
PHYSICAL REVIEW A 98, 032514 (2018)

Oscillating-magnetic-field effects in high-precision metrology
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We examine a range of effects arising from ac magnetic fields in high-precision metrology. These results are
directly relevant to high-precision measurements and accuracy assessments for state-of-the-art optical clocks.
Strategies to characterize these effects are discussed and a simple technique to accurately determine trap-induced
ac magnetic fields in a linear Paul trap is demonstrated by using 171Yb+.
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I. INTRODUCTION

An ion trap is a widely used tool in atomic physics and
a cornerstone system in high-precision metrology. The key
advantages of the ion-trap system are the high degree of
control of individual ions and the rigorous assessment of sys-
tematic effects from the environment, including the trapping
apparatus itself. In a linear Paul trap, effects that have not
been given sufficient attention are those due to magnetic fields
arising from trap-induced rf currents in the electrodes. To our
knowledge there are very few instances in which these fields
have actually been measured or at least an attempt made to
quantify their influence on experiments [1–5]. When values
were quantifiable they were typically a few μT. Such values
would have a significant contribution to many error budgets in
high-precision metrology.

The primary effect of ac magnetic fields is to shift atomic
energy levels. However, they can also influence the assess-
ment of micromotion as observed in Ref. [4]. If this is not
properly considered, it can have further consequences on
the validity or accuracy of an experiment. High-precision
measurements can also serve as reference points for other
measurements. Hence we consider it useful to provide a
clear description of the effects these fields have, and provide
suggestions as to how they might be experimentally assessed.

The paper is divided into two main sections. In the first
section the various influences of ac magnetic fields are dis-
cussed: specifically, the effect on measured Zeeman splittings
and shifts of both microwave and optical clock transitions.
For completeness, a brief discussion on the magnetic black-
body radiation shift is also given. In the second section, two
methods to measure the amplitude of an ac magnetic field
are discussed. Both methods are sensitive to the orientation
of the oscillating field relative to an applied static field. The
discussion is focused mainly on ion-trap systems, but the
effects are relevant to other time-varying fields, such as line
noise, which is also relevant to neutral atom systems.

*phybmd@nus.edu.sg

II. AC-MAGNETIC-FIELD EFFECTS

Throughout the rest of the paper, an applied static magnetic
field is denoted B0 and its direction is taken as the quantization
axis. The amplitude of an oscillating magnetic field is denoted
B and its components orthogonal to and along the quantiza-
tion axis are denoted B⊥ and Bz, respectively. For any quantity
specifying a sensitivity to 〈B2〉, the unit μT−2 is in reference
to the root-mean-square amplitude of the field. For quantities
specifying a sensitivity to B or one of its components, the unit
μT−1 is in reference to the amplitude of the applicable field
component.

The energy shift of |a〉 due to an oscillating magnetic field
coupled to |b〉 can be found by direct analogy with an ac stark
shift from an oscillating electric field [6]. With the magnetic-
dipole operator M and polarization vector u, the shift is
given by

δEa = −〈B2〉
2h̄

( |〈b|u · M|a〉|2
ωba − ω

+ |〈a|u · M|b〉|2
ωba + ω

)
, (1)

where 〈·〉 denotes time averaging and ωba = ωb − ωa . This
expression is simply the magnetic counterpart of the expres-
sion for an ac stark shift from an oscillating electric field [6].
When ω � |ωba| and u = e0, the spherical basis vector along
the quantization axis, this expression reduces to the static
quadratic Zeeman shift of |a〉 due to the magnetic coupling to
|b〉. In this case, the effect of the oscillating field can then be
accounted for by using B2

tot = B2
0 + 〈B2〉 in the assessment of

quadratic Zeeman shifts. This appears to be commonly used
in the assessment of magnetic-field effects in high-accuracy
clocks today [2,7–9]. This is inconsequential if the validity
of an assessment does not depend on the orientation of the
oscillating field, but this is not always the case.

Coupling between fine-structure levels can be treated in
exactly the same way as for the electric-dipole polarizability
and all expressions given in Ref. [6] have a magnetic analog.
However, this is not the case within a single fine-structure
level. In this case, oscillating fields collinear with a static
magnetic field couple only to neighboring hyperfine states
with �F = ±1, �m = 0. Because hyperfine splittings are
often much larger than frequencies of interest, the static limit
applies and the static quadratic shift can be used as noted
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above. Thus, results here concern the influence of ac magnetic
fields orthogonal to the applied static field.

