ E3 − Eαα, (2)

with j = α, β, τj , χj the coupled Eq. (1) can be conveniently
redefined. As both subsystems are bound, we have

τj (q; E3) ≡ τ̄j (q; E3)

q2 + ∣∣k2
j

∣∣ , χj (q ) ≡ hj (q; E3)

q2 + ∣∣k2
j

∣∣ , (3)

with

hα (q; E3) = τ̄α (q; E3)
∫ ∞

0
dk k2

[
K2(q, k; E3)

hα (k; E3)(
k2 + ∣∣k2

α

∣∣)
×K1(q, k; E3)

hβ (k; E3)(
k2 + ∣∣k2

β

∣∣)
]
,

hβ (q; E3) = τ̄β (q; E3)
∫ ∞

0
dk k2K1(k, q; E3)

hα (k; E3)(
k2 + ∣∣k2

α

∣∣) .

(4)

The expressions for τ̄j and kernels K1,2 are given in the fol-
lowing Sec. II C by considering the specific potential models
that we are using.
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B. Atom-dimer collision

For the scattering of a particle α by the αβ bound sub-
system, we should first redefine the expression for τα given
in Eq. (3) (considering that k2

α > 0) such that τα (q; E3) ≡
τ̄α (q; E3)/(q2 − k2

α − iε). Next, the formalism is extended to
obtain the scattering amplitude by introducing the required
boundary condition. For the s wave, this condition is given by

χα (q ) ≡ 2π2 δ(q − kα )

q2
+ 4π

hα (q; E3)

q2 − k2
α − iε

, (5)

where kα is given by Eq. (2) with E3 > 0 in this case. So, the
coupled equations (4) are replaced by

hα (q; E3) = τ̄α (q; E3)

{
π

2
K2(q, kα; E3) +

∫ ∞

0
dk k2

×
[
K2(q, k; E3)

hα (k; E3)(
k2 − k2

α − iε
)

+K1(q, k; E3)
hβ (k; E3)

q2 − k2
β

]}
, (6)

hβ (q; E3) = τ̄β (q; E3)

{
π

2
K1(kα, q; E3)

+
∫ ∞

0
dk k2K1(k, q; E3)

hα (k; E3)(
k2 − k2

α − iε
)}

. (7)

C. Zero-range and finite-range interactions
with corresponding kernels

When using zero-range interactions, a momentum cutoff is
required to regularize the formalism within a renormalization
procedure. For that, in the kernels a subtraction procedure is
used with a regularizing momentum parameter μ such that the
kernels K1,2 and τ̄j used in the formalism are given by

Ki=1,2(q, k; E3) ≡ Gi (q, k; E3) − Gi (q, k,−μ2),

G1(q, k; E3) =
∫ 1

−1
dx

[
E3 + iε − q2

m
− k2

2μαβ

− kqx

m

]−1

G2(q, k; E3) =
∫ 1

−1
dx

[
E3 + iε − q2 + k2

2μαβ

− kqx

Am

]−1

,

(8)

τ̄α (q; E3) ≡ μα(αβ )

2πμ2
αβ

[καβ + κ3,αβ (E3)], (9)

τ̄β (q; E3) ≡ μβ(αα)

2πμ2
αα

[καα + κ3,αα (E3)], (10)

where

καα ≡
√

−2μααEαα,

καβ ≡ √−2μαβEαβ,

κ3αα (E3) ≡
√

−2μαα

[
E3 − q2

2μβ(αα)

]
,

κ3αβ (E3) ≡
√

−2μαβ

[
E3 − q2

2μα(αβ )

]
. (11)

For finite-range interaction, we assume a rank-one separable
Yamaguchi potential, given by

Vij (p, p′) = λij

(
1

p2 + γ 2
ij

)(
1

p′2 + γ 2
ij

)
, (12)

where ij = αα or αβ, respectively, for the αα or αβ two-
body subsystems. λij and γij refer to the strength and
range rij of the respective two-body interactions. As in the
present approach we consider only bound (negative) two-body
subsystems Eij = −Bij , the corresponding relations for the
strengths and ranges are given by

λ−1
ij = −2πμij

γij (γij + κij )2
, rij = 1

γij

+ 2γij

(γij + κij )2
. (13)

