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Casimir force for magnetodielectric media
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Boyer showed that a perfect electrically conducting slab repels a perfect magnetically conducting slab, in
contrast to the attractive Casimir force between two identical perfect electrically or magnetically conducting
slabs. To gain insight for the difference between the Boyer force and the Casimir force, we present the derivation
of the Boyer force using the stress tensor method and then using the method of variation in dielectric. The Green
dyadic, in terms of electric and magnetic Green’s functions, is presented for an electric medium filling half of
space and another magnetic medium filling another half of space such that the two half-spaces are parallel and
separated by a distance a. We make the observation that the spectral distribution of scattering in a Boyer cavity is
that of Fermi-Dirac type, while the spectral distribution of scattering in a Casimir cavity is that of Bose-Einstein
type. Based on this observation we conclude that the difference between the Boyer force and the Casimir force
is governed by the statistics of the possible scattering in the respective cavities.
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I. INTRODUCTION

Consider the Boyer configuration of parallel slabs, con-
sisting of two parallel semi-infinitely thick plates, separated
by a vacuum gap a. Let the left plate be situated at z = a1

and the right plate at z = a2, so that a = a2 − a1; see Fig. 1.
Let the right plate be purely paramagnetic (μ > 1, ε = 1),
and the left plate purely dielectric (ε > 1, μ = 1). The Boyer
configuration of slabs should be contrasted with the Casimir
configuration of parallel slabs in Fig. 2. We shall be interested
in the pressure, called P here, between the slabs. For simplic-
ity we limit ourselves to zero temperature. (General treatises
on the Casimir effect can be found in Refs. [1–3].)

Stimulated by a suggestion from Casimir, Boyer [4] made
an explicit calculation of the force between an infinitely per-
meable magnetic medium (μ → ∞) and a perfect conductor
(ε → ∞). The interaction energy per unit area was found
to be

U = 7

8

π2h̄c

720a3
, (1.1)

which corresponds to a repulsive pressure

P = 7
8 |P0|, (1.2)

where

P0 = − π2h̄c

240a4
(1.3)

is the attractive force between two perfectly conducting plates.
As explained by Boyer, this is related to the fact that, while
an electrically polarizable particle is attracted to a conducting
wall, a magnetically polarizable particle is repelled by it (the
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latter case being analogous to the hydrodynamic flow from a
point or line source outside an impenetrable plane).

From the standpoint of optical physics this result is how-
ever rather perplexing. Consider for definiteness the electro-
magnetic force density f on the boundary layer in the left
plate; this force is purely electric, and is calculated from the
divergence of Maxwell’s stress tensor to be

f = − 1
2E2∇ε. (1.4)

In classical physics this force always acts towards the optically
thinner medium, that is, towards the vacuum region for the
plate in consideration. One can observe that the direction
of this force given by the direction of ∇ε is independent
of the magnetic properties of the right plate. The direction
is determined by the gradient of the dielectric permittivity
ε only. Even if the magnetic properties of the right plate
should change, the electric field E on the left plate would
change, but the direction of this force would be just the
same.

The magnitude of the surface pressure P can be found by
integrating the normal component fz across the boundary lo-
cated at z = a1. Now there are numerous cases in optics show-
ing the reality of the expression in Eq. (1.4). For example, the
classic experiment of Ashkin and Dziedzic [5], demonstrating
the outward bulge of a water surface illuminated by a radiation
beam coming from above, is of this sort, as is the newer
version of this experiment due to Astrath et al. [6] (a review
of some radiation pressure experiments of this sort can be
found in Ref. [7]). Also, the recent pressure experiment of
Kundu et al. [8], showing the deflection of a graphene sheet
upon laser illumination, belongs to the same category. In all
these cases, the force was found to act in the direction of the
optically thinner medium, in accordance with the expression
in Eq. (1.4).

If one leaves the regime of classical physics and moves
on to the quantum mechanical calculation of the Casimir
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FIG. 1. Boyer configuration of parallel slabs.

pressure, one finds analogous results as long as both plates,
separated by a vacuum gap, are either purely dielectric or
purely magnetic. This pressure is conventionally calculated
by taking the difference between the zz components of
Maxwell’s stress tensor on the two sides, making use of the
fluctuation-dissipation theorem when constructing the two-
point functions for the electric and magnetic fields. Again, the
pressure is found to be attractive, in accordance with Eq. (1.4).

Now return to the magnetodielectric case considered by
Boyer. At first glance one would think that the repulsiveness
of the force as mentioned above is in direct conflict with
Eq. (1.4). What is the physical reason for this? Formally, the
situation would mean that one has to reverse the sign of the
quadratic quantity E2 in Eq. (1.4). In view of this bizarre
situation, one would think that a revisit of the fundamental
assumptions behind electromagnetic theory in matter is de-
sirable. That was one of the motivations behind the present
paper.

We first present the Green function formalism in a general
way in Sec. II, and provide explicit solutions for the Green
dyadic in Sec. III, where the two plates are each allowed
to possess arbitrary, even frequency-dependent, values of μ

and ε, and calculate the surface force formally in Sec. IV.
Thereafter, we specialize to the Boyer case. We make the
observation that the spectral distribution of scattering in a
Boyer cavity is that of Fermi-Dirac type, while the spectral
distribution of scattering in a Casimir cavity is that of Bose-
Einstein type. Based on this observation we suggest that the
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μ = 1

ε > 1
μ = 1

a1 a2

a

FIG. 2. Casimir configuration of parallel slabs.

difference between the Boyer force and the Casimir force is
statistics of the possible scattering in the respective cavities.