A. Coupling within a single hyperfine level

The most straightforward case is the coupling between
neighboring m states of the same hyperfine level. From the
Wigner–Eckart theorem

|〈F,m ± 1|e± · M|F,m〉|2 = (gF μB )2

2
(F ∓ m)(F+1 ± m),

(2)
and Eq. (1) gives

δE

h̄
= ±〈B2

±〉
2

m

±ωz − ω

(gF μB

h̄

)2
, (3)

where ωz = gF μBB0/h̄ and B± are the spherical components
of B associated with the spherical basis vectors e±. Further
assuming that the field is linearly polarized, the contributions
from each circular component are equally weighted, giving

δE

h̄
=

[
1

2

ω2
z

ω2
z − ω2

〈B2
⊥〉

B2
0

]
mωz. (4)

This is a modification of the Zeeman shift mωz, with the term
in square parentheses having the interpretation of a fractional
change in the applied magnetic field. In the dc limit (ω → 0),
the rms value is formally replaced by the amplitude and the
shift is the modification of the field amplitude due to a static
field applied in the transverse direction.

Strictly speaking, Eq. (4) only applies for frequencies
significantly different from the Zeeman splitting. If this is not
the case, population dynamics must be properly accounted for.
On or near resonance there will be a Larmor precession of the
spin. As demonstrated in Sec. III A, this provides an accurate
means to measure B⊥.

B. Microwave clock transitions

Consider an S1/2 ground state with a half-integer nuclear
spin I . Using the Wigner–Eckart theorem, the shift in energy
h̄δω± of |I ± 1/2, 0〉 is

h̄δω± = ± ω0

ω2
0 − ω2

|〈S1/2||M||S1/2〉|2
h̄

×
(

1

6

〈
B2

z

〉 + 2I + 1 ∓ 2

12(2I + 1)
〈B2

⊥〉
)

. (5)

Because |〈S1/2||M||S1/2〉|2 ≈ 6μ2
B , the net shift of the clock

transition is

δω0 = |ω0|
ω2

0 − ω2

μ2
B

h̄2

(
2
〈
B2

z

〉 + 〈B2
⊥〉). (6)

Note that the approximation for the reduced matrix element
uses gJ ≈ 2 and neglects gI . The clock shift varies by a factor
of two depending on the orientation of the oscillating field. In
the limit that ω � |ω0|, the expression reduces to

δω0 = αz

(〈
B2

z

〉 + 1

2
〈B2

⊥〉
)

, (7)

where αz is the quadratic shift of the clock transition due to a
dc field.

This is particularly relevant for the assessment of the
magnetic-field shifts in the Al+ clock at NIST. In their ex-
periments, the oscillating field from rf currents induced in
the trapping electrodes was measured by determining the
shift of the microwave clock transition in either Be+ or Mg+

as the rf drive power is varied. As discussed in Ref. [7],
the analysis is based on the Breit–Rabi formula, which is
equivalent to assuming that the orientation is along z. Con-
sequently, the inferred contribution could be two times larger.
From the numbers given in Ref. [2] this would be an error
of 1.4 × 10−18 in their clock assessment. While this does
not significantly change the total systematic uncertainties of
the clocks reported in Ref. [2], future Al+ clocks with total
uncertainty near 10−18 will need to take this into account.

C. Optical clock transitions

The analysis can be easily applied to other hyperfine
structures. As noted earlier, coupling between fine-structure
levels can be treated as for an electric-dipole polarizability
[6] with the shift being broken down into scalar, vector,
and tensor components. The vector term only applies for
circularly polarized field components and even then does not
apply for m = 0 states or cancel when averaged over Zeeman
states with m values of opposite sign. The tensor term has a
similar dependence as for an electric polarizability. In Lu+ for
example, coupling to the 3D2 level gives a shift for each clock
state in 3D1 of

�ωF = −
(

1

9
|〈3D2||M||3D1〉|2

)
ωfs

ω2
fs − ω2

〈B2〉
h̄2

×
(

1 − C2,F

20
(3 cos2 θ − 1)

)
, (8)

where θ is the angle between the ac field direction and the
quantization axis, ωfs is the fine-structure splitting, and C2,F

is a coefficient that depends only on the angular-momentum
quantum numbers for the state of interest. This makes the
assumption that the hyperfine splittings are negligible com-
pared with the fine-structure splitting. Under various aver-
aging schemes [10–12], only the usual scalar term remains,
which has the same quadratic dependence as for a static field
in the limit that ω � ωfs.