In this case, K1,2 and τ̄j are given by the following:

K1(q, k; E3) =
∫ 1

−1
dx

[
q2 + k2

4
+ qkx + γ 2

αα

]−1

×
[
k2 + q2A2

(A + 1)2
+ 2qkAx

(A + 1)
+ γ 2

αβ

]−1

×
[
E3 + iε − q2

m
− k2

2μαβ

− qkx

m

]−1

, (14)

K2(q, k; E3) =
∫ 1

−1
dx

[
k2 + q2

(A + 1)2
+ 2qkx

(A + 1)
+ γ 2

αβ

]−1

×
[
q2 + k2

(A + 1)2
+ 2qkx

(A + 1)
+ γ 2

αβ

]−1

×
[
E3 + iε − (q2 + k2)

2μαβ

− qkx

Am

]−1

, (15)

τ̄α (q; E3) ≡ μα(αβ )

πμ2
αβ

[
γαβ (γαβ + καβ )2

2γαβ + κ3αβ (E3) + καβ

× [γαβ + κ3αβ (E3)]2[καβ + κ3αβ (E3)]

]
, (16)

τ̄β (q; E3) ≡ μβ(αα)

πμ2
αα

[
γαα (γαα + καα )2

2γαα + κ3αα (E3) + καα

× [γαα + κ3αα (E3)]2[καα + κ3αα (E3)]

]
. (17)

In our approach, the parameters of the separable interactions
are fixed by the corresponding bound-state energies as well
as by the effective ranges (when considering finite-range
interactions).

Finally, the scattering observables, s-wave phase-shift δ0,
cross-section σ , and absorption parameter η are obtained by
using the on-shell scattering amplitude hα (k; E3), considering
that

hα (k; E3) = Sα − 1

2ik
, (18)

Sα = ηe2iδ0 ,
dσ

d�
= |hα (k; E3)|2, (19)

where Sα is the scattering matrix for the elastic s-wave chan-
nel and η � 1 is the absorption parameter.
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FIG. 1. For the 4He2
7Li (left frame) and 4He2

6Li (right frame)
three-body systems with α ≡ 4He and β ≡ 7Li, 6Li, respectively, we
show the behavior of the corresponding three-body excited states
E

(1)
3 , which are represented by the absolute value of E

(1)
3 − Eαβ in

terms of the dimer binding energies Eαβ . As indicated inside the
frames, the results are obtained by using zero-range and finite-range
two-body interactions with the given values for E

(0)
3 . The 4He2 bound

state in both cases is fixed to Bαα = |Eαα| = 1.31 mK.

III. RESULTS

In this section we present our main results and analysis for
the scattering of an atom of 4He colliding with a weakly bound
diatomic molecule composed of 4He with 6,7Li or 23Na. In this
regard, by considering that the two-body subsystems in this
paper are weakly bound, the relevant low-energy observables
that we focus on are the s-wave cross sections, which are
directly related to the s-wave phase-shifts δ0, and the corre-
sponding absorption parameter. For that, we use different two-
body interactions, namely, the renormalized zero-range model
and a finite-range model given by the one-term separable
Yamaguchi potential. In both cases, we assume as inputs
the available binding energies from different realistic model
calculations. In the case of the ZR model, the inputs are
introduced in the renormalization procedure; whereas, for the
finite-range case, the inputs are used to adjust the parameters
(range and strength) of the Yamaguchi potential.

A. 4He2
7,6Li Efimov molecules

Before moving to the main focus of this presentation on
the atom-molecule scattering, we study the relevance of the
range in the formation of excited Efimov triatomic states
by comparing results obtained with both potential models
in situations where such states are expected to exist. These
are the cases of 4He2

7Li and 4He2
6Li where we fix the

well-known 4He2 dimer energy Bαα = 1.31 mK together with
the corresponding ground-state three-body energies given in
Ref. [41]: E

(0)
3 = −79.36 mK for 4He2

7Li and −57.23 mK
for 4He2

6Li. Our results for the excited three-body bound-
state energies (reduced by the corresponding two-body bound-
state energies), obtained by the ZR and Yamaguchi models,
are shown in the two frames of Fig. 1 as a function of the
two-body binding energies.

