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Casimir forces and quantum friction of finite-size atoms in relativistic trajectories
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We revisit the atom-plate quantum friction and Casimir force with a full-relativistic formalism for atoms
modeled as Unruh-DeWitt detectors with arbitrary relativistic trajectories in arbitrary quantum states (including
coherent superpositions) close to a plate with any possible boundary condition. Particularizing for conducting
plates, we show that, for relative velocities close to c, the quantum friction diverges while the Casimir force is
almost independent of the velocity. Since we include the effect of the finite size of the detector and the finite
interaction time, we also obtain quantum friction when the detector is isolated but follows a noninertial trajectory.
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I. INTRODUCTION

Quantum friction is the appearance of a reaction force to the
movement of a neutral object in the presence of a quantum field
[1]. Quantum friction is strongly related with the dynamical
Casimir effect, which is the emission of real particles by
moving objects in the presence of a quantum field [2–5].

The study of quantum friction between atoms, and between
atoms and dielectric (and metallic) plates, has been studied
in great detail since it is the simplest nontrivial model for the
interaction of microscopic objects (e.g., atoms, molecules, etc.)
and macroscopic objects (e.g., mirrors, dielectric spheres, etc.).
It is impossible to cite all works on the topic due to their sheer
abundance, but as a token, the quantum friction between atoms
has been studied in, e.g., [6–8]. The friction between atoms and
plates has been studied in [9–19], among others. The case of
rotation friction has been analyzed in, e.g., [20–23]. The effect
of acceleration in quantum friction in the context of the Unruh
effect has been studied in, e.g., [24–28]. Analyses from the
perspective of the dynamical Casimir effect for nonuniform
trajectories and in curved spaces have been performed in, e.g.,
[29,30]. The friction forces between macroscopic objects has
also been studied in, e.g., [31–37]. The relation of quantum
friction with the fluctuation-dissipation theorem has been
considered in [38–41], etc.

The Casimir forces [42] or Van der Waals forces in the
nonrelativistic regime were studied between atoms in the
seminal work [43], and between parallel perfect metal plates in
[44]. Lifshitz included the material properties of the plates into
the formalism in [45]. Several approaches to the calculation of
those forces, as the pairwise summation approximation [46]
and the proximity force approximation [47], have been widely
employed, although their range of validity has been justified
only recently [48,49]. A formal complete solution for multiple
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macroscopic arbitrary shaped linear optical materials has been
obtained in [50–52]. Since then, this solution inspired new
numerical methods [53] and theoretical research, with the de-
velopment of the trace formalism [54] for nonequilibrium and
nonstationary setups [31]. See, for example, [55] for a review.

Usually, in the calculations of the Casimir and quantum
friction forces with atoms, the atoms are modeled as pointlike
objects. One may justify this arguing that, at the end of the day,
atoms are small and usually their characteristic length is the
smallest one of all scales involved in any experiment. However,
it is not unusual that the distance between interacting atoms
would be of the order of their respective atomic radii; this is the
case, for example, of the Van der Waals interaction that appears
in the Lennard-Jones potential. It would be natural that, at those
scales, the shape of the atom will be relevant. Additionally,
the pointlike nature of the atom has been responsible for the
appearance of divergences in the calculation of these forces
in the past (e.g., [56]). In the study of the relativistic aspects
of the light matter interaction it is well known, however, that
considering the finite size of the atoms cures the models from
these divergences [57,58].

In this paper, we perform a time-dependent relativistic
analysis of the Casimir force and the quantum friction on
atoms (taking into account their internal dynamics) in the
presence of extended objects. In previous literature on quantum
friction atoms have been mostly considered in their ground
states (or in few remarkable exceptions the excited state
[59,60]). In this paper, we also analyze the dependence of
these forces on the internal state of the atoms (the full density
matrix characterizing the quantum state of the atoms including
coherent and incoherent superpositions of ground and excited
states). Furthermore, we do not approximate the atoms as
pointlike objects, instead we consider the full spatial extension
of the atom, which removes the divergences present in other
pointlike calculations.

To do a covariant study of the Casimir and quantum
friction forces, we model the interaction of the atoms and the
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quantum field with the Unruh-DeWitt model. While this model
simplifies the nature of the field and the atom and considers a
scalar coupling, it has been shown that Unruh-DeWitt detectors
capture the relevant features of the light-matter interaction
when the exchange of angular momentum between the field and
the detector is not dominant for the phenomenology studied
[61,62]. In any case, the formalism developed here is easily
generalizable to the electromagnetic field case as seen, e.g., in
[61,63].

Concretely, we develop the formalism of finite-time Casimir
and quantum friction forces for relativistic atoms undergoing
arbitrary trajectories, in the presence of macroscopic objects
modeled by their T scattering matrix via the Lippmann-
Schwinger equation.

By performing a fully relativistic finite-time study of the
Casimir force and quantum friction, we find that there is an
additional term of the quantum friction force for free atoms
moving in the presence of the field vacuum in nonequilibrium
regimes. As far as the author’s knowledge goes, this has not
been the focus of previous literature. Namely, the fact that there
is a four-force always present when the detector interacts with
a field regardless whether there is any other object present
other than the detector. This force will depend on the shape
of the detector and on its trajectory, and it is present even
when the field and the detector are in their ground state, in
contrast to the case studied in [64,65], where a thermal bath was
present.

II. SETUP

Let us first introduce the atom-field interaction model that
we will use throughout the paper. For simplicity, we will
model the atom as a two-level quantum system (we denote
|g〉 the ground state and |e〉 the excited state), monopolarly
coupled to a scalar field. This is the well-known Unruh-DeWitt
(UDW) detector model [66], which has been shown to capture
the features of the light-matter interaction when there is no
exchange of angular momentum [67,68] (see [61] for a more
in-depth discussion).

The Hamiltonian of the atom-field system in the interaction
picture is given by

Ĥ = ĤA + Ĥφ + ĤI . (1)

As we will see later on, only the interaction part of the
Hamiltonian will be relevant to the Casimir and quantum
friction forces. In any case, a full discussion of the motivation
and the form of the different terms in the Hamiltonian can be
found, e.g., in [62].

Let us consider a detector, modeling an atom, that moves
with an arbitrary trajectory coupled to the scalar field. There are
two relevant reference frames in the problem: the laboratory
frame (t, x), assumed to be inertial, and the detector’s center-
of-mass reference frame (τ, ξ ). In this work we will not con-
sider the detector to be a pointlike object. Rather, we study the
more general case of a finite-size detector smeared in its own
frame moving in an arbitrary trajectory (for which a pointlike
detector is a particular case). The reasonable hypothesis for a
physical detector (for example, an atom) is that it has to keep
internal coherence as it moves. We will make the assumption
that the detector is rigid (keeps its shape) in its center-of-mass

reference frame [57,67,69]. That means that the internal forces
that keep the detector together will prevent it from being
further smeared due to its (possibly) noninertial motion, up to
accelerations where atomic coherence is compromised (which
can be surprisingly large, see [62] and [70]).

The interaction Hamiltonian that generates translations
with respect to the atom’s proper time τ , in the interaction
picture (notated with a prefix subindex D), can be written in
a very compact way following the formalism of [57,62,69].
Namely,

DĤ τ
I = λh̄c χ (τ (t ))

∫
dξ f (ξ )μ̂(τ )φ̂(t (τ, ξ ), x(τ, ξ )), (2)

where
(1) χ (τ (t )) is the switching function which we have written

as an implicit function of t since it will be assumed to be set
in the laboratory’s reference frame (the experimenter controls
the switching).

(2) f (ξ ) is the spatial smearing of the detector (can be
thought of as the density of the detector in its center-of-mass
reference frame). This generically shaped detector includes the
pointlike case as the particular choice f (ξ ) = δ(ξ ).

(3) μ̂(τ ) = σ̂+ei�τ + σ̂−e−i�τ is the detector’s mono-pole
moment. h̄� is the difference between the energy of the ground
state and the excited state (energy gap).

(4) φ̂(t (τ, ξ ), x(τ, ξ )) is a massless scalar field. For sim-
plicity, the field quantization frame (t, x) is assumed to be
inertial (for example, the laboratory frame).

For further detail on how the prescription of the Hamiltonian
(2) comes from first principles in the relativistic approach to
the light-matter interaction one can check [62].

III. QUANTUM FRICTION FORCES FOR A RELATIVISTIC
INERTIAL DETECTOR

A. Relativistic detector in an arbitrary trajectory

For any point of the detector’s trajectory, even if the
trajectory is arbitrary, at any given point in time t there is a
Lorentz transformation between the inertial laboratory’s frame
(t, x) and the comoving frame with the detector’s center of
mass [62] (τ, ξ ) at that instant. Let us notate that instantaneous
Lorentz transformation as � ν

μ (t ):(
cdt

dx

)ν

= � ν
μ (τ )

(
cdτ

dξ

)μ

, (3)

where the general instantaneous Lorentz transformation is
defined as

�(t ) = ei[K ·ζ (t )+J ·θ (t )]. (4)

Each possible trajectory is defined locally by the vectors ζ (t )
and θ (t ) (instant rapidity and instantaneous rotation vector,
respectively) and by an initial condition. The rapidity is defined
as

ζ (t ) = ev (t ) arctanh

( |v(t )|
c

)
, (5)

where the unitary vector in the direction of v is ev (t ) :=
v(t )/|v(t )| and v(t ) := dx(t )

dt
. The instantaneous rotation vector

θ is a vector whose direction is the instantaneous rotation axis
and whose modulus is the instantaneous rotation angle.
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The infinitesimal generators of Lorentz transformations can
be represented as

(Kj ) ν
μ = −i

(
δ

ν

j + δ j
μ

)
, (6)

(Jj ) ν
μ = i δμαε0jαν, (7)

where the Einstein summation convention is assumed, Latin
indices go from 1 to 3, and Greek indices go from 0 to 3.

B. General expression for arbitrary trajectories

Substituting Eq. (4) into (3), we get the full coordinate
transformation between the inertial and noninertial frames as

xμ =
∫ τ

τ0

dτ ′� μ
0 (τ ′) + �

μ

j (τ )ξ j . (8)

The trajectory of the detector’s center of mass in its own
reference frame is

ξμ
c.m.(τ ) =

(
cτ

0

)
. (9)

This trajectory, seen in the laboratory’s reference frame [i.e.,
the trajectory of the center of mass of the detector, which is the
origin of the coordinates (τ, ξ ), as seen from the laboratory] is

xμ
c.m.(τ ) = (ct (τ, 0), x(τ, 0)), (10)

therefore, using Eq. (9) in Eq. (8), we get the trajectory in the
laboratory’s frame as

xμ
c.m.(τ ) =

∫ τ

τ0

dτ ′� μ
0 (τ ′). (11)

We need to substitute this trajectory in the interaction picture
Hamiltonian (2). The scalar field operator in the interaction
picture can be expanded in an arbitrary basis uk(t, x) as

φ̂(t, x) =
∫

dd k[â†
kuk(t, x) + âku

∗
k(t, x)]. (12)

If we now express the field in terms of the proper coordinates
of the detector ξμ = (τ, ξ ) we obtain

φ̂(t (τ, ξ ), x(τ, ξ ))

=
∫

dd k[â†
kuk(xμ(τ, ξ )) + âku

∗
k(xμ(τ, ξ ))]

=
∫

dd k
[
â
†
kuk

(∫ τ

τ0

dτ ′� μ
0 (τ ′) + �

μ

j (τ )ξ j

)
+ H.c.

