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Nuclear recoil effect on the g factor of highly charged Li-like ions
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The nuclear recoil effect on the g factor of highly charged Li-like ions is evaluated in the range Z = 10–92.
The calculations are performed by using 1/Z perturbation theory. The one-electron recoil contribution is
evaluated within the fully relativistic approach with the wave functions which account approximately for the
screening effects. The two-electron recoil contributions of the first and higher orders in 1/Z are calculated
within the Breit approximation by using a four-component approach.
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I. INTRODUCTION

Measurements of the g factor of low- and middle-Z H-
and Li-like ions [1–8] have reached an accuracy of a few
10−10. From the theoretical side, to get this accuracy we
need to evaluate various contributions to the g-factor value
[9–33]. The comparison of theory and experiment on the g

factors of H- and Li-like silicon has provided the most strin-
gent tests of bound-state quantum electrodynamics (QED)
in the presence of a magnetic field, while the combination
of the experimental and theoretical results on the g factor
of H-like ions with Z = 6, 8, 14 lead to the most precise
determination of the electron mass [7,28]. The measurement
of the isotope shift of the g factor of Li-like ACa17+ with
A = 40 and A = 48 [8] has triggered a special interest in
the calculations of the nuclear recoil contributions to the g

factor.
The fully relativistic theory of the nuclear recoil effect to

the first order in the electron-to-nucleus mass ratio m/M on
the g factor of atoms and ions was formulated in Ref. [13],
where it was used to derive closed formulas for the recoil
effect on the g factor of H-like ions to all orders in αZ.
These formulas also remain valid for an ion with one electron
over closed shells (see, e.g., Ref. [18]), provided the electron
propagators are redefined for the vacuum with the closed
shells included. In that case, in addition to the one-electron
contributions, one obtains two-electron recoil corrections of
the zeroth order in 1/Z which can be used to derive effective
four-component recoil operators within the Breit approxima-
tion [29]. The one-electron recoil contribution was evaluated
numerically to all orders in αZ for the 1s and 2s states
in Refs. [14] and [29], respectively. The calculations were
performed for the point-nucleus case. For the ground state
of Li-like ions, the two-electron recoil contribution vanishes
to the zeroth order in 1/Z. However, the effective recoil
operator can be used to evaluate the recoil corrections of the
first and higher orders in 1/Z within the framework of the
Breit approximation. These calculations were carried out for
Z = 3–20 in Ref. [29], where a large discrepancy between
the obtained results and the previous Breit-approximation

calculations based on the two-component approach [34,35]
was found. As was shown in Ref. [29], this discrepancy was
caused by omitting some important terms in the calculation
scheme formulated within the two-component approach for s

states in Ref. [36]. Later [31], the four-component approach
was also used to calculate the recoil effect within the Breit
approximation for middle-Z B-like ions.

Special attention should be paid to probing the QED nu-
clear recoil effect in experiments with heavy ions, which are
anticipated in the nearest future at the Max–Planck-Institut für
Kernphysik in Heidelberg and at the HITRAP/FAIR facilities
in Darmstadt. This would provide an opportunity for tests of
QED in the strong-coupling regime beyond the Furry picture.
To this end, in Ref. [30] the nuclear recoil effect on the g

factor of H- and Li-like Pb and U was calculated, and it was
shown that the QED recoil contribution can be probed on a
few-percent level in a specific difference of the g factors of
heavy H- and Li-like lead.

In the present paper we extend the calculations of the
recoil effect on the g factor of Li-like ions performed in
Refs. [29,30] to the range Z = 10–92. The one-electron recoil
contribution is calculated in the framework of the rigorous
QED approach with the wave functions which partly account
for the screening of the Coulomb potential by the closed-shell
electrons. As for the two-electron recoil contribution, it is
evaluated within the Breit approximation to all orders in 1/Z.
All the calculations also partly account for the nuclear size
corrections to the recoil effect.

Relativistic units (h̄ = c = 1) are used throughout the pa-
per.