As shown in the left frame of Fig. 1, the finite-range
Yamaguchi potential, which reproduces the given 4He2 dimer
and the 4He2

7Li ground-state binding energies, will allow an
excited Efimov state if we have a 4He 7Li dimer bound with a
binding energy less than ∼7 mK. Correspondingly, as shown
in the right frame, the upper limit of the 4He 6Li dimer energy
to produce an excited three-body state is ∼6 mK when using
the FR Yamaguchi potential. For the zero-range model, the
upper limit for the binding energy of the dimer to allow an
excited state is ∼5.5 mK for 4He2

7Li and being ∼4.1 mK
for 4He2

6Li.
In Fig. 1 are shown results for particular examples, con-

sidering the given binding energies, of the universal scaling
behavior theoretically found for weakly bound triatomic states
when considering two-species atomic systems close to the
Efimov limit where the sizes of the ground-state trimer and
dimers are much larger than the interaction range. Such a
situation is associated with a large probability of occupation
of the classically forbidden region dominated by the dynamics
of a free Hamiltonian, scale invariant and model independent.
The correlation between the excited triatomic binding energy
and the ground state comes from the breaking of the contin-
uous scale invariance to a discrete one, which translates in
a universal scaling function as the limit cycle of the discrete
Efimov scaling [19,43] when the range of the interaction is
driven towards zero (see, e.g., the reviews [12,13]).

The interaction range allows more room for the formation
of the Efimov state, namely, the critical value of the 4He 6,7Li
molecular binding can be somewhat larger as one can see
in Fig. 1 through the comparison between the ZR and the
Yamaguchi potential results. The effective range expansion
says that the scattering length for a given dimer binding
energy increases with the effective range as

aαβ ≈ (
καβ − 1

2 rαβκ2
αβ

)−1 ≈ κ−1
αβ + 1

2 rαβκαβ, (20)

which shows that the cut of the tail of the attractive Efimov
long-range potential should increase with the effective range.
Therefore, the formation of the large triatomic excited state is
favored when the range of the short interaction increases in
the situation where ground-state energy is kept fixed.

The scaling plot shown in the figure was first derived
and presented in Fig. 2 of Ref. [19] for trimers composed
of identical bosonic atoms. A general study of the universal
three-particle behavior with two kinds of particles was previ-
ously presented in Ref. [8]. We complement the plots shown
in Fig. 1 and Table I where realistic values for the two-body
subsystem (given in the second and third columns) and for
the three-body ground-state energy (fourth column) are shown
from Ref. [18] (also considered in Ref. [23]) and Ref. [41].
In the second block of the table we have the corresponding
predicted three-body excited states with the values obtained in
Ref. [41] given in the fifth column. Our corresponding results
when using the two- and three-body binding energies given
in the second and fourth columns are presented in the sixth
and seventh columns by using the zero-range and finite-range
approaches. In all these cases, the binding energy of 4He
is Bαα = 1.31 mK with the corresponding scattering length
being aαα = 100 Å.
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TABLE I. For the three-body molecular systems identified in
the first column, given the two-body energies and scattering lengths
in the second and third columns and the three-body ground-state
energies in the fourth column as given in Ref. [41], we have the
first excited bound-state energies in the fifth to seventh columns.
In the fifth column the results are from Ref. [41]. Our results for
the excited states using ZR and FR one-term Yamaguchi interactions
are shown in the sixth and seventh columns. In our notation, α and
β are identifying, respectively, 4He and the other atomic species
(6,7Li, 23Na). In all the cases, for the 4He dimer, we have the
well-known value of Bαα = 1.31 with the scattering length being
aαα = 100 Å.

ααβ Bαβ aαβ B
(0)
3 B

(1)
ααβ B

(1)
3(ZR) B

(1)
3(FR)

α = 4He (mK) (Å) (mK) (mK) (mK) (mK)

β = 7Li 5.622 48.84 79.36 5.642 5.672
β = 6Li 1.515 100 57.23 1.937 1.901 1.977

We have to add that the effect of the range in the case
of the molecule 4He2

7Li with the parameters from Ref. [41]
and given in Table I allows one Efimov excited state with the
binding energy of 5.7 mK. In this case as the binding energy of
the 4He 7Li molecule is comparatively high with respect to the
ground-state energy, the range gives the crucial contribution
to increase the scattering length and the cut in the long-range
effective Efimov potential such that the excited state is barely
bound. This state heals over quite incredibly long distances,
namely, of about 800–900 Å. If that comes true, the binding
energy of these excited states will be a sensitive indirect
measure of the interaction range. The other lithium isotope 6Li
forms a weakly bound molecule with 4He, and there is little
effect of the interaction range in the 4He2

6Li Efimov excited
state.