For clock transitions involving levels with a hyperfine
structure, such as Yb+, Hg+, and Lu+, the clock shift also
has an orientation dependence not canceled by averaging. For
Hg+, the clock shift is given by

δωc = αz(D5/2, 2, 0)

(〈
B2

z

〉 + 2

3
〈B2

⊥〉
)

− αz(S1/2, 0, 0)〈B2〉,
(9)

where αz(D5/2, 2, 0) and αz(S1/2, 0, 0) are the static quadratic
Zeeman shift coefficient for the upper and lower clock states,
respectively. Note that the shift for the lower state is propor-
tional to 〈B2〉, which is a consequence of its zero angular
momentum. The clock frequency is averaged over three or-
thogonal field directions, which replaces each component with
one third of the total, giving

δωc =
(

7

9
αz(D5/2, 2, 0) − αz(S1/2, 0, 0)

)
〈B2〉. (10)
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TABLE I. Quadratic Zeeman shift coefficients for ac magnetic
fields for clock transitions in 176Lu+: αF applies to fields aligned
along the quantization axis, α′

F applies to perpendicular fields. All
values are expressed in mHz/μT2.

F αF (mHz/μT2) α′
F (mHz/μT2)

3D1 6 2.32 1.32
7 −0.14 0.23
8 −2.18 −0.95

〈·〉F 0.20
3D2 5 −44.03 −25.68

6 −1.71 −7.79
7 12.54 0.93
8 16.57 5.29
9 16.62 7.39

〈·〉F −3.98
1D2 5 53.45 31.18

6 14.61 16.62
7 −3.53 7.13
8 −17.73 −2.23
9 −46.80 −20.80

〈·〉F 6.38

This gives ∼ − 13.7 mHz/μT2 compared with the static value
of ∼ − 19.0 mHz/μT2 calculated in Ref. [10]. The averaging
therefore restores the assumed dependence on 〈B2〉 albeit at a
modified shift coefficient. This would not affect the order-of-
magnitude estimate given in Ref. [13].

A similar consideration applies to Yb+. However, owing to
a near cancellation of the quadratic Zeeman coefficients for
the upper and lower states, the effect is more pronounced. The
clock shift after averaging is given by

δωc =
(

3

4
αz(F7/2, 3, 0) − αz(S1/2, 0, 0)

)
〈B2〉. (11)

From the values of hyperfine splittings given in Ref. [9], the
coefficient is 2.24 mHz/μT2 compared with −2.18 mHz/μT2

for the static case. Thus, the correction effectively has the
wrong sign when simply adding 〈B2〉 as suggested in Ref. [9].
It is unclear how much this would affect clock assessments
because reports [9,14–16] do not elaborate on how or if the ac
fields are assessed. Measured quadratic Zeeman coefficients
vary substantially with values differing by as much as 12σ of
the claimed uncertainties [15,16], but it is not always stated
what value is being used. The most current and accurate value
of the quadratic shift coefficient is given in Ref. [16], but
the reported clock shifts are consistent with zero contribution
from ac fields. Although it may well be the case that rf currents
are significantly reduced at different operating conditions, the
sensitivity to ac currents is 30-fold larger for Yb+ compared
with Al+. Thus it would seem prudent to consider this effect,
particularly in light of experiments investigating the variation
of fundamental constants [16,17].

For lutetium, calculations can be easily extended to include
more hyperfine levels. For each level, the shift can be written

�fF = αF

〈
B2

z

〉 + α′
F 〈B2

⊥〉. (12)

TABLE II. The quadratic ac-magnetic-field sensitivities and frac-
tional shifts of different optical frequency standards. For 176Lu+ the
dependence is on 〈B2

⊥〉. All others depend on 〈B2〉.