Next, we inquire if the Boyer force is sensitive to a cutoff
in the frequency response of permeability μ. Calculations of
the Boyer force have usually assumed μ to be a constant for
all frequencies. It is easy to see that this is an oversimplified
model that violates one of the fundamentals of macroscopic
theory (cf. also the discussion in Ref. [9]): start from the
“microscopic” Maxwell equation (here in Heaviside-Lorentz
units)

∇ × h = ρv + ∂e
∂t

, (1.5)

where ρv is the local current density and h and e are the
local magnetic and electric fields. Space averaging gives
h = B with B the magnetic induction and e = E with E the
macroscopic electric field. Thus

∇ × B = ρv + ∂E
∂t

. (1.6)

Subtracting the Maxwell equation ∇ × H = ∂D/∂t we get

ρv = ∇ × M + ∂P
∂t

, (1.7)

with M = B − H and P = D − E.
Consider now the general definition of the magnetic mo-

ment m of a body,

m = 1

2

∫
r × ρv dV. (1.8)

This can be compared with the expression

1

2

∫
r × (∇ × M) dV =

∫
M dV, (1.9)

which is derived using vector manipulations observing that
M = 0 in the vacuum region outside the body. Since m =∫

M dV it follows that we can put ρv equal to ∇ × M.
Comparing with Eq. (1.7) we conclude that the consistency
of macroscopic electrodynamics depends on the possibility to
neglect the ∂P/∂t term. This can be made concrete further
by assuming that the body of linear size l is exposed to
an electromagnetic wave of frequency ω. We shall insert
speed of light c, momentarily, in expressions in this section
for the benefit of the reader. Order of magnitude estimates
give ∂P/∂t ∼ ωE ∼ ω2lH/c (the relationship E ∼ ωlH/c

used in the last estimate coming from the equation ∇ × E =
−∂B/∂t and E ∼ H ). The first term on the right-hand side of
Eq. (1.7) is ∇ × M = χ∇ × H, where χ is the susceptibility,
and is estimated to be of order cχH/l. Thus our consistency
condition reduces to

l2 � χc2/ω2, (1.10)

an inequality already given in Ref. [9]. It is easily seen that
the inequality in Eq. (1.10) is broken already at frequencies
ω much less than optical frequencies. And that is confirmed
by experiments also. For instance, for ferrite with μ ≈ 600
the maximum of the frequency ω/2π is reported to lie in
the region 100 kHz to 1 MHz [10]. The assumption about
a very large and constant permeability as used in the Boyer
calculation is obviously unphysical.
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In Sec. V we take the magnetic dispersion into account in a
crude way, by assuming μ to be constant up to a critical value
ω = ωc. For higher frequencies we set μ = 1. Thus

μ(ω) =
{
μ, ω < ωc,

1, ω > ωc.
(1.11)

As one might expect, we do not find a reversal of the sign
of the force in this way; the force still comes out repulsive.
So the basic problem alluded to at the beginning is not solved.
However, an important physical result of the calculation is that
the force turns out to be immeasurably small, when realistic
input data for ωc are inserted. This makes it evident why the
repulsive force has never been measured. It may finally be
mentioned that we will keep ε constant at all frequencies.
There is no comparably strong limit to the permittivity as it
is to the permeability.

In Sec. VI we consider the Boyer problem from a statistical
mechanical point of view, introducing a model where the
two media are represented by harmonic oscillators 1 and 2,
interacting with each other via a third oscillator 3. In this way
a mechanical analog to the conventional TE and TM modes
in electromagnetism is obtained. We find that the quantum-
mechanical transition from the TM to the TE mode, implying
that oscillator 3 interacts with oscillators 1 and 2 via canonical
momenta instead of positions, is an important point. In this
way the statistical mechanical analysis helps us to elucidate
the problem.

II. MAXWELL’S EQUATIONS

In Heaviside-Lorentz units the monochromatic compo-
nents of Maxwell’s equations, proportional to exp(−iωt ), in
the absence of net charges and currents, and in presence of
dielectric and magnetic materials with boundaries, are

∇ × E = iωB, (2.1a)

−∇ × H = iω(D + P). (2.1b)

These equations imply ∇ · B = 0 and ∇ · (D + P) = 0.
Here P is an external source of polarization, in addition to
the polarization of the material in response to the fields E and
H. The external source P serves as a convenient mathematical
tool and is set to zero in the end. In the following we neglect
nonlinear responses and assume that the fields D and B
respond linearly to the electric and magnetic fields E and H:

D(r, ω) = ε(r; ω) · E(r, ω), (2.2a)

B(r, ω) = μ(r; ω) · H(r, ω). (2.2b)

Using Eq. (2.1a) in Eq. (2.1b) we construct the following
differential equation for the electric field:

[
1

ω2
∇ × μ−1 · ∇ × −1 − χ

]
· E(r, ω) = P(r, ω), (2.3)

where

χ (r; ω) = ε(r; ω) − 1. (2.4)

The differential equation for the Green’s dyadic �(r, r′; ω) is
guided by Eq. (2.3),[

1

ω2
∇ × μ−1 · ∇ × −1 − χ

]
· �(r, r′; ω) = 1δ(3)(r − r′).

(2.5)

It defines the relation between the electric field and the polar-
ization source,

E(r; ω) =
∫

d3r ′�(r, r′; ω) · P(r′; ω). (2.6)

The corresponding dyadic for vacuum, obtained by setting
χ = 0, is called the free Green’s dyadic and satisfies the
equation[

1

ω2
∇ × μ−1 · ∇ × −1

]
· �0(r, r′; ω) = 1δ(3)(r − r′).

(2.7)

We can also define the relation between the magnetic field and
the polarization source,

H(r; ω) =
∫

d3r ′�(r, r′; ω) · P(r′; ω). (2.8)

Quantum electrodynamics

The Green dyadics gives the correlation between the fields
and sources, as per Eqs. (2.6) and (2.8),

δE(r; ω)

δP(r′; ω)
= �(r, r′; ω), (2.9a)

δH(r; ω)

δP(r′; ω)
= �(r, r′; ω). (2.9b)

In quantum electrodynamics the Green dyadics also serve as
correlations between the fields at two different points in space,
which are stated as

1

τ
〈E(r; −ω)E(r′; ω)〉 = 1

i
�(r, r′; ω), (2.10a)

1

τ
〈H(r; −ω)H(r′; ω)〉 = 1

i
�(r, r′; ω)

∣∣∣
E↔H,ε↔μ

, (2.10b)

1

τ
〈H(r; −ω)E(r′; ω)〉 = 1

i
�(r, r′; ω), (2.10c)

1

τ
〈E(r; −ω)H(r′; ω)〉∗ = 1

i
�(r, r′; ω), (2.10d)

where τ is the average (infinite) time for which the system is
observed.