]
.

(13)

In this fashion, we can now write the interaction Hamiltonian as
an explicit function of the detector’s center-of-mass trajectory
xμ

c.m.(τ ) as

DĤ τ
I

(
xμ

c.m.(τ )
) = λ h̄ cχ (τ (t ))

∫
dξ f (ξ )μ̂(τ )

× φ̂

(∫ τ

τ0

dτ ′� μ
0 (τ ′) + �

μ

j (τ )ξ j

)

= λ h̄ cχ (τ (t ))
∫

dξ f (ξ )μ̂(τ )

× φ̂
[
xμ

c.m.(τ ) + �
μ

j (τ )ξ j
]
. (14)

We recall that xμ
c.m.(τ ) = (t (τ ), x(τ )) is the trajectory of the

center of mass of the detector. The interaction Hamiltonian
is the only component of the system’s full Hamiltonian that
depends on the trajectory, and will be the relevant part to
compute the reaction force on the detector.

C. Reaction force on the particle detector

The Hamiltonian of the detector-field system, generating
translations with respect to the proper time of the detector, is
given by

DĤ τ (τ ) = DĤ τ
d +D Ĥ τ

φ +D Ĥ τ
I

(
xμ

c.m.(τ )
)
. (15)

We can compute the four-force operator on the detector from
Newton’s second law as the derivative of the four-momentum
with respect to the detector’s proper time. The fastest way to
compute this is through Hamilton’s equations [71] since the
derivative of the four-momentum with respect to proper time
is equal to the derivative of the Hamiltonian with respect to the
trajectory of the detector:

F̂μ(τ ) = −∂x
μ
c.m. (τ )Ĥ

τ (τ ), (16)

where ∂x
μ
c.m. (τ ) is the derivative with respect to the trajectory

of the detector’s center of mass. Since the only Hamiltonian
component that depends on the trajectory of the detector is the
interaction Hamiltonian, and the explicit dependence of the
interaction Hamiltonian on the trajectory of the center of mass
is given in (14), this yields

F̂μ(τ ) = −∂x
μ
c.m. (τ )DĤ τ

I (xμ(ξν ))

= −∂x
μ
c.m. (τ )

[
λh̄c χ (τ )

∫
dξ f (ξ )μ̂(τ )φ̂(xμ(τ, ξ ))

]
.

(17)

Notice that the derivative commutes with the integral over the
smearing function since we are taking derivatives with respect
to the trajectory of the detector xμ

c.m.(τ ). We can use the mode
expansion (13) to compute the derivative with respect to the
trajectory explicitly. For simplicity let us choose, without loss
of generality, a plane-wave basis

uk(t, x) = 1√
2(2π )d |k|

ei(c|k|t−k·x). (18)

Working in this basis it is useful to realize that

∂x
μ
c.m. (τ )e

−i kμ[xμ
c.m. (τ )+�

μ

j (τ )ξj ] = −i kμe−i kμ[xμ
c.m. (τ )+�

μ

j (τ )ξj ],

(19)

where we recall that both � μ
ν and xμ are dependent on the

proper time parameter. In turn, this implies that

−∂x
μ
c.m. (τ )φ̂ = i

∫
dd k kμ[â†

kuk(xμ(τ, ξ )) − âku
∗
k(xμ(τ, ξ ))].

(20)

With all these ingredients we can now write the expression of
the four-force as

F̂μ(τ ) = −iλh̄c χ (τ (t ))
∫

dξ f (ξ )μ̂(τ )
∫

dd k kμ

× [â†
kuk(xμ(τ, ξ )) − âku

∗
k(xμ(τ, ξ ))]. (21)
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We would like to compute the time evolution of the expectation
value of the four-force. For this, we can use leading-order
perturbation theory.

In summary, if the initial density operator of the system
is an uncorrelated state of detector and field, i.e., ρ̂0 = ρ̂0,φ ⊗
ρ̂0,d , the system will evolve to a density operator ρ̂f = Û ρ̂0Û

†,
where Û is the time evolution operator in the interaction picture
(and T represents the time ordering operation)

Û = T exp

(
− i

h̄

∫ ∞

−∞
dτ ĤI(τ )

)
. (22)

For small enough coupling strength λ we could consider the
perturbative corrections to the initial state:

ρ̂f = ρ̂0 + ρ̂
(1)
f + ρ̂

(2)
f + O(λ3), (23)

where the different order corrections are given by

ρ̂
(1)
f = Û (1)ρ̂0 + ρ̂0Û

(1)†, (24)

ρ̂
(2)
f = Û (1)ρ̂0Û

(1)† + Û (2)ρ̂0 + ρ̂0Û
(2)†,

... (25)

and where the time evolution operator has been expanded in
Dyson series as

Û = Û (0) + Û (1) + Û (2) + O(λ3), (26)

where

Û (0) = 1, (27)

Û (1) = − i

h̄

∫ ∞

−∞
dτ ĤI(τ ), (28)

Û (2) = −1

h̄2

∫ ∞

−∞
dτ1

∫ τ1

−∞
dτ2ĤI(τ1)ĤI(τ2), (29)

...

Performing this perturbative analysis, the expectation value of
the four-force, at leading order in λ, is obtained as

〈F̂μ〉 = tr(F̂μÛ (1)ρ̂0) + tr(Û (1)ρ̂0F̂μ)

= 2 Re [tr(F̂μÛ (1)ρ̂0)]. (30)

We can rewrite Û (1) and F̂μ in terms of the field mode
expansion. Namely, we can substitute the mode expansions
(12) and (20) to compute the expression for the operator
F̂μÛ (1):

F̂μÛ (1)ρ̂0 = i

h̄
∂xμ(τ )ĤI(τ )

∫ ∞

−∞
dτ ′ĤI(τ

′)

= −h̄c2λ2χ (τ )
∫

ddξ f (ξ )
∫

ddξ ′f (ξ ′)

×
∫ τ

−∞
dτ ′χ (τ ′)F̂μ(τ, ξ , τ ′, ξ ′)μ̂(τ )μ̂(τ ′)ρ̂0,d ,

(31)

where

F̂μ(τ, ξ , τ ′, ξ ′)

:=
∫

dd k kμ

∫
dd k′[â†

kuk(xμ(τ, ξ )) − âku
∗
k(xμ(τ, ξ ))]

× [â†
k′uk′ (xμ(τ ′, ξ ′)) + âk′u∗

k′ (xμ(τ ′, ξ ′))]ρ̂0,φ, (32)

where we have used that the initial state of the detector and the
field is uncorrelated: ρ̂0 = ρ̂0,φ ⊗ ρ̂0,d . Notice that, because
of causality, the expression above would not make sense for
switching functions that were supported for τ ′ > τ . Under this
constraint, Eq. (31) will allow us to compute the force at an
instant time τ taking into account the time evolution of the
atomic state from some initial preparation time [origin of the
support of χ (τ )] to the time τ where the force is evaluated.

We will consider the most general possible initial detector
quantum state

ρ̂0,d =
(

a b

b∗ 1 − a

)
, (33)

in the basis {|e〉, |g〉}. In this basis, a is the probability of finding
the atom in the excited state (and consequently 1 − a is the
probability of finding the atom in the ground state). b are the
atomic coherences in this basis. In this basis, the monopole
moment takes the form

μ̂(τ ) =
(

0 ei�τ

e−i�τ 0

)
, (34)

and therefore

μ̂(τ )μ̂(τ ′)ρ̂0,d =
(

a ei�(τ−τ ′ ) b ei�(τ−τ ′ )

b∗e−i�(τ−τ ′ ) (1 − a)e−i�(τ−τ ′ )

)
. (35)

Given the form of (35) we can already conclude that, at leading
order, the coherences of the quantum state of the detector b do
not have any influence on the reaction force on the detector. The
force, however, will be influenced by the diagonal elements of
the density matrix of the detector.

For the particular case where the state of the field is the
vacuum ρ0,φ = |0〉〈0|, we can reexpress the expectation value
of F̂μ in terms of one of the field two-point correlators. In fact,
it is easy to see that (see Appendix A)

tr[F̂μ(τ, ξ , τ ′, ξ ′)] = −
∫

dd k kμu∗
k(xμ(τ, ξ ))uk(xμ(τ ′, ξ ′))

= −
∫

dd k kμGk(τ, ξ , τ ′, ξ ′), (36)

where
∫

dd k Gk(x, x′) := 〈0|φ̂(x)φ̂(x′)|0〉 is the two-point
correlator of the field, and x is a four-vector.

Putting all together, we obtain an expression for the expec-
tation value of the force for the field vacuum and a general
state of the detector as

〈F̂μ〉 = 2h̄c2λ2 Re

{
χ (τ )

∫ τ

−∞
dτ ′χ (τ ′)

∫
ddξ f (ξ )

×
∫

ddξ ′f (ξ ′)
∫

dd k kμGk(τ, ξ , τ ′, ξ ′)

× [a ei�(τ−τ ′ ) + (1 − a)e−i�(τ−τ ′ )]

}
. (37)
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This is a convenient way, for computational purposes, of
writing the expectation value of the four-force. Notice that
this expression is general for arbitrary trajectories and for
any kind of linear boundary conditions on the field. The way
in which different boundary conditions are implemented in
practice is through finding the specific form of Gk through
Lippmann-Schwinger (see Appendix D for the exact details).

Except for the fact that we couple the atom to the field as
opposed to the gradient of the field, this result is a relativistic
generalization of previous literature in the low speed limit [9].
In comparison with [9], we also consider any general atomic
shape and size (being the pointlike atom a particular case) and
the possibility of considering the atom in an arbitrary quantum
state (not only the ground state).

As explained in Appendix D, the two-point correlator in the
presence of an object placed at a position z = d can be obtained
through the Lippmann-Schwinger equation, as Eq. (D27):

Gk(x1, x2) = u∗(x1)[1 − Rke
2ikzd ]u(x2), (38)

where Rk is the T -scattering matrix of the object that imposes
the conditions on the field. The T -scattering matrix has all
the information about the geometry and the kind of boundary
conditions of the considered object.

Now we have everything to write the correction of the
four-force due to the presence of a plate by studying the
contribution of the additional term of the two-point correlator
to the four-force in Eq. (37). Using the plane-wave basis
defined in Eq. (18), we can write

Gk(τ, ξ , τ ′, ξ ′) = 1

2(2π )d |k|e
+ikμ[xμ

CM(τ )+�
μ

j (τ )ξj ]

× [1 − Rke
2ikzd ]e−ikμ[xμ(τ ′ )+�

μ

j (τ ′ )ξ ′j ].