B. Elastic scattering of 4He on 4He (6,7Li, 23Na)

In order to pursue our aim in studying the atom-dimer
systems with α ≡ 4He as the projectile and dimers αβ, where
β ≡ 7Li, 6Li, and 23Na, next we provide Tables II and III,
which we have considered to calculate the corresponding
elastic atom-dimer s-wave cross sections.

TABLE II. Available two- and three-body ground-state binding
energies (absolute values, given in milikelvins) for the three atomic
systems given by α = 4He, β = 7Li, 6Li, and 23Na from different
model potentials. (a1) is from Ref. [41]; (a2) is from Ref. [18]; (a3),
(a4), and (a6) are from Ref. [25]; (a5) is from Ref. [24]; (a7) is from
Ref. [27]; (a8) is from Ref. [28]. These data are being considered as
inputs in our numerical approach on the atom-dimer collision.

(a1) (a2) (a3) (a4) (a5) (a6) (a7) (a8)

4He 7Li 5.622 2.16 5.621 5.621 2.81 2.81 5.355 5.621
4He 6Li 1.515 0.12 0.33 1.515
4He 23Na 28.98 28.98 28.98 28.98
4He2

7Li 79.36 45.7 65.6 80.0 73.4 57.1 78.73 50.89
4He2

6Li 57.23 31.4 51.94 35.45
4He2

23Na 150.9 103.1 148.5 119.3

TABLE III. Parameters used in the separable interactions with
the corresponding ranges and scattering lengths considered for
4He 7Li (upper part), 4He 6Li (middle part), and 4He 23Na (lower
part). The references (first columns) are identified in the caption
of Table II. For the 4He dimer, to fit the binding energy 1.31 mK
and corresponding scattering length aαα = 100 Å, we have γαα =
0.39 Å

−1
and rαα = 7.34 Å.

References γαβ (Å
−1

) rαβ (Å) aαβ (Å)

4He 7Li
(a1) 0.17 14.77 50.08
(a2) 0.14 19.02 77.43
(a3) 0.144 17.19 51.89
(a4) 0.17 14.68 50.01
(a5) 0.19 13.95 66.10
(a6) 0.16 16.82 67.98
(a7) 0.17 14.72 51.01
(a8) 0.11 21.04 55.02

4He 6Li
(a1) 0.17 15.85 90.38
(a2) 0.14 20.04 300.37
(a5) 0.19 15.11 182.77
(a8) 0.12 22.18 94.40

4He 23Na
(a1) 0.16 12.44 25.34
(a2) 0.09 19.0 34.24
(a3) 0.16 12.65 25.58
(a4) 0.11 15.99 29.80

In Table II, we present available two- and three-body
ground-state binding energies (absolute values, given in
millikelvins), obtained from different realistic potential
models (a1)–(a8) for the atomic system we are study-
ing with α = 4He, β = 7Li, 6Li, and 23N. Specifically,
(a1) is from Ref. [41]; (a2) is from Ref. [18] with
interactions from Ref. [44]; (a3) is from Ref. [25] with poten-
tials from Refs. [45,46]; (a4) is from Ref. [25] with potentials
from Ref. [47] for αα and Ref. [46] for αβ; (a5) is from
Ref. [24] with potentials from Refs. [48,49]; (a6) is from
Ref. [25] with potentials from Ref. [48]; (a7) is from Ref. [27]
with potentials from Ref. [49] for αα and Ref. [46] for αβ;
(a8) is from Ref. [28]. These energies are used to adjust the
parameters of our zero-range and FR separable interactions.

For the case of FR, the parameters with corresponding
ranges and scattering lengths are shown in Table III, given
in three blocks for the cases with 4He 7Li, 4He 6Li, and
4He 23Na. We observe that, in all the cases, for the dimer
4He2 binding energy, the accepted value of Bαα = 1.31 mK
is being considered with the corresponding parameters given
in the caption of Table III.