III. GREEN’S DYADIC

For planar geometry, using translational symmetry in the
plane, we can define the Fourier transformations

�(r, r′; ω) =
∫

d2k⊥
(2π )2

eik⊥·(r−r′ )⊥γ (z, z′; k⊥, ω), (3.1a)

�(r, r′; ω) =
∫

d2k⊥
(2π )2

eik⊥·(r−r′ )⊥φ(z, z′; k⊥, ω). (3.1b)
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The reduced Green’s dyadics can be expressed in the form

γ =

⎡
⎢⎣

1
ε⊥(z)

∂
∂z

1
ε⊥(z′ )

∂
∂z′ g

H 0 1
ε⊥(z)

∂
∂z

ik⊥
ε||(z′ )g

H

0 ω2gE 0

− ik⊥
ε||(z)

1
ε⊥(z′ )

∂
∂z′ g

H 0 − ik⊥
ε||(z)

ik⊥
ε||(z′ )g

H

⎤
⎥⎦.

(3.2)

Here we have omitted the term

−δ(z − z′)

⎡
⎢⎣

1
ε⊥(z) 0 0

0 0 0

0 0 1
ε||(z)

⎤
⎥⎦ (3.3)

that contains a δ function and thus never contributes to interac-
tion energies between two bodies unless they are overlapping,
and

φ = iω

⎡
⎢⎣

0 1
μ⊥(z)

∂
∂z

gE 0
1

ε⊥(z′ )
∂

∂z′ g
H 0 ik⊥

ε||(z′ )g
H

0 − ik⊥
μ||(z)g

E 0

⎤
⎥⎦. (3.4)

Here the magnetic (TM mode) Green’s function gH (z, z′) and
the electric (TE mode) Green’s function gE (z, z′) are defined
using the differential equations

[
− ∂

∂z

1

ε⊥(z)

∂

∂z
+ k2

⊥
ε||(z)

− ω2μ⊥(z)

]
gH = δ(z − z′), (3.5a)

[
− ∂

∂z

1

μ⊥(z)

∂

∂z
+ k2

⊥
μ||(z)

− ω2ε⊥(z)

]
gE = δ(z − z′), (3.5b)

where ε = diag(ε⊥, ε⊥, ε||) is the permittivity tensor and μ =
diag(μ⊥, μ⊥, μ||) is the permeability tensor [11].

A. Electric Green’s function for Boyer configuration

For the Boyer configuration of slabs in Fig. 1 with isotropic
permittivity ε and permeability μ we have the differential
equation for the electric Green’s function

[
− ∂

∂z

1

μ(z)

∂

∂z
+ k2

⊥
μ(z)

− ω2ε(z)

]
gE (z, z′) = δ(z − z′),

(3.6)
where

ε(z) = 1 + (ε − 1) θ (a1 − z), (3.7a)

μ(z) = 1 + (μ − 1) θ (z − a2), (3.7b)

1

2

3

4

5

6

7

8

9

z

z

a1 a2

a1

a2

z
=

z

FIG. 3. Labels for the regions in the z-z′ space, used for specify-
ing the Green function.

with boundary conditions

gE (z, z′)
∣∣∣ai+δ

ai−δ
= 0, (3.8a)

{
1

μ(z)

∂

∂z
gE (z, z′)

}∣∣∣∣
ai+δ

ai−δ

= 0. (3.8b)

In terms of shorthand notations for typesetting

κ =
√

k2
⊥ + ζ 2, (3.9)

and

κε =
√

k2
⊥ + ζ 2ε, κμ =

√
k2
⊥ + ζ 2μ, (3.10)

and

κ̄ε = κε

ε
, κ̄μ = κμ

μ
, (3.11)

and

rε = rE
1 = κε − κ

κε + κ
, rE

2 = 0, (3.12a)

rH
1 = 0, rH

2 = κ̄μ − κ

κ̄μ + κ
= rμ, (3.12b)

and

�E = 1 − rεr̄μe−2κa, (3.13a)

�H = 1 − r̄εrμe−2κa, (3.13b)

where r̄ε is obtained by replacing κε → κ̄ε in rε and, similarly,
r̄μ is obtained by replacing κμ → κ̄μ in rμ. In the following
the label in the subscript represents the region in Fig. 3 in
which the variables z and z′ reside. The solution for the
electric Green’s function is

gE
1©(z, z′) = 1

2κε

e−κε |z−z′ | + 1

2κε

1

�E
[rε − r̄μe−2κa]e−κε |a1−z|e−κε |a1−z′ |, z, z′ < a1 < a2, (3.14a)

gE
4©(z, z′) = 1

κε + κ

1

�E
e−κε |a1−z|e−κ|z′−a1| − 1

κε + κ

1

�E
[r̄μe−κa]e−κε |a1−z|e−κ|a2−z′|, z < a1 < z′ < a2, (3.14b)

gE
5©(z, z′) = 1

2κ

1

�E

[
2κ

κε + κ

2κ

κ̄μ + κ
e−κa

]
e−κε |a1−z|e−κμ|z′−a2|, z < a1 < a2 < z′, (3.14c)
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and

gE
6©(z, z′) = 1

κε + κ

1

�E
e−κ|z−a1|e−κε |a1−z′| − 1

κε + κ

1

�E
[r̄μe−κa]e−κ|a2−z|e−κε |a1−z′ |, z′ < a1 < z < a2, (3.15a)

gE
2©(z, z′) = 1

2κ
e−κ|z−z′ | − 1

2κ

1

�E
[rε]e−κ|z−a1|e−κ|z′−a1| + 1

2κ

1

�E
[rεr̄μe−κa]e−κ|z−a1|e−κ|a2−z′ |

+ 1

2κ

1

�E
[r̄μrεe

−κa]e−κ|a2−z|e−κ|z′−a1| − 1

2κ

1

�E
[r̄μ]e−κ|a2−z|e−κ|a2−z′ |, a1 < z′, z < a2, (3.15b)

gE
7©(z, z′) = 1

κ̄μ + κ

1

�E
e−κ|a2−z|e−κμ|z′−a2| − 1

κ̄μ + κ

1

�E
[rεe

−κa]e−κ|z−a1|e−κμ|z′−a2|, a1 < z < a2 < z′, (3.15c)

and

gE
8©(z, z′) = 1

2κ

1

�E

[
2κ

κε + κ

2κ

κ̄μ + κ
e−κa

]
e−κμ|z−a2|e−κε |a1−z′ |, z′ < a1 < a2 < z, (3.16a)

gE
9©(z, z′) = 1

κ̄μ + κ

1

�E
e−κμ|z−a2|e−κ|a2−z′ | − 1

κ̄μ + κ

1

�E
[rεe

−κa]e−κμ|z−a2|e−κ|z′−a1|, a1 < z′ < a2 < z, (3.16b)

gE
3©(z, z′) = 1

2κ̄μ

e−κμ|z−z′| + 1

2κ̄μ

1

�E
[r̄μ − rεe

−2κa]e−κμ|z−a2|e−κμ|z′−a2|, a1 < a2 < z′, z. (3.16c)