II. BASIC FORMULAS

Let us consider a Li-like ion which is put into a homo-
geneous magnetic field Acl(r) = [H × r]/2 with H directed
along the z axis. To zeroth order in 1/Z, the m/M nuclear
recoil contribution to the g factor is given by a sum of one- and
two-electron contributions. In the case of the ground (1s)22s

state the two-electron contribution of zeroth order in 1/Z is
equal to zero and one has to consider the one-electron term
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only. The one-electron recoil contribution to the g factor is
given by [13]

�g = 1

μ0ma

i

2πM

∫ ∞

−∞
dω

[
∂

∂H 〈ã|[pk − Dk (ω) + eAk
cl

]

× G̃(ω + ε̃a )
[
pk − Dk (ω) + eAk

cl

]|ã〉
]
H=0

. (1)

Here a denotes the one-electron 2s state, μ0 is the Bohr
magneton, ma is the angular-momentum projection of the
state under consideration, M is the nuclear mass, pk = −i∇k

is the momentum operator, Dk (ω) = −4παZαlDlk (ω),

Dlk (ω, r) = − 1

4π

{
exp (i|ω|r )

r
δlk

+∇ l∇k (exp (i|ω|r ) − 1)

ω2r

}
(2)

is the transverse part of the photon propagator in the Coulomb
gauge, α is a vector incorporating the Dirac matrices, and
summation over repeated indices is implied. The tilde sign
means that the corresponding quantity [the wave function,
the energy, and the Dirac-Coulomb Green’s function G̃(ω) =∑

ñ |ñ〉〈ñ|[ω − ε̃n(1 − i0)]−1] must be calculated in presence
of the magnetic field.

For practical calculations, the one-electron contribution is
conveniently represented by a sum of low-order and higher-
order terms, �g = �gL + �gH, where

�gL = 1

μ0Hma

1

M
〈δa|

[
p2 − αZ

r

(
α + (α · r)r

r2

)
· p

]
|a〉

− 1

ma

m

M
〈a|

(
[r × p]z − αZ

2r
[r × α]z

)
|a〉, (3)

�gH = 1

μ0Hma

i

2πM

∫ ∞

−∞
dω

{
〈δa|

(
Dk (ω) − [pk, V ]

ω + i0

)

×G(ω + εa )

(
Dk (ω) + [pk, V ]

ω + i0

)
|a〉

+ 〈a|
(

Dk (ω) − [pk, V ]

ω + i0

)
G(ω + εa )

×
(

Dk (ω) + [pk, V ]

ω + i0

)
|δa〉

+ 〈a|
(

Dk (ω) − [pk, V ]

ω + i0

)
G(ω + εa )(δV − δεa )

×G(ω + εa )

(
Dk (ω) + [pk, V ]

ω + i0

)
|a〉

}
. (4)

Here V (r ) is the potential of the nucleus or an effective local
potential which is the sum of the nuclear and screening poten-
tials, δV (r) = −eα · Acl(r), G(ω) = ∑

n |n〉〈n|[ω − εn(1 −
i0)]−1 is the Dirac-Coulomb Green’s function, δεa =
〈a|δV |a〉, and |δa〉 = ∑εn �=εa

n |n〉〈n|δV |a〉(εa − εn)−1. The
low-order term corresponds to the Breit approximation, while
the higher-order term defines the QED one-electron recoil
contribution.

The recoil contributions of the first and higher orders in
1/Z can be evaluated within the Breit approximation with

the use of the four-component recoil operators [29]. The total
Breit-approximation recoil contribution can be represented as
a sum of two terms. The first term is obtained as a combined
interaction due to δV and the effective recoil Hamiltonian (see
Ref. [37] and references therein):

HM = 1

2M

∑
i,k

[
pi · pk − αZ

ri

(
αi + (αi · ri )ri

r2
i

)
· pk

]
. (5)

The second term is defined by the magnetic recoil operator:

H
magn
M = −μ0

m

M
H ·

∑
i,k

{
[ri × pk]

− αZ

2rk

[
ri ×

(
αk + (αk · rk )rk

r2
k

)]}
. (6)

To zeroth order in 1/Z, the one-electron parts of the operators
(5) and (6) lead to the low-order contribution defined by
Eq. (3).

Thus, within the four-component Breit-approximation ap-
proach, the m/M recoil effect on the g factor can be evaluated
by adding the operators (5) and (6) to the Dirac–Coulomb–
Breit Hamiltonian, which includes the interaction with the
external magnetic field.