1. Exploring parameter dependence

In the present paper on scattering observables for the
elastic channel of an atom and diatomic molecule collision,
we start by presenting some general results when considering
that the binding energy for the αβ subsystem can be arbitrarily
varied, keeping fixed the other two- and three-body binding
energies. To explore the general features of this parameter
dependence, both in the case of the ZR and in the case of the
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FIG. 2. The s-wave cross-section σ (upper frames) with the corresponding absorption parameters η (lower frames) for the scattering
of α ≡ 4He by the αβ (4He 7Li) system as a function of the kinetic-energy Ek of the projectile in the center-of-mass system. The results
are given by using the zero-range potentials in the left frames and by using the Yamaguchi separable potentials in the right frames. In our
parametrization, the binding energies of the subsystem 4He2 and the three-body ground state are fixed to Bαα = 1.31 and B3 = 79.36 mK,
respectively, considering several binding energies for the subsystem αβ as given inside the frames.

Yamaguchi models, we use the example of the atom α ≡ 4He
colliding elastically with the dimer (αβ ) ≡ (4He 7Li). The re-
sults, obtained by using zero-range and finite-range one-term
separable interactions, are shown for the s-wave cross sections
and corresponding absorption parameters, respectively, in the
upper and lower panels of Fig. 2 as functions of the collision
energy Ek in the rest frame.

The comparison between the ZR and the FR results in
Fig. 2 shows quite similar results when the two dimer binding
energies are comparable such that Bαβ � 5Bαα . However,
as expected the interaction range starts to be more relevant
for larger values of Bαβ . The present results are evidence
that, as we increase Bαβ for a fixed ground-state triatomic
molecular binding energy, a minimum starts to emerge in σ ,
which has the tendency to move towards some value of Ek as
Bαβ increases. This behavior is quite clear when using finite-
range interactions as the range parameters are more relevant
to obtain correctly the scattering observables. Possibly such
a curious property is due to the less efficient role of the
decreasing aαβ in cutting the long-range potential as compared
to the larger aαα .

We should also note a cusp in the plots at energies Ek =
Bαβ − Bαα , corresponding to the position where the new
channel is open. For Ek > Bαβ − Bαα , we verify the effect
of the absorption as shown in the lower panels where we note
that η tends to saturate with the energy. This is clearly shown
in the case for Bαβ = 2 mK, implying that for Ek � Bαβ there
is no more possibility to increase the absorption.

The comparison between the results of ZR and Yamaguchi
models in Fig. 2 for the 4He (4He 7Li) s-wave cross section

shows less cases for minima for the ZR calculations. This
curious effect can already be thought of as being reasonable
because when the effective range is considered aαβ increases
for a given Bαβ [cf. Eq. (20)], and therefore there is more room
for the logarithmic-periodic behavior of the wave function
to establish a zero in δ0 for the Yamaguchi potential when
compared to the ZR model. Note that the zero turns to a
minimum if above the threshold to open the rearrangement
channel, which we note by the cusp for energies below the
minimum.

The appearance of zeros in the elastic s-wave cross sections
is traced back to the dominance of the logarithmic-periodic
behavior of the scattering wave function inside the long-range
Efimov potential, extensively discussed in Ref. [38]. Of course
as the scattering lengths move to larger values more cycles of
the wave function appear in the Efimov potential are possible,
allowing for the presence of zeros in the cross sections and the
maxima. However, the other side this phenomenon concen-
trates on small values of the kinetic energies as the opening
of a scattering channel tends to wash out these minima as the
probability flux is driven to new open channels.

2. Realistic 4He 7Li and 4He 6Li parameters

By using different realistic model inputs for the 4He 7Li
and 4He 6Li dimer binding energies as given in Table II,
the results for the cross sections are shown in Fig. 3 in
the upper and lower panels, respectively. In both cases, we
consider zero-range (left panels) and finite-range (right pan-
els) interactions which are fitting the respective binding ener-
gies presented in Table II.
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FIG. 3. Results obtained for the s-wave cross section for the
scattering of 4He from the dimers 4He 7Li (upper panels) and 4He 6Li
(lower panels). In the left panels we have the results by using zero-
range interactions with finite-range results being presented in the
right panels. In both cases, we use binding energies obtained from
different realistic model calculations as indicated (inside the right
upper panel for β = 7Li and inside the left panel for β = 6Li) with
the corresponding references given in the caption of Fig. 1. For model
(a2), we also show the results in an inset in the lower-right panel. The
finite-range-interaction parameters are given in Table III.