(39)

After substitution of the two-point function, the spatial inte-
grals in (37) can be easily evaluated. Indeed, we can express
the integrals in Eq. (37) as Fourier transforms:∫

ddξ ′f (ξ ′)e−ikμ�
μ

j (τ ′ )ξ ′j = f̄
(
kμ�

μ

j (τ ′)
)
, (40)∫

ddξ f (ξ )e+ikμ�
μ

j (τ )ξj = f̄ ∗(kμ�
μ

j (τ )
)
, (41)

where f̄ (k) is the Fourier transform of f (ξ ):

f̄ (k) =
∫
R3

d3ξ f (ξ )e−ik·ξ . (42)

In addition to that, we define

ϒ(�, τ ) = f̄ ∗(kμ�
μ

j (τ )
)
e−i�τ e+ikμx

μ
CM(τ )χ (τ )

×
∫ τ

−∞
dτ ′χ (τ ′)ei�τ ′

e−ikμxμ(τ ′ )f̄
(
kμ�

μ

j (τ )
)
,

(43)

where ϒ depends on the properties of the detector [� and its
smearing f (ξ )], on the particular trajectory chosen [through
x

μ
CM(τ ) and �

μ

j (τ )], on the switching χ (τ ), and on time τ .
For comparison with previous literature [9], let us consider the
addition of an imaginary part to the detector gap, performing
the substitution � → � + i�. This can be understood in
terms of a dissipation term in the detector coming from a

Weiskop-Wigner decay model [72,73], or can be understood
as a convenient regulator for the integrals in momentum space.
The results with the usual UDW model will be recovered in
the limit � → 0+, when this regulator is taken to zero, as we
will do later on. Introducing this regularizator �, the result is

〈F̂μ〉 = h̄c2λ2 Re

{∫
dd k

(2π )d
kμ

|k| [1 − Rke
2ikzd ]

× [aϒ (−(� + i�), τ ) + (1 − a)ϒ ((� + i�), τ )]
}
.

(44)

Then, we observe that this four-force can be split in four parts.
From the correlator function, it can be split in a part that
depends on the distance with the object and in another part
always present in the problem, even when the detector is in free
space. In addition to that, the force can be written as a weighted
sum of the four-force for the ground and excited states.

D. Relativistic detector in an inertial trajectory

We particularize to an inertial particle detector that moves
parallel to a dielectric plate, keeping at all times a constant
distance d in the z axis with the plate surface. We recall that the
trajectory of the detector’s center of mass in its own reference
frame is

ξν
c.m.(τ ) =

(
cτ

0

)
. (45)

In this particular case, � μ
ν (τ ) = � μ

ν with constant v for all
τ > 0. The Lorentz transformation that relates the quantization
(laboratory) frame xν = (ct, x) and the detector’s frame ξμ =
(cτ, ξ ) is given by

(
� μ

ν

) =
⎛
⎝ γ γ vi

c

γ
vj

c
δi
j + (γ − 1) vivj

v2

⎞
⎠, (46)

where μ ∈ {0, 1, 2, 3} and i, j ∈ {1, 2, 3}. The transformation
can be summarized as(

ct (τ, ξ )
x(τ, ξ )

)μ

= � μ
ν

(
cτ

0

)ν

+ � μ
ν

(
0
ξ

)ν

= xμ
c.m.(τ ) + �

μ

i ξ i

= � μ
ν ξν. (47)

Then, for the inertial trajectory, � μ
ν is independent of τ ,

and the trajectory xμ
c.m.(τ ) = c�

μ
0 τ is linear in τ . As a

consequence, for this particular case, ϒ(�, τ ) is simplified
into

ϒ(�, τ ) = ∣∣f̄ (
kμ�

μ

j

)∣∣2β(�, τ ), (48)

where we define

β(�, τ ) = e−i(�−kμ�
μ

0 )τ χ (τ )
∫ τ

−∞
dτ ′χ (τ ′)ei(�−kμ�

μ
0 )τ ′

.

(49)

We choose as a switching function a constant switching that
has been on since a time τ0. We define the time interval from
the moment of switching on the interaction (or prepare the
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state of the atom) to the moment when we evaluate the force
as �τ := τ − τ0. Then, we obtain

β(�, τ ) = e−i(�−kμ�
μ

0 )τ
∫ τ

−τ0

dτ ′ei(�−kμ�
μ

0 )τ ′

= i
−1 + e−i�τ (�−ckμ�

μ
0 )

� − ckμ�
μ

0

= i α(�)
( − 1 + e−i�τ (�−ckμ�

μ
0 )

)
, (50)

where α(�) is defined implicitly in (50). As discussed above,
we consider the introduction of the Weiskop-Wigner regular-

izator �, performing the substitution � → � + i�. Applying
this substitution we obtain that the distribution (over ckμ�

μ
0 )

α(� + i�) = αR + iαI is given by

αR + iαI := 1

(� + i�) − ckμ�
μ

0

= � − ckμ�
μ

0

�2 + (
� − ckμ�

μ
0

)2 − i
�

�2 + (
� − ckμ�

μ
0

)2 .

(51)

Note that to lift the regularization we take the limit � → 0+,
which yields

lim
�→0+

(αR + iαI ) =P
[
1
/(

� − ckμ�
μ

0

)] − iπ sgn(�) δ
[
� − ckμ�

μ
0

]
, (52)

where P in the distribution above denotes Cauchy’s principal-value prescription under an integral sign and sgn is the signum
function.

Using Eq. (48), and substituting these results in Eq. (44), we obtain

〈F̂μ〉 = h̄c2λ2 Re

{∫
dd k

(2π )d
kμ

|k| [1 − Rke
2ikzd ]

∣∣f̄ (
kμ�

μ

j

)∣∣2[aβ(−(� + i�), τ ) + (1 − a)β(� + i�, τ )]

}
. (53)

We substitute β(±(� + i�), τ ) using Eq. (50), and obtain

〈F̂μ〉 = h̄c2λ2 Re

{∫
dd k

(2π )d
kμ

|k| [1 − Rke
2ikzd ]

∣∣f̄ (
kμ�

μ

j

)∣∣2[aα(−(� + i�))
( − 1 + e−i�τ [−(�+i�)−ckμ�

μ
0 ]

)

+ (1 − a)α(� + i�)
( − 1 + e−i�τ [(�+i�)−ckμ�

μ
0 ]

)]}
. (54)

This expression is general and can be particularized to specific boundary conditions. We will do so for the empty space and the
conducting plate case in the following sections.

IV. FORCE ON RELATIVISTIC DETECTORS IN EMPTY SPACE

Let us first compute the force on the detector in the case of a detector in free space. In the empty space case, we use the free
two-point correlator as

G0
k(τ, ξ , τ ′, ξ ′) = 1

(2π )32|k|e
−i[c|k|(t−t ′ )−k·(x−x′ )], (55)

where t = t (τ, ξ ) and x = x(τ, ξ ), which in the inertial case considered takes the explicit form

t = γ

(
τ + vx

c
ξ1

)
(56)

x =
(

γ

(
ξ1 + vx

c
τ

)
, ξ2, ξ3

)
, (57)

where ξi (with i ∈ {1, 2, 3}) is the ith component of the vector ξ . With this expression for G0
k at hand, we can compute the

expectation of the four-force operator. Concretely, we substitute the trajectories (56) and (57) and the two-point correlator (55)
into (37) to get the following expression:

〈F̂μ(�)〉 = h̄c2λ2

8π3
Re

{∫
dd k

|f̄ (k̃)|2
|k| kμχ (τ )

∫ τ

−∞
dτ ′χ (τ ′)eiτck̃0e−iτ ′ck̃0 [a ei�(τ−τ ′ ) + (1 − a)e−i�(τ−τ ′ )]

}
, (58)
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where we have evaluated k̃μ := kν�
μ

ν = (k̃0, k̃) in Eq. (58) using the expression of � for the Lorentz boost, assuming, without
loss of generality, that the detector moves in the direction of the x axis, i.e., v = vxex :

k̃μ := kν�
ν
μ =

⎛
⎜⎜⎝

−|k|
kx

ky

kz

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎝

γ γ vx

c
0 0

γ vx

c
γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

−γ
(|k| − vx

c
kx

)
γ
(
kx − vx

c
|k|)

ky

kz

⎞
⎟⎟⎠, (59)

〈F̂μ(�)〉 = − h̄c2λ2

8π3
Re

{∫
dd k

|f̄ (k̃)|2
|k| kμi

[
a

(1 − e−i�τ (−ck̃0−�) )

−ck̃0 − �
+ (1 − a)

(1 − e−i�τ (−ck̃0+�) )

−ck̃0 + �

]}
. (60)

Notice, however, that as discussed before with our regularization scheme, the dependence on � here has to be understood as a
dependence on � + i�, and later on the limit � → 0+ has to be taken. Making this explicit, we get

〈F̂μ(� + i�)〉 = − h̄c2λ2

8π3
Re

{∫
dd k

|f̄ (k̃)|2
|k| kμi[aα(� + i�) (1 − e−i�τ [−ck̃0−(�+i�)] )

+ (1 − a)α(−(� + i�))(1 − e−i�τ (−ck̃0+�+i�) )]

}
. (61)

Taking the limit � → 0+, and particularizing for the ground state (a = 0) yields

〈F̂μ(�)〉0
g = h̄c2λ2

16π3

∫
d3k

[f̄ (k̃)]2

|k| kμ

[
2αI sin2

(
�τ

2
(� − ck̃0)

)
+ αR sin(�τ (� − ck̃0))

]
, (62)

where αR and αI have been already substituted by their limit
expression (52) and the superindex in 〈F̂μ(�)〉0

g denotes that
we are looking at the free-space case.

Also, we recall that k̃μ was defined in (59) and k̃ is its spatial
part. Notice that the result for the excited state can be obtained
directly from (62) for negative gaps, i.e., under the change
� → −�.

To make the calculations concrete, we are going to choose
a particular form for the detector smearing F (x). In the
case of detectors modeling atoms, the smearing function is
proportional to the wave functions of the excited- and ground-
state orbitals (see Sec. II of [61]). Here, we are going to consider
smeared detectors of size σ localized with a Gaussian spatial
profile, i.e.,

f (ξ ) = e
− ξ2

σ2

π3/2σ 3
⇒ f̄ (k̃) = e− σ2 k̃2

2 , (63)

where

k̃
2 = γ 2

(
kx − vx

c
|k|

)2
+ k2

y + k2
z . (64)

We recall that k̃μ is defined in (59). Applying the change of
variables

|k| = κ

cγ
[
1 − vx

c
cos(θ )

] (65)

to Eq. (62), we carry out the angular integrals in θ and ϕ

yielding

〈Fx (�)〉0
g = − γ

vx

c

h̄λ2

2π2c

∫ ∞

0
dκ e

− κ2σ2

2c2 κ2 sin(�τ (κ + �))
κ + �

.