B. Magnetic Green’s function for Boyer configuration

For the Boyer configuration of slabs in Fig. 3 the magnetic
Green’s function has the differential equation

[
− ∂

∂z

1

ε(z)

∂

∂z
+ k2

⊥
ε(z)

− ω2μ(z)

]
gH (z, z′) = δ(z − z′),

(3.17)
with boundary conditions

gH (z, z′)
∣∣∣ai+δ

ai−δ
= 0, (3.18a)

{
1

ε(z)

∂

∂z
gH (z, z′)

}∣∣∣∣
ai+δ

ai−δ

= 0. (3.18b)

The solution for the magnetic Green’s function is obtained
from the electric Green’s function by replacing κε → κ̄ε and
κ̄μ → κμ everywhere, except in the exponentials. This leads
to the replacements, rε → r̄ε, r̄μ → rμ, and �E → �H .

C. Perfect electric and magnetic conductors

In the limit ε → ∞ and μ → ∞, when the region z < a1

is a perfectly conducting electric medium and the region z >

a1 is a perfectly conducting magnetic material, we observe
that the region corresponding to a1 < z, z′ < a2 in Fig. 1 is
the only relevant region in the discussion as the fields vanish
inside the two perfectly conducting media. Thus we have

�PC = 1 + e−2κa. (3.19)

In this case, the explicit form for the Green functions can be
conveniently expressed as

gE (z, z′) = 1

κ

sinh κ (z< − a1) cosh κ (z> − a2)

cosh κa
, (3.20a)

gH (z, z′) = − 1

κ

cosh κ (z< − a1) sinh κ (z> − a2)

cosh κa
, (3.20b)

which is evaluated in region 2©. Here z< = Min(z, z′) and
z> = Max(z, z′). We make the observation that, on the bound-
aries of the perfectly conducting slabs at z = a1 and z = a2 of
the Boyer configuration, we have

gE (a1, a2) = 0, gE (a2, a2) = tanh κa

κ
, (3.21a)

gE (a1, a1) = 0, gE (a2, a1) = sinh κa

κ
, (3.21b)

and

gH (a1, a2) = 0, gH (a2, a2) = 0, (3.22a)

gH (a1, a1) = tanh κa

κ
, gH (a2, a1) = sinh κa

κ
. (3.22b)

We further make the observation that

∂

∂z

∂

∂z′ g
E (z, z′) = −κ2gH (z, z′), (3.23a)

∂

∂z

∂

∂z′ g
H (z, z′) = −κ2gE (z, z′), (3.23b)

such that

∂

∂z

∂

∂z′ [g
E (z, z′) + gH (z, z′)]|z=a1,z′=a1

= −κ2[gE (z, z′) + gH (z, z′)] (3.24)

and

gE (a1, a1) + gH (a1, a1) = tanh κa

κ
. (3.25)

IV. STRONG COUPLING: BOYER’S RESULT

For slowly varying fields, and assuming that the dissipation
in the system is negligible, the statement of conservation of
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momentum density,

ρE + ρv × B + ∂G
∂t

+ ∇ · T − 1

2
E2∇ε − 1

2
H 2∇μ = 0,

(4.1)
can be derived starting from the Maxwell equations [12],
where

G = D × B (4.2)

is the momentum density of the electromagnetic field and

T = 1 1
2 (D · E + B · H) − (DE + BH) (4.3)

is the stress tensor or the flux of the momentum density of the
electromagnetic field. Each term in Eq. (4.1) is interpreted as
a force when it is integrated over a volume V . The first two
terms in Eq. (4.1), together, contribute to the Lorentz force
acting on the charges inside volume V ,

fLor = ρE + ρv × B, (4.4)

where ρ is the density of charge and v is the velocity of
charges that contributes to current density ρv. The Lorentz
force is zero for a neutral medium. The third term in
Eq. (4.1), when integrated over volume V , is the measure of
the rate of change of electromagnetic momentum inside the
volume V ,

fm = ∂G
∂t

. (4.5)

This term is zero for slowly varying fields. The fourth term
in Eq. (4.1) measures the flux of the electromagnetic field
across the surface of the volume V and when integrated over
a volume V , as a consequence of the Gauss law, measures
the stress on the surface of the volume V due to the electro-
magnetic field. The force density due to this stress from the
radiation is

frad = −∇ · T. (4.6)

The fifth and the sixth terms in Eq. (4.1) are the rate of transfer
of electromagnetic energy to the dielectric and permeable
material inside the volume V ,

fε = − 1
2E2∇ε, (4.7a)

fμ = − 1
2H 2∇μ, (4.7b)

respectively. Together, we have

fLor + fm − frad + fε + fμ = 0. (4.8)

A. Stress tensor method

For a neutral dielectric medium, if we restrict to essentially
static cases when the fields are varying slowly, three of the five
terms in Eq. (4.8) can be neglected. In this case we have the
relation

frad = fε + fμ. (4.9)

We choose the volume V in our discussion to be an infinitely
thin film that encloses the surface of the dielectric medium.
In the Boyer configuration of Fig. 1 this has been illustrated
in Fig. 4. Equation (4.9) is the statement of balance of forces.

ε = 1
μ = 1

ε > 1
μ = 1

ε = 1
μ > 1

a1 a2

a1 + δa1 − δ

FIG. 4. Boyer configuration of parallel slabs with the illustration
of the integration volume V . The integration volume V represents an
infinitely thin film that encloses the surface of the dielectric slab at
z = a1. The surfaces of the film are at z = a1 − δ and z = a1 + δ,
and take the limit δ → 0.