We should observe the characteristic behavior of the plots
in Fig. 3 when the collision energy Ek is very small ap-
proaching zero. For the case in which the two-body binding
energies for 4He 6Li are very low as the ones provided by
the models from Refs. [18,24] [identified by (a2) and (a5),
respectively], we note that each curve of the cross sections
is presenting a maximum for Ek < 1 mK. Such behavior can
better be understood by scaling all the energies (Ek and the
two-body binding energies) using the corresponding three-
body ground-state energies as was performed in Ref. [38]. As
learned from the studies for atom-molecule collision at very
low energies performed in Ref. [38] when considering small
enough values for the subsystem binding as Ek is decreased,
one should observe maxima and minima in the corresponding
s-wave cross section.

This behavior can be seen in the two cases that we use
as input dimer energies Bαβ that are very low in comparison

with the three-body ground-state energies. Indeed, when the
two-body energy is close to the unitary limit, the cross section
should present a series of maxima and minima for enough
small values of Ek in the limit that the mass ratio mα/mβ

becomes very small with similar behavior as the Efimov
excited states (see Ref. [38]). However, in our present case, no
more than one maximum is observed in each curve because
the mass ratios are not as small as the ones considered in
Ref. [38]. Therefore, the curious behavior observed in the two
plots shown in the lower panels of Fig. 3 (when using 6Li) is
a manifestation of the same singular behavior for the scatter-
ing function k cot δ0, known for a long time from neutron-
deuteron studies [50] and recently studied in Ref. [38].

We call the reader’s attention to the minimum in the cross
section produced by the input parameters of model (a2) with
the Yamaguchi potential in the case of the elastic collision of
4He on the 4He 6Li molecule as shown in the inset in the lower
panel of Fig. 3. As verified in Ref. [38], when going to a limit
with very small two-body binding, at some specific energies
the scattering observable k cot δ0 turns out to be singular,
leading to zeros in the corresponding cross section. The zero
will happen if there is no absorption, which is the case for
Ek < Bαβ − Bαα . However, in the present case of model (a2),
Bαβ − Bαα < 0 such that Ek can never be less than zero. As
absorption is always possible, instead of a zero we observe
a minimum in the s-wave cross section, which follows from
Eq. (19),

σ = π
|ηe2iδ0 − 1|2

k2
, (21)

such that σ = π |η − 1|2/k2 for δ0 = 0, characterizing a min-
imum instead of a zero when η �= 1. A similar behavior can
be seen with the results for σ given by model (a5). However,
as in this case Bαβ = 0.33 mK is not as small as the value
we have from model (a2), and the minimum is not clearly
characterized in the results of Fig. 3 but evidenced by a point
very close to Ek = 0 (see in both lower panels of Fig. 3 the
results represented by the black squares). About the possible
observation of a zero or minimum in the s-wave cross section
for the scattering of 4He in 4He 6Li, it should be disregarded
as not being expected from more recent realistic calculations
identified by (a1) and (a8) (from Refs. [28,41], respectively).

For the case of the 4He 7Li molecule as shown in the upper
panels of Fig. 3 with different models, most of the results
for the cross section have similar behaviors, considering that
the energies Bαβ are not so low in comparison with the
three-body ones. Model (a8), given by Ref. [28], which is
showing a minimum in the cross section for Ek near 13 mK,
is indicating the minimum of the cross sections for higher
collision energies as the ratio Bαβ/B

(0)
3 is increased as already

discussed when exploring the cross section for different inputs
in Fig. 2. Among the models considered with 7Li, (a8) is the
one which provides the larger value for the ratio Bαβ/B

(0)
3 . As

a general remark, we note that the curves for the cross sections
for Ek � 15 mK follow the energy ratios Bαβ/B

(0)
3 with the

curves in the upper part being the ones with smaller values for
this ratio.
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FIG. 4. Cross-section σ (upper panels) and absorption parameter
η (lower panels) s-wave results for the collision of 4He in the
4He 23Na dimer. The two- and three-body energies used in the
calculations are indicated inside the panels, being given by models
quoted in the caption of Table II. The zero-range results are in the
left frames with the finite-range separable Yamaguchi results shown
in the right frames.