Ion λ (nm) α̃z (mHz/μT2) δf/f (μT−2)

199Hg+ 282 −13.7a −1.3 × 10−17

171Yb+ E2 436 33.8a 4.9 × 10−17

171Yb+ E3 467 2.28a 3.5 × 10−18

88Sr+ 674 0.0031b 7.0 × 10−21

40Ca+ 729 0.014b 3.5 × 10−20

27Al+ 267 −0.072 −6.4 × 10−20

115In+ 236 −0.004 −3.2 × 10−21

176Lu+ (3D1) 848 0.20c 5.7 × 10−19

176Lu+ (3D2) 804 −3.98c −1.1 × 10−17

176Lu+ (1D2) 577 6.38c 1.2 × 10−17

aAveraged over three orthogonal axes [10].
bAveraged over Zeeman states [11].
cHyperfine averaging [12]. For these transitions, dependence is on
〈B2

⊥〉.

Under hyperfine averaging [12], αF averages to zero but
not α′

F . In Table I, α and α′ are listed for each hyperfine
level of each clock transition and the hyperfine-averaged
α′ is also given. The values quoted are determined from
measured hyperfine splittings and do not include the much
smaller contributions from neighboring fine-structure lev-
els. For comparison, the coefficients for other ion-based
clocks, under the appropriate averaging schemes, are given in
Table II. Clearly those candidates having a hyperfine structure
are significantly more sensitive in general and the value for
the 848-nm transition in 176Lu+ may seem anomalously small
in this regard. This is owing to a fortuitous hyperfine structure
that balances the splittings and suppresses the shift.

D. Blackbody magnetic fields

Blackbody radiation also provides a shift contribution from
the thermal magnetic field. For optical transitions this is much
less significant than the shift from thermal electric fields but
we include it here for completeness. The thermal magnetic
field has a mean squared value of

〈B2(t )〉 = h̄

π2c5ε0

∫ ∞

0

ω3dω

exp
(

h̄ω
kBT

) − 1
(13)

≈ (2.77507 μT)2

(
T

T0

)4

, (14)

where T0 = 300 K. For a given transition it is useful to note
that

δω0

ω0
= μ2

B

h̄π2c5ε0

∫ ∞

0

1

ω2
0 − ω2

ω3dω

exp
(

h̄ω
kBT

) − 1
(15)

= μ2
B

h̄π2c5ε0

(
kBT

h̄

)2 ∫ ∞

0

1

y2 − x2

x3dx

ex − 1
(16)

= −β

(
T

T0

)2

f (y), (17)
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FIG. 1. The figure shows the the function f (y ) where y =
h̄ω0/kBT .

where y = h̄ω0/(kBT ),

β = μ2
B

h̄2

h̄

6c5ε0

(
kBT0

h̄

)2

≈ 9.78 × 10−18, (18)

and

f (y) = 6

π2

∫ ∞

0

1

y2 − x2

x3dx

ex − 1
. (19)

The integral is to be interpreted as the principle value and is
plotted in Fig. 1.

For S1/2 microwave clock transitions the fractional shift is

δω0

ω0
≈ 1.304 × 10−17

(
T

T0

)2

, (20)

where we have used the fact that f (y) ≈ f (0) = −1 and the
radiation field is isotropic. This result is in agreement with
Ref. [18] and explicitly relies on the validity of Eq. (6)

In the expressions above ω0 is the transition frequency of
the contributing M1 transition. For an optical clock transition,
the fractional frequency shift is suppressed by a further factor
of ω0/ωc. Thus shifts from coupling between hyperfine levels
is negligible and we need only consider coupling to other
fine-structure levels. Even in this case, fine-structure splittings
are typically one to two orders of magnitude smaller than
the optical transition, and there is a further suppression due
to f (y) for the larger splittings. Hence magnetic blackbody
radiation shifts are not likely to be significant in any realistic
scenario.

To illustrate, the 176Lu+ fine-structure splitting between
3D1 to 3D2 is approximately 19.2 THz, giving y ≈ 3.06 at
T = 300 K and f (y) ≈ 0.1348. The corresponding shift of
the 848 nm optical clock transition is then −3.35 × 10−20

or −3.48 × 10−20 when including the contribution from 1D2.
Note that y itself is a function of temperature so this shift is
not simply quadratic in temperature as indicated by Eq. (17).
Shift of the 804 nm clock transition is similarly found to be
−3.22 × 10−20, which includes coupling to all other D states.