(66)

For the detector in the excited state one can quickly obtain
that the expectation of the four-force is given by

〈F̂μ(�)〉0
e = 〈F̂μ(−�)〉0

g. (67)

For any general state of the detector (pure or mixed) given by
the density matrix (33), and for arbitrary boundary conditions
(not only the free-space case), the expectation of the four-force
operator is given by

〈F̂μ(�)〉ρ̂ = (1 − a)〈F̂μ(�)〉g + a〈F̂μ(�)〉e. (68)

From (66), we can obtain asymptotic closed expressions
for the expectation of the four-force for the limits of short
(�τ � �−1) and long times (�τ � �−1). The asymptotic
expressions are, for a detector in its ground state,

lim
��τ→0

〈F̂x〉0
g = −γ

vx

c

h̄c2λ2

2
√

2π3

�τ

σ 3
e
− c2�τ2

2σ2 , (69)

lim
��τ→∞

〈F̂x〉0
g = γ

vx

c

h̄λ2

c π2

cos(�τ�)

��τ 3
. (70)

Note that the finite size of the detector (the width of the
smearing function) plays a crucial role in the force experienced
by the detector in the short time regime: the force (that initially
opposes the direction of motion) experienced by a pointlike
detector is divergent. In fact, the finite size of the detector is
what allows the expectation of the four-force to be integrable,
as one can see by inspection from (66).

For the excited case, we can also find asymptotic expres-
sions for the expectation value of the force in the direction of
motion:

lim
��τ→0

〈F̂x〉0
e = −γ

vx

c

h̄c2λ2

2
√

2π3

�τ

σ 3
e
− c2�τ2

2σ2 , (71)
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FIG. 1. For the detector in the ground state, friction force divided
by h̄λ2�2

2π2c
γ vx

c
(full thick black curve) in the direction of motion vs �τ

for σ�/c = 1 and 5 in the upper and lower panels, respectively. The
short and long switching times ��τ limits are shown as a green dotted
curve and a red dashed curve, respectively. The force starts opposing
the initial direction of motion, and oscillates with frequency the closer
to � the larger �τ� with a decay proportional to �τ 3.

lim
��τ→∞

〈F̂x〉0
e = −γ

vx

c

h̄λ2

2πc

[
�2e

− σ2�2

2c2 + 2

π

cos(�τ�)

��τ 3

]
.

(72)

Notice that the excited- and ground-state four-forces are
related:

lim
��τ→0

〈F̂x〉0
e = lim

��τ→0
〈F̂x〉0

g, (73)

lim
��τ→∞

〈F̂x〉0
e = −γ

vx

c

h̄λ2�2

2πc
e
− σ2�2

2c2 − lim
��τ→∞

〈F̂x〉0
g. (74)

We can see the behavior of the force experienced by the detector
in Fig. 1 for the ground state and in Fig. 2 for the excited state.

For the ground state, there is a quantum friction that
opposes the motion of the detector for short times. At longer
times, the force starts oscillating between a friction force
(opposing motion) and a push force (favoring motion). The
frequency of oscillation is controlled by the detector’s energy
gap h̄� (energy difference between excited and ground states).
This suggests that the oscillations in the force correspond
to the internal oscillations at finite times of the state of the
detector between ground and excited states. These oscillations

eventually decay in time as seen in (70). This is expected since
for infinite times a detector in the ground state has a zero
probability of excitation. Consistently, one should not expect
any back-reaction to the field in this asymptotic limit.

Finally, note from Eq. (66) that the behavior of the force with
the velocity of the particle (relative to the laboratory frame that
sets the timescale of interaction) is proportional to γ |v|/c. This
tells us that the quantum friction force which opposes motion
diverges as the detector approaches the speed of light.

For the excited state, the phenomenology is richer. Same as
in the ground state, the friction force always starts opposing
motion. For most cases, the force remains a friction for all
times. Only for large values of the energy gap, a detector can
experience a “quantum push” force at intermediate times with
the internal frequency of oscillation of the detector’s internal
state � which might perhaps be understood as the detector
emitting net momentum to the field as it decays.

Notice that in all cases (regardless of the gap size), in
the limit of infinite times, the detector always experiences a
quantum friction opposing motion. Therefore, we can conclude
that excited detectors will always experience a net reaction
force opposing motion in the very long time regime.

The excited state is particularly interesting since it displays a
range of different behaviors depending on the energy difference
between the excited and the ground states h̄�. In particular, for
� � cσ , the short time asymptote, with its exponential decay,
models very well the system until the constant friction force
regime is reached without the observation of any oscillation.
In the regime � � cσ , the behavior of the force changes:
at short times we still observe the initial friction force, but
the exponential decay is not so prominent: the force starts
oscillating with a frequency � until the constant friction force
asymptote is reached in the long time regime. This result is
commensurate with the result obtained in the nonrelativistic
limit in [59]. The different regimes can be seen in Fig. 2.

Notice that, as explained in [59], this force has to emerge
from a variation of the rest energy of the atom. This argument
can also be cast considering that both in the case of free space
(and also in the case of the plate), the setup is invariant under
Lorentz boosts in the x direction, which tells us that the velocity
of the atom in this direction cannot change.

V. FORCE ON DETECTORS IN THE
PRESENCE OF A PLATE

General results

In this section we are going to introduce a general boundary
condition, and then particularize for an infinite plate. The
formalism that we are going to introduce is valid for any
kind of linear boundary conditions. This includes the typical
choices of Dirichlet (e.g., perfect conductor for the electric
field), Neumann, or any other kind of continuity condition with
the field on the other side of the plate.

In the presence of a boundary condition, the two-point
correlator of the scalar field is modified by the introduction
of an extra term that is derived from the Lippmann-Schwinger
equation [54] (see Appendix D)

Gk = G0
k +

∑∫
k′
G0

kTkk′G0
k′ , (75)

032507-8



CASIMIR FORCES AND QUANTUM FRICTION OF … PHYSICAL REVIEW A 98, 032507 (2018)
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FIG. 2. For the detector in the excited state, friction force divided by h̄λ2�2

2π2c
γ vx

c
(full thick black curve) in the direction of motion vs ��τ ,

for σ�/c ∈ {10−2, 10−1, 1, 5} for (a), (b), (c), and (d) panels, respectively. The short and long switching times ��τ limits are shown as a
green dotted curve and a red dashed curve, respectively. For the sake of clarity, the nonoscillating part of the large switching time limit is also
drawn as a dashed blue curve. Depending on the value of �, different regimes are observed: an exponential decay of the force until reaching
the constant asymptotics for small � (observed in the cases σ�/c ∈ {10−2, 10−1}), the disappearance of the exponential decay when the large
time asymptotics surpasses the maximum of the short time asymptotics for intermediate values of � (observed in the case σ�/c = 1), and the
appearance of oscillations (of frequency �) in the decay into a constant value of the force in the large ��τ limit (observed in the σ�/c = 5
case).

where G0
k is the two-point correlator for the field in free space,

and Tkk′ is the T -scattering matrix of the object that imposes
the conditions on the field. Recall that the T -scattering matrix
has all the information about the geometry and the kind of
boundary conditions of the considered object. The symbol

∑∫
represents the sum over the momentum variable k′, which in
the continuum is an integral over momentum space.

In the particular case of a planar geometry (infinite plate),
the T -scattering matrix is given by [51,54]

Tkk′ = −(2π )3Rkδ
(3)(k − k′), (76)

where Rk is the Fresnel reflection coefficient written in terms
of momentum k.

Now, we have everything to write the correction of the four-
force due to the presence of a plate by studying the contribution
of the additional term of the two-point correlator to the four-
force in Eq. (37). We will denote this correction 〈δFμ(�)〉ρ̂ so
that

〈F̂μ(�)〉ρ̂ = 〈F̂μ(�)〉0
ρ̂ + 〈δFμ(�)〉ρ̂ . (77)

Note that the x component of the four-force will lead to the
so-called quantum friction [9,42,56], and the z component
will lead to the dynamical extension of the Casimir force
between the detector and the plate [42,43]. Same as before,
to evaluate the expectation of the four-force for a general state,
we only need to evaluate it on the ground and the excited states
independently since (68) holds.

Particularizing (75) for a conducting plate [see (D27) in
Appendix D for the T -matrix coefficients], and using (37), we

obtain, for the detector in the ground state,

〈δFμ〉g =λ2h̄c2

8π3

∫
d3k

kμ

|k|e
− σ2 k̃2

2

×
[

2A sin2

(
�τ

2
C

)
+ B sin(�τC)

]
, (78)

where

A = (αIRIVI − αIRRVR − αRRRVI − αRRIVR),

B = (αIRRVI + αIRIVR + αRRIVI − αRRRVR),

C = � − ck̃0, (79)

V =e2idkz = VR + iVI = cos(2dkz) + i sin(2dkz),

R = RR + iRI.

We see that the y component of the four-force (in the laboratory
frame) is zero. We also see that the four-force presents, for
intermediate times, a transient oscillatory behavior and that it
asymptotes to a stationary value that depends on the distance
to the plate and the relative velocity between the detector and
the plate.

As before, the result for the detector in the excited state
is easily obtained from Eq. (78) changing � by −�. Also as
above, for any general state of the detector (pure or mixed)
and for arbitrary boundary conditions (not only the free-space
case), given by the density matrix (33), the expectation of the
four-force operator is

〈δF̂μ(�)〉ρ̂ = (1 − a)〈δF̂μ(�)〉g + a〈δF̂μ(�)〉e, (80)

which is analogous to the free case (68).
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TABLE I. Different analytical limits for the x component of the
four-force (the quantum friction term) of the detector at the ground
state for small and large switching times and distances.

Ground state: Quantum friction

d � σ d � σ

��τ � 1 Eq. (81) Eq. (82)
��τ � 1 Eq. (83) Eq. (84)

Let us first consider a general case where the real and
imaginary parts of the reflection coefficient are independent of
the frequency. Note that this includes the physically motivated
scenario of Dirichlet boundary conditions (perfect reflection)
where RR = 1 and RI = 0.

A. Ground state

Due to symmetry considerations in our setup, the y com-
ponent of the four-force (in the laboratory frame) is zero
〈δFy〉 = 0. In this section, we are going to present the different
results for the four-force in the different regimes studied. The
full derivations can be found in Appendix B.

1. Quantum friction

The x component of the four-force is different from zero as
long as the x component of the relative velocity is different
from zero. We consider this component of the force as a
quantum friction force (because it goes opposite to the direction
of motion) induced by the relative velocity with the planar
plate.

For clarity, we summarize all the studied regimes and the
formulas obtained for the final results in Table I.