Integrating Eq. (4.6) over the volume V , and using Gauss’s
law, the left-hand side of Eq. (4.9) gives the total radiation
force on the left plate,

Frad(t ) = −
∮

V

dS · T(r, t ). (4.10)

The time-averaged radiation force Frad is defined as the time
average of Frad(t ), τ = 2T ,

Frad = Frad(t ) = 1

τ

∫ T

−T

dt Frad(t ). (4.11)

The stress tensor is a bilinear construction of the fields. For
example, it involves the construction

E(r, t )D(r, t )

=
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
e−i(ω′−ω)tE(r, ω)∗D(r, ω′), (4.12)

which uses the Fourier transformation

E(r, t ) =
∫ ∞

−∞

dω

2π
e−iωtE(r, ω). (4.13)

Time average of a bilinear construction satisfies the Plancherel
theorem∫ ∞

−∞
dt E(r, t )D(r, t ) =

∫ ∞

−∞

dω

2π
E(r, ω)∗D(r, ω), (4.14)

which implies∫ ∞

−∞
dt T(r, t ) =

∫ ∞

−∞

dω

2π
T(r, ω). (4.15)

Thus we have, presuming τ = 2T → ∞,

Frad = − 1

τ

∫ ∞

−∞
dt

∮
V

dS · T(r, t ) (4.16a)

= − 1

τ

∫ ∞

−∞

dω

2π

∮
V

dS · T(r, ω). (4.16b)
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The fluctuations in the quantum vacuum do not contribute
to the mean value of the field and thus the field satisfies

〈E〉 = 0, (4.17)

but they contribute nonzero correlations in bilinear construc-
tions of fields, and are contained in Eqs. (2.10). In particular,
quantum vacuum fluctuations lead to nonzero contributions
in the flux tensor. The radiation force arising from these
contributions in the flux tensor, that are manifestations of the
quantum vacuum, is a force given by

F = − 1

2T

∫ ∞

−∞

dω

2π

∮
V

dS · 〈T(r, ω)〉. (4.18)

We can write the force on the half-slab at z = a1 to be

F · ẑ
A

= 1

i

∫ ∞

−∞

dζ

2π

∫
d2k⊥
(2π )2

[T33(a1 + δ) − T33(a1 − δ)],

(4.19)
where, using Eq. (4.3),

T33(a1 − δ) = 1

2

[
E2

1 + E2
2 − E2

3

]∣∣∣∣
a1−δ

+ 1

2

[
H 2

1 + H 2
2 − H 2

3

]∣∣∣∣
a1−δ

(4.20a)

= ε

2i

[
∂

ε

∂ ′

ε
− κ̄2

ε

]
gH

1©(a1, a1)

+ 1

2i

[
∂∂ ′ − κ2

ε

]
gE

1©(a1, a1) (4.20b)

and

T33(a1 + δ) = 1

2

[
E2

1 + E2
2 − E2

3

]∣∣∣∣
a1+δ

+ 1

2

[
H 2

1 + H 2
2 − H 2

3

]∣∣∣∣
a1+δ

(4.21a)

= −κ2

i

[
gE

2©(a1, a1) + gH
2©(a1, a1)

]
. (4.21b)

The stress tensor T33(a1 − δ) is zero inside the perfect con-
ductor. Thus, using Eq. (3.25), we obtain

P = F · ẑ
A

= 1

2π2

∫ ∞

0
κ3dκ tanh κa, (4.22)

which can be rewritten in the form

P = 1

2π2

∫ ∞

0
κ3dκ

[
1 − 2

e2κa + 1

]
, (4.23)

in which we have separated the divergent bulk contribution
that does not have any information about the slabs. Subtract-
ing the bulk contribution we have

P = − 1

π2

∫ ∞

0

κ3dκ

e2κa + 1
= −7

8

π2

240a4
, (4.24)

which is exactly the result obtained by Boyer. A negative force
on the left plate corresponds to repulsion between the slabs.

B. Variation in dielectric method

The force on the dielectric slab can also be evaluated using
the force density on the right-hand side of Eq. (4.9), which is
given by Eq. (4.7a) and is expressed in a more explicit form
here,

fε(r, t ) = −1

2

∫ ∞

−∞
dt ′[∇ε(r, t − t ′)] E(r, t ) · E(r, t ′). (4.25)

In terms of frequency this takes the form

fε(r, t ) = −1

2

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
e−i(ω−ω′ )

× [∇ε(r, ω)] E(r, ω′)∗ · E(r, ω). (4.26)

Time average of this force is calculated as, using τ =
2T → ∞,

Fε(r) = 1

τ

∫ ∞

−∞
dt fε(r, t ) (4.27a)

= −1

2

∫ ∞

−∞

dω

2π
[∇ε(r, ω)]

1

τ
E(r, ω′)∗ · E(r, ω).

(4.27b)

The force density, using Eq. (2.10a) in Eq. (4.27b), is
defined as

F(r) = 〈Fε(r)〉 (4.28a)

= −1

2

∫ ∞

−∞

dω

2π
[∇ε(r, ω)] tr �(r, r; ω), (4.28b)

where trace tr is over the matrix index. The total force on a
volume V is

F =
∫

V

d3r F(r) (4.29a)

= −1

2

∫ ∞

−∞

dω

2π

∫
V

d3r [∇ε(r, ω)] tr �(r, r; ω). (4.29b)

This expression, in contrast to the expression for the Casimir
force Eq. (4.18), is another expression for the Casimir force
of a fundamentally different origin. For planar configurations,
using Eq. (3.1), and after switching to imaginary frequency,
ω → iζ , the Casimir force per unit area on the slab at z = a1

in Fig. 1 is

F · ẑ
A

= −1

2

∫ ∞

−∞

dζ

2π

∫
d2k⊥
(2π )2

∫ a1+δ

a1−δ

dz

× [ẑ · ∇ε(r, ω)] tr γ (z, z; k⊥, ω). (4.30)

For the Boyer configuration in Fig. 1 we have

ẑ · ∇ε(r, ω) = −(ε − 1)δ(z − a1). (4.31)

Assuming frequency-independent dielectric function we have

F · ẑ
A

= (ε − 1)