III. MEASURING AC-MAGNETIC-FIELD SHIFTS

With the ever-increasing precision of optical clocks and
measurements carried out in ion-trap systems, it would be
ideal to have a technique to precisely measure the amplitude
and orientation of various oscillating fields, specifically the

trap-induced rf fields. When the effects of rf magnetic fields
have been measured, the power of the rf drive was varied
and any measurable difference extrapolated to zero power
[1–3,5,7]. This is not always ideal because averaging times
can be very long and a more direct approach would be better.
In this section we discuss two complementary approaches:
one based on an Autler–Townes splitting induced by B⊥ [19],
and the other on a sideband induced by Bz [4].

A. Autler–Townes splitting from an ac magnetic field

As noted in Sec. II A, matching the Zeeman splitting to
the trap drive rf can result in a Larmor precession. When
driven on a connected optical or microwave transition, an
Autler–Townes splitting arises [19]. The splitting can be
measured accurately and is a direct measure of B⊥. This
approach is readily applicable when there is an available
energy level with an appreciable g factor and a moderate
trap drive frequency. Here we demonstrate this technique by
using 171Yb+ confined in a linear Paul trap. In this system,
the F = 1 ground-state hyperfine level has gF ≈ 1, and the
Zeeman splitting can be matched to the trap drive frequency
of �rf = 2π × 30.1891 MHz with a readily achievable field
of ∼2.15 mT.

The experiment is carried out in a four-rod linear Paul trap
with axial end caps as described in Refs. [20,21]. The trap
geometry and relevant level structure are schematically shown
in Fig. 2. The secular trap frequencies for a single ion are
(ωr1, ωr2, ωax )/2π = (0.539, 0.857, 0.251) MHz for two ra-
dial and axial trapping directions, respectively. Doppler cool-
ing, detection, and state preparation are carried out via scat-
tering to the P1/2 level as described in Ref. [22]. Microwave
transitions between the F = 0 and F = 1 levels are driven by
using a microwave horn located ∼5 cm from the trap center.

A small stack of neodymium magnets placed approxi-
mately 13 cm from the trap center is used to augment an
existing field of approximately 0.6 mT so that the F =
1 Zeeman splittings near match the trap drive frequency.
The combined field of B0 ≈ 2.1 mT has a direction vector
∼(0.63, 0.63, 0.42) with respect to the coordinate system
shown in Fig. 2. The axes are primed to avoid possible
confusion with notation introduced earlier for the ac-field
components. The Z′-coil current (iz) is used to fine tune
the amplitude of the magnetic field. Over the small tuning
range used, this primarily changes the amplitude of B0 by
approximately −0.094 μT/mA with only a small change of
approximately ±0.6◦ in the direction of the field.

The experimental sequence is as follows: for each value of
iz, the ion is first Doppler cooled and optically pumped into
the |0, 0〉 hyperfine ground state. A 100 μs microwave pulse
is then used to drive the atom to the F = 1 level. Successful
transfer to F = 1 is determined from fluorescence collected
during resonant excitation of the S1/2, F = 1 to P1/2, F =
0 transition and the transfer probability is inferred from 100
experiments. The amplitude of the microwave drive is chosen
to maximize the resonant population transfer for the target m

state of interest.
Typical microwave frequency scans for fixed iz are shown

in Fig. 3. When the Zeeman splitting ωz between |1,−1〉 and
|1, 0〉 is near �rf , an Autler–Townes splitting occurs with the
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FIG. 2. Schematic of the experimental setup. A small stack of
neodymium magnets is used to augment an existing field to create
a bias field of B0 ≈ 2.1 mT along the direction (0.63, 0.63, 0.42).
The Z′ coil current iz is used to fine tune B0 with <1◦ change in
the field direction over the small scan range of interest. A microwave
horn is used to drive microwave transitions between the F = 0 and
F = 1 levels, which has a zero-field separation of ω0 = 12, 642, 812,
118 Hz [23]. The first-order Zeeman effect gives ≈14 MHz/mT for
the frequency shift of |1, ±1〉 with respect to |1, 0〉. The quadratic
shift of the |0, 0〉 → |1, 0〉 transition is αz = 31080 Hz/mT2 [24].

two peaks corresponding to the two dressed states [25] arising
from the trap-induced magnetic coupling. For ωz = �rf , the
peaks are symmetric and the splitting is determined by the
strength of the coupling. As ωz is tuned away from �rf ,
the peaks become asymmetric with a larger separation, and
the dominant peak moves towards the energy of the bare
eigenstate.