Notice that the dependence of the quantum friction for
the planar plate case on the atomic speed is very simple and
in all cases the same as in the free-space case: the friction
force is proportional to γ vx/c. The quantum friction for short
switching times (respectively for short and large separations
from the plate) is given by

lim
d�σ

lim
��τ→0

〈δFx〉 = −γ
vx

c

h̄c3�τ 2

σ 4

λ2

8π2
RI

(
4 +

√
2π

σ�

c

)

− γ
vx

c

h̄c2�τ

σ 3

λ2

(2π )3/2
RR, (81)

lim
d�σ

lim
��τ→0

〈δFx〉 = γ
vx

c

h̄c3�τ 2

d4

λ2

32π2
RI

− γ
vx

c

h̄c2�τ

σ 3

λ2

(2π )3/2
RRe

− 2d2

σ2 . (82)

Conversely, in the long switching time limit, we get, for short
distances from the plate,

lim
d�σ

lim
��τ→∞

〈δFx〉 = − h̄c

σ 2

RIλ
2

2π2
γ

vx

c
[1 − √

πy

+ y2(2
√

πD(y) − e−y2
Ei(y2))], (83)

10−1 100 101
10−8

10−6

10−4

10−2

100

R0
g,x(d)

R0
g,x(d) = lim

ΩΔτ→0

| 〈δFx〉 |
lim
d�σ

| 〈δFx〉 |

d/σ

FIG. 3. Ratio of the magnitude of the friction force 〈Fx〉 of the
detector in the ground state R��τ

g,x at ��τ → 0 to the value in contact
d � σ for the short time limit as a function of the distance d (in units
of σ ) at vx = 0.999c. (However, the figure is negligibly dependent
of the value of vx , even for nonrelativistic speeds. This is because
we are plotting the ratio between two forces and the dependence on
the velocity is always ∝ γ vx/c.) The black thick curve is the exact
numerical result obtained from Eq. (78) for ��τ = 10−3. The red
curve is the small distance limit shown in Eq. (81), the green curve
is the large distance limit shown in Eq. (82). The dashed curves are
the terms proportional to �τ 2 of the same results. The whole result
is dominated by the linear term in �τ . We have used � = c/σ , and
RR = RI.

where y = σ�√
2c

, Ei(x) is the exponential integral function, and
D(x) is the Dawson integral. The expression in square brackets
reduces to 1 in the small detector limit (σ� � c) and to

√
π

2y

in the opposite limit (when σ� � c). Finally, in the long
switching time regime, and for long separation distances to
the plate the four-force correction takes the form

lim
d�σ

lim
��τ→∞

〈δFx〉 = −γ
vx

c

h̄c3

�2d4

λ2

16π2
RI. (84)

We can see the behavior of the quantum friction force experi-
enced by the detector in the ground state in the short time limit
(��τ � 1) in Fig. 3 and in the large time limit (��τ � 1)
in Fig. 4.

2. Casimir force

The z component of the four-force is different from zero,
even at zero relative velocity between the plate and the detector.
We consider this component of the force as a Casimir force
(because it is parallel to the separation from the plate).

Same as in the previous section, we summarize all the
studied regimes and the formulas obtained for the final results
in Table II.

The Casimir force for short switching times (respectively
for short and large separations from the plate) is given by

lim
d�σ

lim
��τ→0

〈δFz〉 = − h̄c3d�τ 2

σ 5

RRλ
2

12π2

(
3
√

2π + 4
σ�

c

)

+ h̄c2d�τ

σ 4

2λ2

3π2
RI, (85)
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FIG. 4. Ratio of the friction force 〈Fx〉 for the detector in the
ground state R��τ

g,x at ��τ → ∞ to the value in contact d � σ for
the short time limit as a function of the distance d (in units of σ ) at
vx = 0.999c. (However, the figure is negligibly dependent of the value
of vx , even for nonrelativistic speeds. This is because we are plotting
the ratio between two forces and the dependence on the velocity is
always ∝ γ vx/c.) The black thick curve is the exact numerical result
obtained from Eq. (78) in the long switching time limit (��τ → ∞).
The green dotted curve is the small distance limit shown in Eq. (83),
the red dashed curve is the large distance limit shown in Eq. (84). We
have used � = c/σ .

lim
d�σ

lim
��τ→0

〈δFz〉=− h̄c2�

d3

7λ2

128π2
�τ 2RR+ h̄c2�τ

d3

7λ2

64π2
RI,

(86)

and in the long switching time limit, we get

lim
d�σ

lim
��τ→∞

〈δFz〉 = − h̄cd

σ 3

√
2RRλ

2

3π2

{√
π

2
− y + √

πy2

+ y3e−y2
[Ei(y2) − πerfi(y)]

}
, (87)

where y = σ�√
2c

, Ei(x) is the exponential integral function, and
erfi(y) := −i erf(iy) is the imaginary error function. In the
large separation distance regime, we have

lim
d�σ

lim
vx�c

lim
��τ→∞

〈δFz〉 = − h̄c2

�d3

RRλ
2

8π2
, (88)

lim
d�σ

lim
vx→c

lim
��τ→∞

〈δFz〉 = − h̄c2

�d3

RRλ
2

16π2
. (89)

It is also possible to obtain an analytical result for the small
detector size limit in the small velocity limit. If we make vx = 0

TABLE II. Different analytical limits for the z component of the
four-force (the Casimir force term) of the detector at the ground state
for small and large switching times and distances.

Ground state: Casimir force

d � σ d � σ

��τ � 1 Eq. (85) Eq. (86)
��τ � 1 Eq. (87) Eq. (89), Eq. (88)
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ΩΔτ→0

〈δFz〉
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d→σ

〈δFz〉

d/σ

FIG. 5. Ratio of the Casimir force 〈Fz〉 for the detector in the
ground state R��τ

g,z at ��τ → 0 to the case when d = σ for the short
time limit as a function of the distance d (in units of σ ) at vx =
0.999c. (Although in this case it is not trivial, we find that the ratio is
also negligibly dependent of the value of vx , even for nonrelativistic
speeds.) The black thick curve is the exact numerical result obtained
from Eq. (78) for ��τ = 10−3. The red curve is the small distance
limit shown in Eq. (85), the green curve is the large distance limit
shown in Eq. (86). The dashed curves are the terms proportional to
�τ 2 of the same results. The whole result is dominated by the linear
term in �τ . We have used � = c/σ , and RR = RI.

and σ = 0 in Eq. (78), we get, after an analytical regularization,

lim
σ→0+

lim
vx�c

lim
��τ→∞

〈δFz〉

= − h̄c

d2

RRλ
2

16π2
{SI(x)[x sin(x) + cos(x)]

− 2Ci(x)[x cos(x) − sin(x)]}, (90)

with x = 2d�
c

, SI(x) := [π − 2Si(x)], Si(x) is the sine inte-
gral function, and Ci(x) the cosine integral function. The large
distance limit of Eq. (90) is

lim
d�c/�

lim
σ→0+

lim
vx�c

lim
��τ→∞

〈δFz〉 = − h̄c2

�d3

RRλ
2

8π2
, (91)

and the short distance limit is

lim
d�c/�

lim
σ→0+

lim
vx�c

lim
��τ→∞

〈δFz〉 = − h̄c

d2

RRλ
2

16π
. (92)

The importance of the finite size of the detector is clear here,
where we see that the inclusion of the finite size modifies the
behavior of the force in the short distance limit, from the
divergence shown in Eq. (90) to a linear behavior without
spurious divergences, as seen in Eq. (87). We can see the
behavior of the Casimir force experienced by the detector in
ground state in the short time limit (��τ � 1) in Fig. 5 and
in the large time limit (��τ � 1) in Fig. 6.

B. Excited state

Again, due to symmetry considerations in our setup, the y

component of the four-force (in the laboratory frame) is zero
〈δFy〉 = 0. When we consider the excited state, we see that we
have a new contribution to the four-force: The results for the
excited state can be naturally divided into two contributions
arising from the decomposition (52): the first one arises from
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FIG. 6. Double-logarithmic plot of the ratio of the Casimir force
〈Fz〉 of the detector in the ground state R��τ

g,z with the case when
d = σ as a function of the distance d (in units of σ ) at vx = 0 (upper
panel) and vx = 0.999c (lower panel). The black thick curve is the
exact numerical result obtained from Eq. (78) in the long switching
time limit (��τ → ∞). The green dotted curve is the small distance
limit shown in Eq. (87), the red dashed curve is the large distance
limit (in the small velocity regime) shown in Eq. (88) (upper panel),
and the large distance limit (in the high velocity regime) shown in
Eq. (89) (lower panel). Notice that in this case, the long distance
regime (d � σ ) is sensitive to the speed of the detector, unlike in all
previous cases. The yellow curve is the punctual detector limit shown
in Eq. (90), and the blue dashed curve is the small distance limit of
the punctual atom limit, showed in Eq. (92). We have used � = c/σ .

the integral of a principal part (that we will call 〈δFμ〉P and
was already present in the ground state case) and the second
from the integral of a Dirac delta distribution (that we will call

TABLE III. Different analytical limits for the x component of the
principal-value contribution of the four-force (the quantum friction
term) of the detector at the excited state for small and large switching
times and distances.

Excited state: Quantum friction

Principal-value contribution d � σ d � σ

��τ � 1 Eq. (94) Eq. (95)
��τ � 1 Eq. (97) Eq. (98)

TABLE IV. Different analytical limits for the x component of the
four-force (the quantum friction term) of the Dirac delta contribution
of the detector at the excited state for small and large switching times
and distances.

Excited state: Quantum friction

δ contribution d � σ d � σ

��τ � 1 0 0
��τ � 1 Eq. (96) Eq. (99)

〈δFμ〉δ), that is new in the excited case. Therefore, we can write

〈δFμ〉 = 〈δFμ〉P + 〈δFμ〉δ. (93)

1. Quantum friction

Same as for the ground state, the x component of the four-
force is different from zero as long as the relative velocity in the
x direction is different from zero. We also call this component
“quantum friction” same as in the case of the ground state.
However, notice that since the initial state of the detector is the
excited state, it can cede energy and momentum to the field
through spontaneous emission and it is sometimes possible
in this case to get a positive force in this component (in the
direction of motion instead of opposite to it).

For clarity, we summarize all the studied regimes and the
formulas obtained for the final results in Tables III and IV.