2

∫ ∞

−∞

dζ

2π

∫
d2k⊥
(2π )2

tr γ (a1, a1; k⊥, ω), (4.32)
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where

tr γ (a1, a1; k⊥, ω)

= 1

ε(z)

∂

∂z

1

ε(z′)
∂

∂z′ g
H (z, z′)

∣∣∣∣
z=a1, z′=a1

−ζ 2gE (a1, a1) + k2
⊥

ε(z)ε(z′)
gH (a1, a1). (4.33)

The continuity conditions for the Green functions allow the
evaluation of gE (a1, a1), gH (a1, a1), and ∂∂ ′gH (a1, a1)/(εε′),
without caring about from which region in Fig. 3 the variables
z and z′ approach a1. This still leaves the regions from which
z and z′ approach a1 in

k2
⊥

ε(z)ε(z′)
(4.34)

undetermined. Following the suggestion in Ref. [13] we will
require z and z′ to approach the interface at a1 from opposite
sides. This is necessary because otherwise the contribution
to the Green dyadic from Eq. (3.3) will contribute spurious
divergences. This is achieved by evaluating γ (a1, a1; k⊥, ω)
in region 4© or in region 6© of Fig. 3. Thus

tr γ 4©(a1, a1; k⊥, ω) = 1

ε
∂∂ ′gH

4©(a1, a1) + k2
⊥
ε

gH
4©(a1, a1)

−ζ 2gE
4©(a1, a1). (4.35)

The pressure in Eq. (4.32) involves the evaluation of

(ε − 1) tr γ 4©(a1, a1; k⊥, ω), (4.36)

which needs a little care when taking the perfect conductor
limit. Observe that the electric Green function gE (a1, a1) = 0.
Thus the term ζ 2(ε − 1)gE (a1, a1) in the perfect conductor
limit is ambiguous if we take the perfect conductor limit early
in the calculation. To this end we define the parameter

s = 1 − rε, (4.37)

which goes to zero in the perfect electric conductor limit. We
note that

gE
4©(a1, a1) = s

2κ

[
1 − s

r̄μe−2κa

�E

]
(4.38)

and

ζ 2(ε − 1) = 4κ2

(
1

s
− 1

)
1

s
, (4.39)

which brings out the divergence structure and the related can-
cellations in the perfect conductor limit. Thus the contribution
from the TE mode in Eq. (4.36) is

TE : −ζ 2(ε − 1)gE
4©(a1, a1) = 2κ − 2κ

s
+ 2κ

rεr̄μ

�E
e−2κa.

(4.40)

The rest of the contributions in Eq. (4.36) is the TM mode,
which can be shown to be

TM :
1

ε
∂∂ ′gH

4©(a1, a1) + k2
⊥
ε

gH
4©(a1, a1)

= 2κ − 2κ

s
+ 2κ

r̄εrμ

�H
e−2κa. (4.41)

The evaluation of the contribution to the TM mode was
assisted by the identities [14]

k2
⊥ ± κκε = − κ̄ε ∓ κ

κε ∓ κ
ζ 2ε. (4.42)

Using the contribution from TE mode in Eqs. (4.40) and TM
mode in Eq. (4.41) to evaluate Eq. (4.36), and using it in
Eq. (4.32), and rewriting 2κ/s = κε + κ , the total pressure in
Eq. (4.32) takes the form

F · ẑ
A

=
∫ ∞

−∞

dζ

2π

∫
d2k⊥
(2π )2

×
[
κ − κε + κ

(
rεr̄μ

�E
+ r̄εrμ

�H

)
e−2κa

]
, (4.43)

where �E and �H are given using Eqs. (3.13). The first term
in Eq. (4.43) is the contribution from the empty space when
the slabs are removed, which is divergent. The second term is
the contribution due to the change in the single-body energy
due to the variation in the dielectric medium, which is also
divergent. The remaining term in the perfect conductor limit
leads to

F · ẑ
A

= − 1

π2

∫ ∞

0

κ3dκ

e2κa + 1
= −7

8

π2

240a4
. (4.44)

Again, we reproduce the Boyer result.

C. Juxtaposition

In the Casimir (or Lifshitz) configuration of Fig. 2 when we
require both slabs to have the same dielectric property, ε > 1,
with no magnetic property, μ = 1, we recall, for example in
Ref. [13], the corresponding expression for the Casimir force
to be

FCas · ẑ
A

=
∫ ∞

−∞

dζ

2π

∫
d2k⊥
(2π )2

×
[
κ − κε + κ

(
r2
ε

�E
Cas

+ r̄2
ε

�H
Cas

)
e−2κa

]
, (4.45)

where

�E
Cas = 1 − r2

ε e−2κa, (4.46a)

�H
Cas = 1 − r̄2

ε e−2κa. (4.46b)

In the perfect conductor limit the expression in Eq. (4.45)
takes the form

FCas · ẑ
A

= 1

π2

∫ ∞

0

κ3dκ

e2κa − 1
= π2

240a4
, (4.47)

which is the attractive Casimir pressure on the left perfect
conducting slab.

The display of Eq. (4.43), that leads to the Boyer force,
and Eq. (4.45), that leads to the Casimir force, brings out
the close similarity in the two expressions, and reveals the
fine differences between them. We observe that the difference
in the reflection coefficients of the second slab in the Boyer
and Casimir configurations in Figs. 1 and 2 is the source
of the dissimilarity in the two expressions. We note that the
relative sign difference between the Boyer and the Casimir
configuration arises because in the perfect electric conducting
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limit (ε → ∞) and perfect magnetic conducting limit (μ →
∞) we obtain a relative sign difference,

rεr̄μ → −1, r̄εrμ → −1 (4.48)

versus

r2
ε → 1, r̄2

ε → 1. (4.49)

Thus, in perfect conducting limits, after dropping the first
two divergent terms in Eqs. (4.43) and (4.45), that removes
the bulk and single-body contributions, the expression for
the pressure on the left slab is given by the third term in
Eqs. (4.43) and (4.45), which differ by an overall sign, in addi-
tion to the difference in sign in their denominators. This is the
difference in sign (direction) between the pressures on the left
slab in the Boyer and Casimir configuration. We also note that,
in the perfect conducting limits, �E and �H for the Boyer
configuration go to 1 + e−2κa , while the corresponding factors
�E

Cas and �H
Cas in the Casimir configuration go to 1 − e−2κa .