Scans over a range of magnetic fields are shown in Fig. 4
for microwave frequencies near to the bare resonances asso-
ciated with |1, 0〉 and |1,−1〉 for the upper and lower plots,
respectively. A small splitting seen at the bottom left of the
figure is due to a two-photon coupling between |1,±1〉 when
the Zeeman splitting between these two states is ∼2�rf . Over
the magnetic-field range used, no other splitting near the |1, 1〉

FIG. 3. Microwave frequency scans at fixed iz (B0). Detunings
are given relative to the zero-field ground-state hyperfine splitting. A
trap-induced magnetic coupling results in an Autler–Townes splitting
when the Zeeman splitting ωz between |1,−1〉 and |1, 0〉 is near �rf .
The two peaks correspond to the two dressed states arising from the
coupling. Top, middle, and bottom traces correspond to ωz < �rf ,
ωz ≈ �rf , and ωz > �rf , respectively. Note the slight difference in
the horizontal axis in each case.

bare resonance is observed because of a ∼72 kHz quadratic
Zeeman shift of |1, 0〉.

Neglecting the contribution from |1, 1〉, the observed split-
ting is given by (δ2 + �2)1/2, where δ = ωz − �rf and � is
the coupling strength between |1,−1〉 and |1, 0〉 due to the
trap-induced rf magnetic field. Using � as a fit parameter
gives � = 2π × 44.8(3) kHz for both sets of data in Fig. 4.
Assuming the rf magnetic field is linearly polarized, the
coupling strength is given by

� = gF μBB⊥
h̄
√

2
. (21)

Using gF = 1 and the measured splitting then gives B⊥ =
4.527(30) μT.

The measured splitting is largely independent of the cal-
ibration of B0. Moreover it is also insensitive to the exact
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FIG. 4. Observed Autler–Townes splittings as a function of iz
for microwave frequencies near to the bare resonances associated
with |1, 0〉 and |1,−1〉 for the upper and lower plots, respectively.
Microwave frequency on the vertical axis is relative to the 171Yb+

zero-field ground-state hyperfine splitting. The vertical dashed line
corresponds to the value of iz at the minimum splitting as determined
from the data: 2π × 44.8(3) kHz in both cases.

values of gF and αz. These parameters determine the loca-
tion of the splitting but the size of the splitting is almost
entirely determined by �. The small dependence on gF and
αz comes from the location and strength of the nearby one-
and two-photon resonances associated with |1, 1〉. Inclusion
of this state in the analysis shifts the estimated coupling to
� = 2π × 45.3(3) kHz with a corresponding change to B⊥ in
accordance with Eq. (21). Further corrections due to errors in
gF and αz are less than the error in determining the minimum
value.

Strictly speaking the splitting depends only on the e+
component of the magnetic field. In principle, the e− com-
ponent could be checked by reversing the field. However an
imbalance in the weight of each component would imply a
significant phase shift between contributing current sources

FIG. 5. Measured Autler–Townes splitting as a function of iz
with two ions in the trap. In each case one ion is shelved to the
2F7/2 dark state throughout the scan. The bright ion was always
kept at position 1 (blue dots) or position 2 (orange squares) as
shown in Fig. 2. The curves are the fits to the two-level result as
discussed in the text. Displacement of the plots is due to a spatial
inhomogeneity in B0. However, the minimum splitting and hence B⊥
is fairly constant.

that would likely be associated with substantial micromotion
that could not be compensated by bias fields.

Because the rf currents are driven by the trapping fields
themselves, a spatial dependence to the ac magnetic field can
be expected. To investigate this, a second ion in the long-lived
2F7/2 level was used to displace the first along the trap axis
with the separation between ions estimated to be 8.7 μm.
The measured splitting as a function of magnetic field for the
bright ion at either position along the trap axis is shown in
Fig. 5. The displacement of the two plots indicates that B0

has a gradient along the trap axis of about 35 mT/m but B⊥
remains fairly constant.