III. NUMERICAL CALCULATIONS

Let us consider first the calculations within the Breit ap-
proximation. For these calculations we use the operators (5),
(6), and the standard Dirac–Coulomb–Breit Hamiltonian:

H DCB = �(+)

[∑
i

hD
i +

∑
i<k

Vik

]
�(+), (7)

where the indices i and k enumerate the atomic electrons, �(+)

is the projector on the positive-energy states, calculated by
including the interaction with external magnetic field δV , hD

i

is the one-electron Dirac Hamiltonian including δV , and

Vik = V C
ik + V B

ik

= α

rik

− α

[
αi · αk

rik

+ 1

2
(αi · ∇i )(αk · ∇k )rik

]
(8)

is the electron-electron interaction operator within the Breit
approximation. The numerical calculations have been per-
formed by using the approach based on the recursive rep-
resentation of the perturbation theory [38]. The key advan-
tages of the recursive perturbation approach over the standard
one are the universality and the computational efficiency. In
Refs. [39,40], this method was applied to find the higher-
order contributions to the Zeeman and Stark shifts in H- and
B-like atoms. The perfect agreement of the obtained results
with the calculations by other methods was demonstrated. In
Refs. [38,41], the recursive method was used to calculate the
higher-order contributions of the interelectronic interaction in
few-electron ions.
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The total Breit-approximation recoil contribution for the
state under consideration can be expressed as

�gBreit = m

M
(αZ)2

[
A(αZ) + 1

Z
B(αZ) + 1

Z2
C(αZ,Z)

]
,

(9)

where the coefficients A(αZ) and B(αZ) define the recoil
contributions of the zeroth and first orders in 1/Z, respec-
tively, while C(αZ,Z) incorporates the recoil corrections of
the second and higher orders in 1/Z. In this work, in the
calculation of C(αZ,Z) we have taken into account the terms
of orders 1/Z2, 1/Z3, and 1/Z4. The contribution of terms
of higher order is much smaller than the present numerical
uncertainty.

For the point-nucleus case, the coefficient A(αZ), which
is determined by the one-electron low-order term (3), can be
evaluated analytically [13]. In case of the 2s state it is given
by

A(αZ) = 1

4

8(2γ + 1)

3(1 + γ )[2γ + √
2(1 + γ )]

, (10)

where γ = [1 − (αZ)2]1/2. To leading orders in αZ, it leads
to

A(αZ) = 1

4
+ 11

192
(αZ)2 + · · · . (11)

The calculations to all orders in 1/Z have been performed
with the point-nucleus recoil operators defined by Eqs. (5)
and (6) but with the wave functions evaluated for extended
nuclei. This corresponds to a partial treatment of the nuclear
size corrections to the recoil effect. The Fermi model of the
nuclear charge distribution was used and the nuclear charge
radii were taken from Ref. [42]. The results of the calculations
are presented in Table I. The indicated uncertainties are due to
the numerical computation errors.

For the point-nucleus case, the higher-order one-electron
contribution (4) was calculated for the 1s and 2s states over
a wide range of nuclear charge number in Refs. [14,29]. In
the present paper we perform the calculations for extended
nuclei and effective potentials which partly account for the
electron-electron interaction effects. Our first results for Z =
82, 92 were presented in Ref. [30], where they were used to
search for a possibility to test QED beyond the Furry picture.
In the present paper we extend these calculations to the range
Z = 10–92. Since the inclusion of the screening potential
into the zeroth-order Hamiltonian allows one to account for
the interelectronic-interaction effects only partly, we perform
the calculations with several different effective potentials to
keep better control of the uncertainty of the corresponding
contribution. The calculations have been performed for the
core-Hartree (CH), local Dirac–Fock (LDF), and Perdew–
Zunger (PZ) effective potentials. The CH screening potential
is derived from the radial charge density of two 1s electrons,

VCH(r ) = α

∫ ∞

0
dr ′ 1

r>

ρCH(r ′), (12)

where r> = max(r, r ′),

ρCH(r ) = 2
[
G2

1s (r ) + F 2
1s (r )

]
,

∫ ∞

0
drρCH(r ) = 2, (13)

TABLE I. The Breit-approximation recoil contributions to the g

factor of the (1s )22s state of Li-like ions expressed in terms of the
coefficients A(αZ), B(αZ), and C(αZ, Z) defined by Eq. (9).