This renders to the difference in sign in the denominators
of Eqs. (4.44) and (4.47), and leads to the classic relative
factor of

7

8
=

∫ ∞
0

κ3dκ
e2κa+1∫ ∞

0
κ3dκ

e2κa−1

(4.50)

in Eq. (4.44).
The Boyer configuration and the Casimir configuration

of Figs. 1 and 2 can, both, independently, be interpreted to
form a cavity, which are by construction different in their
constituent boundaries. We shall call them the Boyer cavity
and the Casimir cavity. If a monochromatic electromagnetic
wave completes one closed loop in a Casimir cavity, involving
a reflection off the right dielectric slab and then a reflection
off the left dielectric slab, it is effectively unchanged, because
r2
ε = 1. On the other hand, if a monochromatic electromag-

netic wave completes a closed loop in a Boyer cavity, it
develops a phase difference of π because rεr̄μ = −1. Further,
after completing two closed loops in a Boyer cavity the wave
returns back to its original state. In this sense, the Boyer cavity
is topologically different from a Casimir cavity.

In the multiple scattering formalism, the Casimir force
and the Boyer force can be interpreted as the sum of all
possible scattering inside the respective cavities. That is, the
integrals in Eqs. (4.44) and (4.47), respectively, are interpreted
as the sum of all possible permutations and combinations
of scattering possible in the respective cavities. This can
be more explicitly illustrated by expanding the integrand of
Eqs. (4.44) and (4.47), as a binomial expansion in e−2κa . This
assemblage of all possible permutations and combinations of
scattering inside a cavity gives the cavity itself a statistical
identity. In other words, the spectral distribution of scattering
inside a Casimir cavity is described by Bose-Einstein distri-
bution, while the spectral distribution of scattering inside a
Boyer cavity is described by Fermi-Dirac distribution. Thus,
in conclusion, the source for the difference in the Casimir
force and the Boyer force lies in the fact that the respective
cavities have fundamentally different statistics describing the
scattering inside the respective cavities.

The Boyer configuration and the Casimir configuration in
Figs. 1 and 2 are special cases of more general boundary

conditions that have been studied for two magnetoelectric
δ-function plates in Ref. [15]. Similar general boundary con-
ditions for a scalar field have been extensively studied in
Ref. [16]. This, then, suggests a class of statistics associated
with the distribution of scatterings inside such general config-
urations. However, these characteristics are dependent on the
parameters describing the material. The special extreme limits
of the Boyer and Casimir configuration has the nice feature
that it has no dependence on the particular material properties.

V. FINITE COUPLING USING STRESS TENSOR METHOD

The perfect coupling limit in Sec. III C and Sec. IV is
an extreme limit, and it is instructive to consider the finite
coupling case for real materials. We need to evaluate the
pressure along the z direction given in (4.19) using the scalar
electric and magnetic Green’s functions for the finite value of
permittivity and permeability in Eqs. (4.20b) and (4.21b). We
obtain

T33(a1 − δ) = −κε

i
, (5.1)

which is just the contribution coming from the single-body
bulk terms in the Green function, while

T33(a1 + δ) = −κ

i
− κ

i

(
rεr̄μ

�E
+ r̄εrμ

�H

)
e−2κa. (5.2)

Dropping the bulk contributions in T33(a1 − δ) and T33(a1 +
δ) in Eqs. (5.1) and (5.2) we find

Pε =
∫ ∞

−∞

dζ

2π

∫
d2k⊥
(2π )2

κ

(
rεr̄μ

�E
+ r̄εrμ

�H

)
e−2κa, (5.3)

which is identical to what we obtained in Eq. (4.43), if the
dropped terms were reintroduced. We can write Eq. (5.3) in a
spherical polar coordinate system after defining k⊥ = κ sin θ

and ζ = κ cos θ , then it is straightforward to carry out the κ

integration, to obtain

Pε = 3

16π2a4

∫ 1

0
dt[Li4(rεr̄μ) + Li4(r̄εrμ)], (5.4)

where Li4(x) is the polylogarithm function and

rε(t ) =
√

1 + (ε − 1)t2 − 1√
1 + (ε − 1)t2 + 1

, (5.5a)

rμ(t ) =
√

1 + (μ − 1)t2 − 1√
1 + (μ − 1)t2 + 1

, (5.5b)

and

r̄ε(t ) =
√

1 + (ε − 1)t2 − ε√
1 + (ε − 1)t2 + ε

, (5.6a)

r̄μ(t ) =
√

1 + (μ − 1)t2 − μ√
1 + (μ − 1)t2 + μ

. (5.6b)

It is not a priori obvious whether this pressure is attractive or
repulsive on the left boundary. Even for the simple nondis-
persive case it is not easy to do the remaining integration
analytically. The plot of the integrand from zero to 1 is always
negative, implying that the pressure on the left boundary is
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ε = 108, μ = 108
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ε = 102, μ = 102

ζca

Pε

FIG. 5. Casimir pressure on the left interface of a material
medium with electrical permittivity ε interacting with a material
medium of magnetic permeability μ with cutoff frequency ζc in
Eq. (1.11) plotted as a function of (ζca). Here P∞ is the Boyer result
for the perfectly electrically conducting and perfectly magnetically
conducting half-spaces. Realisitic frequency responses in magnetic
materials do not go beyond 1 MHz, which corresponds to ζca ∼ 10−8

for a = 1 μm, for which the pressure is immeasurably small.

still repulsive. We can carry out the integration numerically
and observe that the ratio of the pressure on the left wall for
the real material to Boyer’s pressure is always positive and
approaches Boyer’s result for very large values of permittivity
and permeability.

To make our analysis include dispersion, we resolve to a
simple model for the permeability as described in Eq. (1.11) in
which we break up the frequency integration in (5.3) into two
parts. We assume μ to be constant up to a critical frequency
ζc = −iωc; thereafter, we set μ = 1. Clearly, we will not get
any contribution for the higher frequencies beyond ζc for our
system as there is no interface on the right when μ = 1.