A more significant variation in B⊥ can be expected for
displacements off axis. This was investigated by applying a dc
bias voltage to one of the rf trap electrodes to move the ion off
axis. The results are shown in Fig. 6, in which displacements
were inferred from camera images with an accuracy of ∼20%.

FIG. 6. Measured Autler–Townes splitting as a function of iz
as the ion is moved off axis in the radial direction. Distances are
calibrated from camera images with an accuracy of ∼20%. As
expected, there is a significant change in the splitting and thus
in B⊥.
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From the data, � has an approximately linear dependence of
∼2.3 kHz/μm on the ion displacement. The linear depen-
dence is expected from the four-rod geometry of the trap and
suggests a zero in the ac magnetic field ∼20 μm from the
trap center. This is not unreasonable given the machining and
fabrication tolerances involved in trap construction.

In the fortuitous event that the Autler–Townes splitting is
too small to be resolvable, Larmor precession would then ap-
ply. Two π pulses on the |0, 0〉 to |1, 0〉 microwave transition
separated by a time τ would see an oscillation of population
in F = 1 as a function of τ with a timescale determined by
�. In general, the resulting signal might be more complicated
depending on how much the quadratic Zeeman shift splits
the degeneracy of the two Zeeman splittings. For J = 0 to
J = 0 transitions this would allow one to quantify line noise
if the splittings could be tuned to near the line-noise frequency
and/or its first harmonic as done in Ref. [26].

B. Magnetic-field-induced sidebands

An alternative approach for measuring the ac field is to
utilize a magnetic-field-induced sideband. First observed in
Ref. [4], this effect can bias micromotion compensation be-
cause it also contributes to the sideband signal. Alternatively,
if micromotion is properly compensated, the residual sideband
could then be attributed to the ac magnetic field. In contrast to
the previous section, the effect depends on Bz.

Far from resonance with a Zeeman splitting, B⊥ effectively
modifies the static field, whereas Bz modulates the energy
levels. This modulation is formally equivalent to a phase
modulation of the driving field with a modulation index
given by

βm = (g′
F m′

F − gF mF )μBBz

h̄ω
, (22)

where the prime denotes excited-state quantities and we have
neglected any quadratic shifts. Hence a measurement of the
sideband-to-carrier ratio should allow Bz to be extracted. For
this to be effective, other sources responsible for a signal at
the sideband frequency must be eliminated or at the very least
measured. In the case of the rf sideband in ion traps, this is
predominantly micromotion, which has two components: ex-
cess micromotion (EMM) and intrinsic micromotion (IMM)
[27,28].

To disentangle the contribution from micromotion, it must
be assessed and removed as much as possible. The obvi-
ous strategy would be to first use a transition insensitive to
magnetic fields to quantify the micromotion, and then use an
alternative transition with a large βm to assess the magnetic-
field contribution. Such a separation is not always possible, as
in the case of Sr+. In that case the techniques demonstrated
in Ref. [4] can be used. Here we consider 176Lu+ [29,30] to
illustrate the general considerations.

For 176Lu+, the 1S0-to-1D2 clock transition at 577 nm is
well suited to micromotion assessment: the power require-
ments for driving weak sidebands are reasonable, probing
times of a few tens of ms are possible without significant
decoherence, and the wavelength provides reasonable cou-
pling to the motion. Any of the clock transitions connected to
an upper m = 0 state, has a magnetic-field sensitivity on the

order of a few Hz/μT. Moreover, two of the transitions are
field independent at ∼0.1 mT with a quadratic dependence of
∼15 mHz/μT2. At a trap drive frequency of ∼30 MHz, βm is
completely negligible for these transitions and the sideband
signal is limited only by micromotion. However, the |7, 7〉
to |9, 9〉 transition, which has the largest available magnetic
sensitivity, has only a modest sensitivity of βm ∼ 10−3/μT.
This needs to be compared with the expected levels of micro-
motion compensation and how well the sidebands could be
resolved.