Z A(αZ) B(αZ) C(αZ, Z)

10 0.2503 −0.5172 −0.236(4)
12 0.2504 −0.5179 −0.243(3)
14 0.2506 −0.5187 −0.245(3)
16 0.2508 −0.5197 −0.248(3)
18 0.2510 −0.5207 −0.250(2)
20 0.2512 −0.5219 −0.250(2)
24 0.2517 −0.5247 −0.250(1)
28 0.2524 −0.5279 −0.247(1)
30 0.2527 −0.5297 −0.245(1)
32 0.2531 −0.5315 −0.243
40 0.2548 −0.5402 −0.228
48 0.2567 −0.5504 −0.205
50 0.2572 −0.5531 −0.198
56 0.2588 −0.5618 −0.177
60 0.2599 −0.5677 −0.160
64 0.2607 −0.5734 −0.141
70 0.2616 −0.5813 −0.105
72 0.2617 −0.5836 −0.092
80 0.2606 −0.5886 −0.037
82 0.2597 −0.5881 −0.019
90 0.2510 −0.5721 0.051
92 0.2471 −0.5629 0.065

and G/r and F/r are the large and small components of the
radial Dirac wave function. The LDF potential is constructed
by inversion of the radial Dirac equation with the radial wave
functions obtained in the Dirac–Fock approximation. The
corresponding procedure is described in detail in Ref. [43].
The last potential applied in our work is the Perdew–Zunger
potential [44], which was widely employed in molecular and
cluster calculations.

In Eq. (4), the summation over the intermediate elec-
tron states was performed by employing the finite-basis-set
method. The basis functions were constructed from B splines
[45] within the framework of the dual-kinetic-balance ap-
proach [46]. The integration over ω was carried out analyt-
ically for the “Coulomb” contribution (the term without the
D vector) and numerically for the “one-transverse” and “two-
transverse” photon contributions (the terms with one and two
D vectors, respectively) by using Wick’s rotation. The total
QED recoil contribution, �gH, for the 2s state is conveniently
expressed in terms of the function P (2s)(αZ):

�g
(2s)
H = m

M

(αZ)5

8
P (2s)(αZ). (14)

The numerical results are presented in Table II. For compar-
ison, in the second column we list the point-nucleus results
which were partly presented in Ref. [29].

In Table III, we present the total values of the recoil
corrections to the g factor of the ground (1s)22s state of Li-
like ions. They are expressed in terms of the function F (αZ),
which is defined by

�g = m

M
(αZ)2F (αZ). (15)
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TABLE II. The higher-order (QED) recoil contribution to the 2s

g factor expressed in terms of the function P (2s )(αZ) defined by
Eq. (14). The indices Coul, CH, LDF, and PZ refer to the Coulomb
and various screening potentials (see text). The indices p.n. and f.n.
correspond to the point-like and finite-size nuclear models.

Z P
(p.n.)
Coul (αZ) P

(f.n.)
Coul (αZ) PCH(αZ) PLDF(αZ) PPZ(αZ)

10 8.8762(1) 8.9145 6.2670 6.1840 6.6098
12 8.1943(1) 8.2333 6.1987 6.1326 6.4787
14 7.6447(1) 7.6847 6.0614 6.0069 6.2955
16 7.1911(1) 7.2325 5.8998 5.8539 6.0995
18 6.8101(1) 6.8539 5.7349 5.6953 5.9081
20 6.4860(1) 6.5309 5.5740 5.5395 5.7264
24 5.9670(1) 6.0151 5.2844 5.2571 5.4065
28 5.5753(1) 5.6267 5.0429 5.0205 5.1446
30 5.4160(1) 5.4703 4.9412 4.9208 5.0351
32 5.2771(1) 5.3341 4.8509 4.8322 4.9382
40 4.8840(1) 4.9487 4.5900 4.5760 4.6588
48 4.6937(1) 4.7686 4.4789 4.4680 4.5375
50 4.6727(1) 4.7499 4.4723 4.4619 4.5290
56 4.6697(1) 4.7530 4.5028 4.4940 4.5557
60 4.7182(1) 4.8035 4.5658 4.5578 4.6171
64 4.8098(2) 4.8958 4.6670 4.6596 4.7173
70 5.039(1) 5.1144 4.8928 4.8865 4.9429
72 5.144(1) 5.2114 4.9908 4.9847 5.0411
80 5.753(3) 5.7437 5.5200 5.5152 5.5728
82 5.965(3) 5.9188 5.6926 5.6881 5.7464
90 7.19(2) 6.8284 6.5850 6.5818 6.6449
92 7.64(2) 7.1187 6.8689 6.8662 6.9309