Again, we remark that the dependence of the quantum
friction for the planar plate case on the atomic speed is very

10−1 100 101
10−9

10−6

10−3

100

R0
e,x(d)

R0
e,x(d) = lim

ΩΔτ→0

| 〈δFx〉 |
lim
d→σ

| 〈δFx〉 |
d/σ

FIG. 7. Ratio of the magnitude of the friction force 〈Fx〉 of the
detector in the excited state R��τ

e,x at ��τ → 0 to the value in contact
d � σ for the short time limit as a function of the distance d (in units
of σ ) at vx = 0.999c. (However, the figure is negligibly dependent
of the value of vx , even for nonrelativistic speeds. This is because
we are plotting the ratio between two forces and the dependence on
the velocity is always ∝ γ vx/c.) The black thick curve is the exact
numerical result obtained from Eq. (78) for ��τ = 10−3. The red
curve is the small distance limit shown in Eq. (94), the green curve
is the large distance limit shown in Eq. (95). The dashed curves are
the terms proportional to �τ 2 of the same results. The whole result
is dominated by the linear term in �τ , and the dotted curves are the
terms proportional to �τ of the same results. We have used � = c/σ ,
and RR = RI.
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FIG. 8. Ratio of the delta contribution to the friction force 〈Fx〉δ

for the detector in the excited state R��τ
e,x at ��τ → ∞ to the value

in contact d � σ for the short time limit as a function of the distance
d (in units of σ ) at vx = 0.999c. (However, the figure is negligibly
dependent of the value of vx , even for nonrelativistic speeds. This
is because we are plotting the ratio between two forces and the
dependence on the velocity is always ∝ γ vx/c.) The black thick
curve is the exact numerical result obtained from Eq. (78) in the
long switching time limit (��τ → ∞). The green dotted curve is
the small distance limit shown in Eq. (96), the red dashed curve is the
large distance limit shown in Eq. (99). We have used � = c/σ .

simple and in all cases the same as in the free-space case
even for an excited atom: the friction force is proportional to
γ vx/c. The quantum friction for short switching times (respec-
tively for short and large separations from the plate) is given
by

lim
d�σ

lim
��τ→0

〈δFx〉 = −γ
vx

c

h̄c2

σ 3

λ2

2π2

[
RR�τ

√
π

2

+RI

c�τ 2

σ

(
1 −

√
π

2

�σ

2c

)]
, (94)

lim
d�σ

lim
��τ→0

〈δFx〉 = −γ
vx

c

h̄c2

σ 3

λ2

4π2

×
[
RR�τ

√
2πe

− 2d2

σ2 − RI

cσ 3

4d4

�τ 2

2

]
.

(95)

For large switching times we get

lim
d�σ

lim
�τ�→∞

〈δFx〉δ = −γ
vx

c

h̄�2

c

λ2

2π
RRe

− σ2�2

2c2 , (96)

TABLE V. Different analytical limits for the z component of the
four-force (the Casimir force term) of the principal-value contribution
of the detector at the excited state for small and large switching times
and distances.

Excited state: Casimir Force

Principal-value contribution d � σ d � σ

��τ � 1 Eq. (100) Eq. (101)
��τ � 1 Eq. (103) Eq. (105)
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FIG. 9. Ratio of the principal-value contribution to the friction
force 〈Fx〉P for the detector in the excited state R��τ

e,x at ��τ → ∞
to the value in contact d � σ for the short time limit as a function
of the distance d (in units of σ ) at vx = 0.999c. (However, the figure
is negligibly dependent of the value of vx , even for nonrelativistic
speeds. This is because we are plotting the ratio between two forces
and the dependence on the velocity is always ∝ γ vx/c.) The black
thick curve is the exact numerical result obtained from Eq. (78) in
the long switching time limit (��τ → ∞). The green dotted curve
is the small distance limit shown in Eq. (97), the red dashed curve is
the large distance limit shown in Eq. (98). We have used � = c/σ .

lim
d�σ

lim
�τ�→∞

〈δFx〉P = γ
vx

c

h̄�2

c

λ2

2π
RIG

3,2
4,5

×
(

σ 2�2

2c2

∣∣∣∣ −1,− 1
2 ,− 5

4 ,− 3
4

−1,− 1
2 , 0,− 5

4 ,− 3
4

)
,

(97)

where G is the Meijer G function. Note that this force
can be either a friction or an acceleration depending on
the size of the detector and on the excitation energy. Note
that the expressions can easily be simplified for the point-
like limit: when σ� � c, the Meijer G function tends to

−c2

πσ 2�2 , while when σ� � c, the Meijer G function tends to
c3√

2πσ 3�3 :

lim
d�σ

lim
�τ�→∞

〈δFx〉P = −γ
vx

c

h̄�

d

λ2

4π
RI cos

(
2d�

c

)
, (98)

lim
d�σ

lim
�τ�→∞

〈δFx〉δ = −γ
vx

c

h̄�

d

λ2

4π
RRe

− σ2�2

2c2 sin

(
2d�

c

)
.

(99)

TABLE VI. Different analytical limits for the z component of the
four-force (the Casimir force term) of the Dirac delta contribution of
the detector at the excited state for small and large switching times
and distances.

Excited state: Casimir force

δ contribution d � σ d � σ

��τ � 1 0 0
��τ � 1 Eq. (102) Eq. (104)
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TABLE VII. Numerical values of the quantum friction force (in
Newtons) for the atom in the ground state in the short and large
distance limits, for nonrelativistic and relativistic velocities. The
numbers in parentheses in the first column correspond to the specific
equation used to compute the force in each case.

Ground state: Quantum friction

d vx = 10−4c vx = (1 − 10−4)c

d � σ (83) −1.5 × 10−14 N −1.0 × 10−8 N
2000σ (84) −3.6 × 10−7 N −2.5 × 10−1 N

We can see the behavior of the quantum friction force experi-
enced by the detector in the excited state in the short time limit
(��τ � 1) in Fig. 7 and in the large time limit (��τ � 1)
in Figs. 8 and 9.

2. Casimir force

The z component of the four-force is different from zero,
even at zero relative velocity between detector and plate. For
clarity, we summarize all the studied regimes and the formulas
obtained for the final results in Tables V and VI.

The Casimir force for short switching times (respectively
for short and large separations from the plate) is given by

lim
d�σ

lim
�τ�→0

〈δFz〉 = h̄c2d

σ 4

λ2

3π2

[
2RI�τ

− RR

c�τ 2

σ

(
3

4

√
2π − σ�

c

)]
,

(100)

lim
d�σ

lim
�τ�→0

〈δFz〉 =− h̄c2

d3

7λ2

64π2

[
RI�τ + RR�

�τ 2

2

]
. (101)

In the regime of long switching times, the force correction
takes the form

lim
d�σ

lim
�τ�→∞

〈δFz〉δ = h̄�3d

c2

λ2

3π
RIe

− σ2�2

2c2 , (102)

lim
d�σ

lim
��τ→∞

〈δFz〉P = h̄�3d

c2

λ2

3π
RRG

3,2
4,5

×
(

σ 2�2

2c2

∣∣∣∣ − 3
2 ,−1,− 7

4 ,− 5
4

− 3
2 ,−1, 0,− 7

4 ,− 5
4

)
,

(103)

TABLE VIII. Numerical values of the Casimir force force (in
Newtons) for the atom in the ground state in the short and large
distance limits, for nonrelativistic and relativistic velocities. The
numbers in parentheses in the second and third columns correspond
to the specific equation used to compute the force in each case.

Ground state: Casimir force

d vx = 10−4c vx = (1 − 10−4)c

σ −2.1 × 10−3 N (87) −2.1 × 10−3 N (87)
2000σ −2.6 × 10−10 N (88) −1.3 × 10−10 N (89)

TABLE IX. Numerical values of the principal-part contribution
to the quantum friction force (in Newtons) for the atom in the first
excited state in the short and large distance limits, for nonrelativistic
and relativistic velocities. The numbers in parentheses in the first
column correspond to the specific equation used to compute the force
in each case.

Excited state: Quantum friction, Principal part

d vx = 10−4c vx = (1 − 10−4)c

d � σ (97) −3.6 × 10−7 N −2.5 × 10−1 N
2000σ (98) +2.1 × 10−14 N +1.4 × 10−8 N

where G is the Meijer G function. Again, note that this force
can be either attractive or repulsive depending on the size of
the detector and on the excitation energy. Once again, note
that the expressions can easily be simplified for the pointlike
limit: when σ� � c, the Meijer G function tends to −c3√

2πσ 3�3 ,

while when σ� � c, the Meijer G function tends to 2c4

πσ 4�4 :

lim
d�σ

lim
�τ�→∞

〈δFz〉δ = − h̄�

d

RIλ
2

4π
e
− σ2�2

2c2 cos

(
2d�

c

)
, (104)

lim
d�σ

lim
�τ�→∞

〈δFz〉P = − h̄�

d

RRλ
2

4π
sin

(
2d�

c

)
. (105)

We can see the behavior of the Casimir force experienced
by the detector in the excited state in the short time limit
(��τ � 1) in Fig. 10 and in the large time limit (��τ � 1)
in Figs. 11 and 12.

C. Some examples of full dimensional magnitude of the forces

In this section, we provide a sample of full dimensional
quantities from the asymptotic expressions in the limits of
short and long distances for the Casimir and friction forces
both in nonrelativistic and relativistic regimes. Notice that we
use the asymptotic analytical expressions to give these results,
rather than the numerical exact expressions. However, as can
be seen in the plots, the regime where we evaluate the analytical
asymptotic expressions match the numerical results reasonably
well. As expected, the friction forces grow fast as the velocity
of the atom turns relativistic with respect to the plate.

Considering, for example, a hydrogen atom, we provide
several numerical values of the forces we have obtained in
this article. Then, we have σ = a0 ≈ 5.291 × 10−11m and

TABLE X. Numerical values of the principal-part contribution to
the Casimir force (in Newtons) for the atom in the first excited state in
the short and large distance limits, for nonrelativistic and relativistic
velocities. The numbers in parentheses in the first column correspond
to the specific equation used to compute the force in each case.

Excited state: Casimir force, Principal part

d vx = 10−4c vx = (1 − 10−4)c

σ (103) −3.0 × 10−3 N −3.0 × 10−3 N
2000σ (105) −1.2 × 10−9 N −1.2 × 10−9 N
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TABLE XI. Numerical values of the δ contribution to the quantum
friction force (in Newtons) for the atom in the first excited state in
the short and large distance limits, for nonrelativistic and relativistic
velocities. The numbers in parentheses in the first column correspond
to the specific equation used to compute the force in each case.

Excited state: Quantum friction, δ contribution

d vx = 10−4c vx = (1 − 10−4)c

d � σ (96) −2.1 × 10−13 N −1.5 × 10−7 N
2000σ (99) −1.2 × 10−13 N −8.6 × 10−8 N

� = 2.466 × 10−15s−1 is the difference of frequencies be-
tween the ground state and the first excited state. Note that
the theory shown here is scalar instead of electromagnetic
and, therefore, we have a monopolar coupling instead of a
dipolar coupling. We calculate forces for the nonrelativistic
(vx = 10−4c) and relativistic vx = (1 − 10−4)c limits. The
numerical results for the different forces and regimes analyzed
are given in Tables VII–XII.

VI. CONCLUSIONS

In this article, we have developed a covariant formalism of
the dynamical interaction between an arbitrary moving Unruh-
DeWitt detector and a scalar quantum field in the presence of
macroscopic objects even in relativistic regimes.