In Fig. 5, we plot the pressure Pε normalized to the Boyer
value for the perfectly conducting case P∞ as a function of the
dimensionless product ζca in Eq. (1.11) for different values
of permittivity and permeability. For reference, at a = 1 μm
the cutoff frequency is ωc = c/a = 3 × 1014 Hz. The positive
values for Pε/P∞ imply that the pressure between a real elec-
tric and magnetic media is still repulsive. For very high values
of respective permittivity and permeability of two media,
the Casimir pressure approaches Boyer’s result as expected,
while for more realistic values it remains less than Boyer’s
result. Realistic frequency responses in magnetic materials
do not go beyond 1 MHz, which corresponds to ζca ∼ 10−8

for a = 1 μm, for which the pressure is immeasurably small.
This connects with the fact that the Boyer repulsion has never
been experimentally measured.

VI. STATISTICAL MECHANICAL CONSIDERATIONS

In this section we try to give an alternative explanation of
the Boyer problem by drawing quantum statistical mechanics
into consideration.

Let the two media (half-spaces), separated by a gap a, be
general dielectrics endowed with arbitrary constant values of ε

and μ. We introduce a model where the media are represented
by harmonic oscillators 1 and 2, interacting with each other
via a third oscillator 3. The last oscillator represents the
electromagnetic field. In the generalized version of the model,
the third oscillator represents an assembly of oscillators. An
advantage of this model is that it provides a mechanical analog
to the conventional TE and TM modes in electromagnetism.
Among these, the TM modes are the easiest ones to visualize,
among other things, because the induced interaction increases
when the temperature T increases, so as to reach the classical
limit for high T . By contrast, in the TE case the force goes
to zero in the classical case because the zero Matsubara
frequency will not contribute. And, as we will show, this
harmonic-oscillator model is able to shed some further light
on the Boyer problem also. We have actually introduced the
model in earlier works, in connection with the Casimir effect
[17–19], although the model does not seem to be well known.

Let us sketch some essentials of the formalism. As is
known, the classical partition function Z of a harmonic os-
cillator is Z = 1/(h̄βωi ), with β = 1/(kBT ), where ωi here
is the eigenfrequency of an oscillator. It means that the free
energy is

F = − 1

β
ln Z ∼ ln ωi. (6.1)

If there are three noninteracting oscillators the inverse parti-
tion function is thus proportional to

√
Q, where

Q = a1a2a3, ai = ω2
i (i = 1, 2, 3). (6.2)

When going over to quantum statistical mechanics (path-
integral method [20,21]), the classical system is imagined to
be divided into a set of classical harmonic-oscillator systems.
It implies the substitutions

Q = A1A2A3, Ai = ai + ζ 2 = ω2
i + ζ 2, (6.3)

where now ζ = iω is the Matsubara frequency.
We assume that oscillators 1 and 2 interact via oscillator 3,

and assume for simplicity that all oscillators are one dimen-
sional. Taking the interaction to be bilinear, thus expressible
in the form cxixj with c a coupling constant, we obtain the
following determinant:

Q =
∣∣∣∣∣∣
A1 0 c

0 A2 c

c c A3

∣∣∣∣∣∣
= A1A2A3(1 − D1)(1 − D2)

×
[

1 − D1D2

(1 − D1)(1 − D2)

]
, (6.4a)

where

Dj = c2

AjA3
(j = 1, 2). (6.5)

Here the first term A1A2A3 refers to the noninteracting os-
cillators. The terms Aj (1 − Dj ) (j = 1, 2) are the separate
interactions between 1-3 and 2-3, while the last term is the
Casimir energy. If Q > 0, the Casimir energy is negative,
corresponding to an attractive force.

This is the straightforward part of the analysis and cor-
responds to the electromagnetic TM mode. The TE mode is
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more intricate, as it corresponds to oscillator 3 interacting
with the momenta of oscillators 1 and 2. The interaction
replaces the term p2

j /2mj with (pj − eA)2/2mj , where pj is
the canonical momentum and A the vector potential. In the
oscillator model the analogous energy takes the form

1

2
mjaj

(
pj − c

aj

x3

)2

. (6.6)

Now again c is the coupling parameter and x3 corresponds
to A3.

The important outcome of this is that the A3 in the deter-
minant Q is changed,

A3 → A3 + c2

a1
+ c2

a2
. (6.7)

This means that Q can be written as

Q =
∣∣∣∣∣∣
A1 0 c

0 A2 c

cq1 cq2 A3

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
A1 0 ζc√

a1

0 A2
ζc√
a2

− ζc√
a1

− ζc√
a2

A3

∣∣∣∣∣∣∣
, (6.8)

using the property of determinants in the second equality,
where

qj = 1 − Aj

aj

= −ζ 2

aj

(j = 1, 2). (6.9)

The determinant Q can still be expressed as in Eq. (6.4a), but
now with

Dj = − ζ 2c2

ajAjA3
< 0. (6.10)

The induced force is still attractive since D1D2 > 0, although
both factors are negative.

Proceed now to the third and final step. Assume for def-
initeness that only oscillator j = 2 has the form (6.6). Then

A3 changes to

A3 → A3 + c2

a2
, (6.11)

and the determinant (6.8) changes to

Q =

∣∣∣∣∣∣∣
A1 0 c

0 A2
ζc√
a2

c − ζc√
a2

A3

∣∣∣∣∣∣∣
. (6.12)

This implies that

D1 = c2

A1A3
> 0, D2 = − ζ 2c2

ajAjA3
< 0, (6.13)

so that D1D2 < 0 and the induced force becomes repulsive.
Looking back, we are now able to summarize what were

the characteristic properties of the harmonic-oscillator model
making the transition from an attractive to a repulsive force
possible as follows.

(1) The generalization ai → Ai in Eq. (6.3), meaning
incorporation of the discrete Matsubara frequencies ζ .

(2) The modification of A3 in Eq. (6.7), corresponding
to the transition from the TM to the TE mode. In turn, this
is related to the oscillator 3 interacting with oscillators 1
and 2 via canonical momenta pj , instead of via positions xi

(interaction energy cxixj ) as was characteristic for the TM
mode.

When seen in this way, the basic reason for the
Boyer problem is linked to quantum mechanics. This
is a satisfactory conclusion, since otherwise, in classi-
cal electrodynamics, the sign reversal of E2 in the force
expression − 1

2E2∇ε, as noted above, would be quite
nonunderstandable.
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