The Breit-approximation recoil contributions are obtained
from Eq. (9) with the coefficients given in Table I. The
uncertainties include both the error bars presented in Table I
and the uncertainties due to the approximate treatment of the
nuclear size correction to the recoil effect. We have assumed
that the relative value of the latter uncertainty is equal to
the related contribution to the binding energy which was
evaluated within the Breit approximation in Ref. [47]. For the
QED recoil contribution we use the LDF values from Table II.
The uncertainty of this term is estimated as a sum of two con-
tributions. The first one is due to the approximate treatment
of the electron-electron interaction effect on the QED recoil
contribution. This uncertainty was estimated by performing
the calculations of the low-order (non-QED) one-electron
recoil contribution with the LDF potential and comparing
the obtained result with the total Breit recoil value evaluated
above. The ratio of the difference obtained to the non-QED
LDF result was chosen as the relative uncertainty of the
corresponding correction to the QED recoil contribution. Note
that this uncertainty exceeds the difference between the results
obtained for the different screening potentials presented in
Table II. The second contribution to the uncertainty is caused
by the approximate treatment of the nuclear size correction to

TABLE III. The Breit, QED, and total recoil contributions to the
g factor of the (1s )22s state of Li-like ions expressed in terms of the
function F (αZ) defined by Eq. (15).

Z FBreit FQED Ftotal

10 0.1962(1) 0.0003(1) 0.1965(1)
12 0.2056 0.0005(1) 0.2061(1)
14 0.2123 0.0008(1) 0.2131(1)
16 0.2173 0.0012(1) 0.2185(1)
18 0.2213 0.0016(2) 0.2229(2)
20 0.2245 0.0022(2) 0.2266(2)
24 0.2294 0.0035(3) 0.2330(3)
28 0.2332 0.0054(3) 0.2385(3)
30 0.2348 0.0065(4) 0.2412(4)
32 0.2362 0.0077(4) 0.2439(4)
40 0.2411 0.0142(6) 0.2553(6)
48 0.2452 0.0240(8) 0.2692(8)
50 0.2461 0.0271(9) 0.2732(9)
56 0.2487(1) 0.0383(11) 0.2871(11)
60 0.2503(1) 0.0478(13) 0.2982(13)
64 0.2517(2) 0.0593(15) 0.3110(16)
70 0.2533(3) 0.0814(20) 0.3347(20)
72 0.2536(4) 0.0904(22) 0.3440(22)
80 0.2533(10) 0.1372(30) 0.3904(32)
82 0.2525(12) 0.1523(33) 0.4048(36)
90 0.2446(28) 0.2331(54) 0.4777(61)
92 0.2410(35) 0.2597(65) 0.5007(73)

the recoil effect. It was estimated in the same way as for the
Breit recoil contribution. As one can see from Table III, for
very heavy ions the QED recoil effect becomes even bigger
than the Breit recoil contribution.

The total recoil contribution to the g factor should
also include small corrections of order α(αZ)2(m/M ) and
(αZ)2(m/M )2 and the related corrections of higher order in
αZ and in 1/Z. To the lowest order in αZ the corresponding
one-electron corrections were evaluated in Refs. [48–51].

IV. CONCLUSION

In this paper we have evaluated the nuclear recoil effect
of first order in m/M on the ground-state g factor of highly
charged Li-like ions. The Breit-approximation contributions
have been calculated to all orders in 1/Z by employing
recursive perturbation theory. The one-electron higher-order
(QED) recoil contribution was evaluated to all orders in αZ

with the wave functions which partly account for the electron-
electron interaction effects. As the result, the most precise
theoretical predictions for the recoil effect on the g factor of
highly charged Li-like ions are presented.
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