In particular, we have studied, at leading order in time-
dependent perturbation theory, the different components of
the four-force operator over a particle detector (e.g., an atom)
as a function of time starting from an initial time where the
interaction was switched on. We have developed the general
formalism to compute Casimir forces and quantum friction
dynamically, for arbitrary linear boundary conditions and
arbitrary relativistic motion of the particle detector.

Furthermore, we have evaluated in full detail the expectation
value of the quantum friction and Casimir forces in two particu-
lar regimes: free space, and in the presence of a parallel infinite
conducting plate for relativistic constant velocity trajectories.
Moreover, we have considered arbitrary initial states of the
particle detector, which is treated as a fully quantum system,
showing that quantum coherence does not play a relevant role
in the leading order of the Casimir and quantum friction forces.

We have proved that the four-force of the detector is the
weighted sum of two terms: the four-force of the detector in
the ground state and the four-force of the detector in the excited

TABLE XII. Numerical values of the δ contribution to the Casimir
force (in Newtons) for the atom in the first excited state in the short and
large distance limits, for nonrelativistic and relativistic velocities. The
numbers in parentheses in the first column correspond to the specific
equation used to compute the force in each case.

Excited state: Casimir force, δ contribution

d vx = 10−4c vx = (1 − 10−4)c

σ (102) +6.2 × 10−13 N +6.2 × 10−13 N
2000σ (104) −2.1 × 10−10 N −2.1 × 10−10 N
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FIG. 10. Ratio of the magnitude of the Casimir force 〈Fz〉 for the
detector in the excited state R��τ

e,z at ��τ → 0 to the case when
d = σ for the short time limit as a function of the distance d (in units
of σ ) at vx = 0.999c. (Although in this case it is not trivial, we find
that the ratio is also negligibly dependent of the value of vx , even for
nonrelativistic speeds.) The black thick curve is the exact numerical
result obtained from Eq. (78) for ��τ = 10−3. The red curve is the
small distance limit shown in Eq. (100), the green curve is the large
distance limit shown in Eq. (101). The dashed curves are the terms
proportional to �τ 2 of the same results. The whole result is dominated
by the linear term in �τ . We have used � = c/σ , and RR = RI.

state. This is true even for arbitrary superpositions of excited
and ground states.

We have also considered a spatial smearing for the detector,
instead of the usual pointlike nature of the atom used in
most past literature on Casimir and quantum friction. Not
only does this generalize the pointlike case and constitutes a
more realistic model for atoms (see, e.g, [61,62]), but also the
nonpointlike character of the detector avoids the presence of
spurious divergent forces that were present in previous studies.
Specifically, we show that in the limit of very short distance to
a plate, the quantum friction tends to a constant force and the
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FIG. 11. Ratio of the delta contribution to the Casimir force 〈Fz〉δ

of the detector in the excited state R��τ
e,z with Eq. (102) at d = σ as

a function of the distance d (in units of σ ). (We find that the ratio is
also negligibly dependent of the value of vx , even for nonrelativistic
speeds.) The black thick curve is the exact numerical result obtained
from Eq. (78) in the long switching time limit (��τ → ∞). The
green dotted curve is the small distance limit shown in Eq. (102), the
red dashed curve is the large distance limit shown in Eq. (104). We
have used � = c/σ .
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ΩΔτ→∞
〈δFz〉P
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d→σ

| 〈δFz〉P |

d/σ

FIG. 12. Ratio of the principal-value contribution to the Casimir
force 〈Fz〉P of the detector in the excited state R��τ

e,z with Eq. (103)
at d = σ as a function of the distance d (in units of σ ). (We
find that the ratio is also negligibly dependent of the value of vx ,
even for nonrelativistic speeds.) The black thick curve is the exact
numerical result obtained from Eq. (78) in the long switching time
limit (��τ → ∞). The green dotted curve is the small distance limit
shown in Eq. (103), the red dashed curve is the large distance limit
shown in Eq. (105). We have used � = c/σ .

Casimir force peaks at a given distance and then goes to zero
as the limit of zero distance is taken. This is in stark contrast
with the divergent result that we would obtain for pointlike
detectors. In addition to that, we do not find any round-trip
time [56] where the force diverges and changes its behavior.
Indeed, as suggested in [56], the smearing solves this problem.

As for the quantitative results, we have studied in detail the
covariant expression for the force at the short and long time

interaction limits in the presence of a plate. In that case, we
have shown that the the quantum friction is proportional to
γ vx

c
and that, perhaps surprisingly, the Casimir force is almost

independent of the relative velocity between detector and plate,
except for very relativistic velocities and large distances. We
have also studied the four-force for a detector in free space,
when no additional object is present. Due to the form of the
Lippmann-Schwinger equation, the free-space contribution to
the four-force is always present and that has to be summed up
to the terms that appear due to the presence of external objects.

The formalism developed here for general relativistic trajec-
tories is easily generalizable to the electromagnetic field (with
the techniques in [61–63]), more realistic models of macro-
scopic objects (see [31,51,54]), and more realistic detectors,
such as multilevel atoms.
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APPENDIX A: EXPLICIT CALCULATION OF THE TRACE OF EQ. (32)

In this appendix, we are going to show explicitly the evaluation of the trace of Eq. (32) when the state of the field is the vacuum
ρ0,φ = |0〉〈0| to obtain Eq. (36). Applying the trace to Eq. (32) with the field in the vacuum state, we have

tr[F̂μ(τ, ξ , τ ′, ξ ′)]

= tr

[ ∫
dd k kμ

∫
dd k′(â†

kuk(xμ(τ, ξ )) − âku
∗
k(xμ(τ, ξ )))(â†

k′uk′ (xμ(τ ′, ξ ′)) + âk′u∗
k′ (xμ(τ ′, ξ ′)))|0〉〈0|

]

= tr

[ ∫
dd k kμ

∫
dd k′(â†

kuk(xμ(τ, ξ )) − âku
∗
k(xμ(τ, ξ )))uk′ (xμ(τ ′, ξ ′))|1k′ 〉〈0|

]

= tr

[ ∫
dd k kμ

∫
dd k′(â†

k|1k′ 〉〈0|uk(xμ(τ, ξ )) − âk|1k′ 〉〈0|u∗
k(xμ(τ, ξ )))uk′ (xμ(τ ′, ξ ′))

]

= tr

[ ∫
dd k kμ

∫
dd k′(|1k1k′ 〉〈0|uk(xμ(τ, ξ )) − δ(k − k′)|0〉〈0|u∗

k(xμ(τ, ξ )))uk′ (xμ(τ ′, ξ ′))
]

=
∫

dd k kμ

∫
dd k′(tr[|1k1k′ 〉〈0|]uk(xμ(τ, ξ )) − δ(k − k′)tr[|0〉〈0|]u∗

k(xμ(τ, ξ )))uk′ (xμ(τ ′, ξ ′))

= −
∫

dd k kμ

∫
dd k′δ(k − k′)u∗

k(xμ(τ, ξ ))uk′ (xμ(τ ′, ξ ′))

= −
∫

dd k kμu∗
k(xμ(τ, ξ ))uk(xμ(τ ′, ξ ′)), (A1)

where we have used â
†
k|0〉 = |1k〉, âk|1k′ 〉 = δ(d )(k − k′)|0〉, tr[|1k1k′ 〉〈0|] = 0, tr[|0〉〈0|] = 1, and the Dirac delta to carry out

the integral over k′. This is the result shown in Eq. (36) that we wanted to prove.
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APPENDIX B: DERIVATION OF THE RESULTS OF SEC. V

In this appendix we are going to show the procedure to obtain the different analytical results obtained in this paper for the
spatial components of the four-force. We are going to show the derivation of Eqs. (87), (88), and (89). The rest of results are
obtained with the same procedure. We start from Eqs. (78) and (80), we apply a Taylor series in �τ in order to obtain the results
in the short time regime, and we apply the substitution sin(�τC) → 0 and [sin(�τC/2)]2 → 1/2 in the long switching time
regime, i.e., we keep the contribution of the small frequency of the integrand.

Particularizing for the ground state of the detector, the z component of the force in the laboratory frame, i.e., μ = z in Eq. (78),
and in the long time limit ��τ � 1, the Casimir force is

lim
��τ→∞

〈δFz〉 = −h̄c2λ2
∫

d3k
(2π )3

e− σ2

2 γ 2(k− vx
c

kx )2 kz

k

RI cos(2dkz) + RR sin(2dkz)

cγ
(
k − vx

c
kx

) + �
. (B1)

Let us first consider a general case where the real and imaginary parts of the reflection coefficient are independent of the frequency.
Note that this includes the physically motivated scenario of Dirichlet boundary conditions (perfect reflection) where RR = 1 and
RI = 0.

We choose to express the integral in spherical coordinates where the x axis is taken in the direction of the detector’s velocity.
Explicitly,

kx = k cos(θ ),

ky = k sin(θ ) sin(ϕ), (B2)

kz = k sin(θ ) cos(ϕ).

Performing the integral over ϕ first yields

lim
��τ→∞

〈δFz〉 = −
∫ ∞

0
dk

∫ π

0
dθ

h̄c2λ2

4π2
e− σ2k2γ 2

2 [1− vx
c

cos(θ )]2
k2 sin2(θ )

RRJ1(2dk sin(θ ))

ckγ
[
1 − vx

c
cos(θ )

] + �
, (B3)

where the dependence with RI cancels out. In the study of the x component, the integrand is proportional to
sin(θ ) cos(θ )J0(2dk sin(θ )) instead to sin2(θ )J1(2dk sin(θ )). Applying the change of variables

k = s

cγ
[
1 − vx

c
cos(θ )

] , (B4)

we get

lim
��τ→∞

〈δFz〉 = − h̄

cγ 3

λ2

4π2

∫ ∞

0
ds

∫ π

0
dθ

s2e
− σ2s2

2c2

s + �
RR

sin(θ )2[
1 − vx

c
cos(θ )

]3 J1

[
2ds

cγ

sin(θ )

1 − vx

c
cos(θ )

]
. (B5)

a. Small distance limit. To obtain the short distance limit, a Taylor expansion in d of Eq. (B5) leads to

lim
d�σ

lim
��τ→∞

〈δFz〉 = − h̄d

c2γ 4

λ2

4π2

∫ ∞

0
ds

∫ π

0
dθ

s3e
− σ2s2

2c2

s + �
RR

sin(θ )3[
1 − vx

c
cos(θ )

]4 . (B6)

Carrying out the integral over θ , we get the velocity-independent result

lim
d�σ

lim
��τ→∞

〈δFz〉 = − h̄

c2
d

λ2

3π2
RR

∫ ∞

0
ds

s3e
− σ2s2

2c2

s + �
. (B7)

This integral in t admits a closed form, yielding the final result

lim
d�σ

lim
��τ→∞

〈δFz〉 = − h̄cd

σ 3

RRλ
2

3π2

√
2

[√
π

2
− y + √

πy2 + y3e−y2
[Ei(y2) − πerfi(y)]