A detailed account of micromotion limitations is given
in Ref. [28]. The minimum resolvable modulation index is
limited by available laser power, laser coherence and IMM.
Probing along the trap axis of a linear Paul trap effectively
eliminates IMM as the rf field amplitude along this direction
is typically very small. Coherence times on the 1D2 clock
transitions would only be limited by the upper-state lifetime
of ∼200 ms or thermal dephasing, which can be easily char-
acterized. With a laser power of 0.4 mW focused to 30 μm, a
25 ms probe resulting in a near 100% transfer to the excited
state at the rf sideband would correspond to a modulation
index of ∼10−3 for either transition. So the accuracy at which
assessment could be carried out would likely be determined by
how well a π time can be measured. This is not likely to be as
accurate as the determination of an Autler–Townes splitting.

In general, the accuracy via this technique is determined
by the available βm: the larger the better. This implies a high g

factor and/or low trap drive frequencies, both of which facil-
itate the achievement of magnetic fields necessary to observe
an Autler–Townes splitting. Nevertheless, this approach may
still be useful for those clocks in which the ac-magnetic-field
shift is small.

IV. DISCUSSION

In this work the influences of ac magnetic fields have been
explored and these should be carefully considered in any
precision measurement. For Paul traps, the trap-induced ac
fields can be significant and should be considered a mandatory
part of any realistic error budget. For ion-based clocks, not
only do the ac fields induce a shift in the clock frequency,
they can also influence the proper assessment of micromo-
tion, as noted in Ref. [4]. This could further influence clock
assessments if induced micromotion is used to calibrate other
systematics, for example, the blackbody radiation shift via the
static differential polarizability, as done in Ref. [31].

More generally, magnetic-field calibrations are often car-
ried out by measuring Zeeman splittings. Although the effect
on Zeeman splittings is typically small, it can still be im-
portant in precision measurements. A notable example is the
high-accuracy measurement of the D5/2 gJ factor in 40Ca+,
which was reported with a fractional inaccuracy of 2.5 × 10−7

[32]. This measurement relies on a comparison of Zeeman
splittings between the S1/2 and D5/2 states. In principle the
ratio of the Zeeman splittings depends only on the ratio of
g factors between the two levels, but Eq. (4) modifies that
ratio. The trap drive frequency was not given in the report,
but a value of 20 MHz would give a sensitivity of −8.3 ×
10−7 μT−2 at the static magnetic field used in the experiment.
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Possible methods to measure the ac field in an ion-trap
system have been discussed. A simple approach using an
observed Autler–Townes splitting demonstrated a <1% in-
accuracy in the determination of B⊥. This method can be
directly applied to Yb+ clock experiments for which ac
fields could be metrologically significant. If not properly
assessed in this system, it would also have significant reper-
cussions for experiments testing the variation of fundamental
constants [16,17]. The method is also applicable to Hg+

clock experiments, in particular the microwave clock [1], for
which the ac-magnetic-field shift was the leading systematic
uncertainty.

For systems that require much larger fields to observe an
Autler–Townes splitting, it may be possible to use a different
species to first characterize the trap. However, this would
depend on how stable and reproducible the effects are, and
how they vary spatially. Measurements shown here indicate
the expected strong correlation with micromotion but this
would have to be more extensively investigated in any given
setup. The alternative approach of using a magnetically in-
duced sideband could also be used, provided it could achieve
sufficient accuracy.

Because the ac currents in an ion trap are driven by the
same source that determines the trapping potential, micromo-
tion and ac magnetic fields should be correlated. As the trap
is a predominately reactive load, micromotion and magnetic
fields should be ∼90◦ out of phase. There would also be a
spatial correlation but this would likely have a rather complex
dependence on design and be heavily dependent on fabrication
imperfections. However, it may still be possible to mitigate
these effects by design, particularly as ion traps move to
chip-scale fabrication technologies [33,34].

The discussion here has been restricted to magnetic fields
and is a straightforward application of the Wigner–Eckart
theorem. Because the Wigner–Eckart theorem applies to any
tensor operator, similar considerations should be given to
other fields. In an ion-trap system, the trapping field itself
will interact with the ion through the quadrupole moment. In
this case it will induce couplings between �m = 0,±1,±2
states. The treatment given in Ref. [10] for the static case
can be readily generalized and these effects will be consid-
ered in future work. Similar results to those here can be
anticipated but some differences would arise. Owing to the
tensor nature of the interaction it would likely influence both
linear and quadratic Zeeman shifts and energy shifts would
also depend on trap geometry. It would also contribute to an
Autler–Townes splitting or rf sideband for levels supporting a
quadrupole moment.
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