C. Zero of 4He (4He 23Na) s-wave cross section

In the case of the scattering of 4He by the 4He 23Na
molecule with four different realistic model calculations avail-
able, our results are shown in Fig. 4 for the cross sections
(upper frames) and absorption parameters (lower frames).

We observe the same general features of the elastic s-wave
cross section already pointed out by the results shown in
Fig. 2, namely, with the increase in the binding energy of
the subsystem αβ a minimum emerges at some value of Ek .
As Bαβ increases, the tendency of this minimum seems to
converge to some value of Ek . This can be seen by matching
the binding energies given for 4He 23Na in the last line of
Table II with the minima appearing in Fig. 4 when considering
finite-range results. Also, as noted in the case of Fig. 2, the
convergence of the minima to some value Ek when using the
ZR results is not so fast and clear as in the case with the FR
results.

More relevant to eventually future scattering experiments
of the 4He collision with the 4He 23Na molecule is our con-
clusion of a minimum in the elastic s-wave cross section
from finite-range interactions within our approach and using
different realistic model calculations as inputs. Considering
the more recent realistic model calculations (a1) reported in
Ref. [41], a minimum should occur in the cross section at a
center-of-mass collision energy close to Ek ∼ 15 mK. This
prediction seems robust as the ZR model with the same input
predicts the position of the zero around 20 mK.

IV. CONCLUSION

We predict the s-wave scattering properties of cold 4He
elastic collision with the 4He 6,7Li and 4He 23Na molecules
for center-of-mass kinetic energies up to 40 mK. Of particular
experimental relevance, considering the actual investigations
in cold atom laboratories, we show the presence of a minimum
in the s-wave elastic cross section for the 4He → (4He 23Na)
scattering. This prediction was based on calculations per-
formed using finite-range separable interactions where we
used recent realistic model results for the molecular bound-
state energies as inputs to get the model parameters. By using
the binding energies reported in Ref. [41], we predict that
the elastic s-wave cross section should have a minimum at
a center-of-mass colliding energy close to Ek ∼ 15 mK. In
our approach, we have also obtained the corresponding s-
wave absorption parameter, which is relevant for defining the
s-wave scattering amplitude.

To access the importance of the range corrections to the
phase shifts and absorption parameters, our calculations were
performed with the zero-range model and a finite-range one-
term separable potential. The results present some sensitivity
to the potential range when the binding energies for the
two-body subsystems are not low enough with respect to the
three-body ground-state energy. It is well known that close
to the Efimov limit, namely, zero dimer binding energies,
the low-energy three-body observables are model independent
and dominated by few low-energy scales as in our case with
the diatomic and ground-state triatomic binding energies.

The model independence is exemplified in this paper with
universal scaling plots, considering the correlation of the
excited-state energy of 4He2

6,7Li with the 4He 6,7Li molecule
binding. Such correlations are pronounced close to the unitary
limit, however, our examples of cold collisions are not at
the unitarity taking into account the realistic potential model
results for the binding energies of the di- and triatomic
molecules and atom-atom scattering lengths. Despite that we
have shown that, although the elastic s-wave cross section
presents some sensitivity on the potential range the basic
universal predictions are not destroyed, such as the robust
presence of the zero in the elastic s-wave cross section of 4He
on the 4He 23Na molecule, which we expect to motivate the
experimentalist to observe such a property at the root of the
universal Efimov physics.

Finally, we should mention some perspectives on further
related investigations. First, as stated in the Introduction, a
direct extension of this paper is to explore the contribution
of higher partial waves in the total cross section, which is
expected to be non-negligible as we move to higher ener-
gies. Also relevant, in our understanding, are the possible
inelastic processes in the atom-dimer α → (αβ ) collision,
such as three-body rearrangements going to (αα) + β or total
dissociation (α + α + β); processes expected to be significant
at the collision energies we have used, deserving a separate
detailed investigation.
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