]
, (B8)

where y = σ�√
2c

, Ei(x) is the exponential integral function, and erfi(y) := −i erf(iy) is the imaginary error function. This is the
result shown in Eq. (87).

b. Large distance limit. Using (C12) from Appendix C, and that, at large distances, the Gaussian profile can be approximated
by a Dirac delta, we simplify Eq. (B5) into

lim
d�σ

lim
vx→c

lim
��τ→∞

〈δFz〉 = h̄

d

λ2

4π2
RR

∫ ∞

0
ds

s

s + �
cos

(
2ds

c

)
. (B9)

This is a divergent integral, but can be solved by an analytical continuation of a convergent integral as

lim
d�σ

lim
vx→c

lim
��τ→∞

〈δFz〉 = h̄

d

λ2

4π2
RR

c

2
∂d

∫ ∞

0
ds

sin
(

2ds
c

)
s + �

. (B10)
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After carrying out this integral, the large distance limit is obtained as

lim
d�σ

lim
vx→c

lim
��τ→∞

〈δFz〉 = − h̄c2

�d3

RRλ
2

16π2
. (B11)

This is the result shown in Eq. (89).
c. Small velocity limit. In this particular limit, we apply a Taylor expansion to Eq. (B5) in vx around vx = 0. We will show in

Appendix C that, in the small velocity limit, the dominant contribution is independent of vx , and equal to

lim
vx�c

lim
��τ→∞

〈δFz〉 = − h̄

c

λ2

4π2

∫ ∞

0
ds

s2e
− σ2s2

2c2

s + �
RR

[
sin

(
2ds
c

) − 2 ds
c

cos
(

2ds
c

)
2
(

ds
c

)2

]
. (B12)

Since the short distance limit obtained in Eq. (B8) is valid for all velocities, we do not need to repeat the calculation here. In
contrast, the high distance limit obtained in Eq. (B11) is valid for high velocities, therefore, the result at small velocities will not
be the same and needs to be computed. In the large distance limit, the Gaussian profile can be approached by a Dirac delta, then
we obtain

lim
d�σ

lim
vx�c

lim
��τ→∞

〈δFz〉 = − h̄c

d2

λ2

8π2
RR

∫ ∞

0
ds

sin
(

2ds
c

) − 2 ds
c

cos
(

2ds
c

)
s + �

. (B13)

This is a divergent integral, but can be regularized by an analytical continuation of a convergent integral as

lim
d�σ

lim
vx�c

lim
��τ→∞

〈δFz〉 = − h̄c

d2

λ2

8π2
RR[1 − d∂d ]

∫ ∞

0
ds

sin
(

2ds
c

)
s + �

. (B14)

After carrying out this integral, the large distance limit is obtained as

lim
d�σ

lim
vx�c

lim
��τ→∞

〈δFz〉 = − h̄c2

�d3

λ2

8π2
RR. (B15)

Note that we have obtained an analytical result for the small detector case as

lim
σ→0

lim
vx�c

lim
��τ→∞

〈δFz〉 = − h̄c

d2

λ2

8π2
RR

{
Ci(x)[sin(x) − x cos(x)] +

[π

2
− Si(x)

]
[x sin(x) + cos(x)]

}
, (B16)

with x = 2d�
c

. The large distance limit is, therefore,

lim
d�σ

lim
vx�c

lim
��τ→∞

〈δFz〉 = − h̄c2

�d3

λ2

8π2
RR, (B17)

and the small distance limit of the pointlike detector is

lim
d�c�

lim
σ→0

lim
vx�c

lim
��τ→∞

〈δFz〉 = − h̄c

d2

λ2

16π
RR. (B18)

APPENDIX C: DIFFERENT LIMITS OF THE ANGULAR INTEGRAL IN θ

In this appendix we are going to obtain the different asymptotic results of

I0 =
∫ π

0
dθ

sin(θ ) cos(θ )[
1 − vx

c
cos(θ )

]3 J0

[
2dt

γ

sin(θ )

1 − vx

c
cos(θ )

]
, (C1)

I1 =
∫ π

0
dθ

sin2(θ )[
1 − vx

c
cos(θ )

]3 J1

[
2dt

γ

sin(θ )

1 − vx

c
cos(θ )

]
, (C2)

used in Sec. V.

1. Limit of small velocities

Up to the linear term in the small velocities limit, we have

lim
vx�c

I0 =
∫ π

0
dθ sin(θ ) cos(θ )

[
J0(2dt sin(θ )) − vx

c
[3J0(2dt sin(θ )) − 2dt sin(θ )J1(2dt sin(θ ))] + · · ·

]
, (C3)

lim
vx�c

I1 =
∫ π

0
dθ sin2(θ )

[
J1(2dt sin(θ )) − 2

vx

c
cos(θ )[dt sin(θ )J2(2dt sin(θ )) − 2J1(2dt sin(θ ))] + · · ·

]
. (C4)
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Then, it is possible to carry out the integrals in θ , and we obtain, up to linear order in velocities

lim
vx�c

I0 = vx

c

sin(2dt )

dt
, (C5)

lim
vx�c

I1 = −cos(2dt )

dt
+ sin(2dt )

2d2t2
. (C6)

Those results will be useful in the small velocities regime, in particular, in the large distance limit.

2. Limit of small distances

In the small distances regime, we have, up to linear order in d

lim
d�σ

I0 =
∫ π

0
dθ

sin(θ ) cos(θ )[
1 − vx

c
cos(θ )

]3 [1 + O(d2)], (C7)

lim
d�σ

I1 =
∫ π

0
dθ

sin3(θ )[
1 − vx

c
cos(θ )

]4

[
dt

γ
+ O(d2)

]
. (C8)

Then, it is possible to carry out the integrals in θ , and we obtain, up to linear order in distances

lim
d�σ

I0 = 2
vx

c
γ 4, (C9)

lim
d�σ

I1 = 4

3
γ 3dt. (C10)

Note that those results are valid for all velocities.

3. Limit of large distances at large velocities

In this section, we are going to study the limit of large distances for large velocities of I0 and I1, i.e., the following results:

C0 = lim
vx→c

lim
d�σ

∫ π

0
dθ

sin(θ ) cos(θ )[
1 − vx

c
cos(θ )

]3 J0

[
2dt

γ

sin(θ )

1 − vx

c
cos(θ )

]
= γ 4 vx

c

sin(2dt )

dt
, (C11)

C1 = lim
vx→c

lim
d�σ

∫ π

0
dθ

sin2(θ )[
1 − vx

c
cos(θ )

]3 J1

[
2dt

γ

sin(θ )

1 − vx

c
cos(θ )

]
= −γ 3 cos(2dt )

dt
. (C12)

C0 and C1 are used in the calculation of the large distance regime of the x (quantum friction) and z (Casimir force) components
of the four-force, respectively. First of all, we use the asymptotic limit of Bessel functions for large argument limad�1 J0(ad ) →√

2
πad

sin(ad + π/4) and limad�1 J1(ad ) → −
√

2
πad

cos(ad + π/4). Then, we have

C0 =
√

γ

πdt
lim
vx→c

lim
d�σ

∫ π

0
dθ

√
sin(θ ) cos(θ )[

1 − vx

c
cos(θ )

]5/2 sin

[
π

4
+ 2dt

γ

sin(θ )

1 − vx

c
cos(θ )

]
, (C13)

C1 = −
√

γ

πdt
lim
vx→c

lim
d�σ

∫ π

0
dθ

sin3/2(θ )[
1 − vx

c
cos(θ )

]5/2 cos

[
π

4
+ 2dt

γ

sin(θ )

1 − vx

c
cos(θ )

]
. (C14)

After that, we separate the region of integration into two parts, the first one from θ = 0 to θ = π/2, and the second one from
θ = π/2 to θ = π . Then, we apply the change of variable sin(θ ) = S± to the two integrals, taking into account that cos(θ )
transforms into +

√
1 − S2

+ in the integral that runs from θ = 0 to θ = π/2 and into −
√

1 − S2
− in the integral that runs from

θ = π/2 to θ = π (then we have dθ = dS±
±
√

1−S2±
for each integral) in order to keep the correct criterion of signs of cos(θ ) in the

first and second quadrants. Then, we have

C0 =
√

γ

πdt
lim
vx→c

lim
d�σ

∫ 1

0
dS+

√
S+(

1 − vx

c

√
1 − S2+

)5/2
sin

⎛
⎝π

4
+ 2dt

γ

S+

1 − vx

c

√
1 − S2+

⎞
⎠

−
√

γ

πdt
lim
vx→c

lim
d�σ

∫ 1

0
dS−

√
S−(

1 + vx

c

√
1 − S2−

)5/2
sin

⎛
⎝π

4
+ 2dt

γ

S−

1 + vx

c

√
1 − S2−

⎞
⎠, (C15)
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C1 = −
√

γ

πdt
lim
vx→c

lim
d�σ

∫ 1

0

dS+

+
√

1 − S2+

S
3/2
+(

1 − vx

c

√
1 − S2+

)5/2
cos

⎛
⎝π

4
+ 2dt

γ

S+

1 − vx

c

√
1 − S2+

⎞
⎠

+
√

γ

πdt
lim
vx→c

lim
d�σ

∫ 1

0

dS−

−
√

1 − S2−

S
3/2
−(

1 + vx

c

√
1 − S2−

)5/2
cos

⎛
⎝π

4
+ 2dt

γ

S−

1 + vx

c

√
1 − S2−

⎞
⎠. (C16)

Note the subtle change of signs in the second integral due to the sign of cos(θ ) in the second quadrant.
We apply another change of variables

α± = S±

1 ∓ vx

c

√
1 − S2±

, (C17)

obtaining that

C0 =
√

γ

πdt
lim
vx→c

lim
d�σ

∫ 1

0
dS+

α
5/2
+
S2+

sin

(
π

4
+ 2dt

γ
α+

)
−

√
γ

πdt
lim
vx→c

lim
d�σ

∫ 1

0
dS−

α
5/2
−
S2−

sin

(
π

4
+ 2dt

γ
α−

)
, (C18)

C1 = −
√

γ

πdt
lim
vx→c

lim
d�σ

∫ 1

0
dS+

α
5/2
+
S+

cos

(
π

4
+ 2dt

γ
α+

)
vx

c

α+
α+ − S+

+
√

γ

πdt
lim
vx→c

lim
d�σ

∫ 1

0
dS−

α
5/2
−
S−

cos

(
π

4
+ 2dt

γ
α−

)
vx

c

α−
α− − S−

. (C19)

The Jacobian of the transformation is

dα± = d

dS±

⎛
⎝ S±

1 ∓ vx

c

√
1 − S2±

⎞
⎠dS±

= dS±

⎡
⎣∓ S2

±
vx

c√
1 − S2±

(
1 ∓ vx

c

√
1 − S2±

)2
+ 1

1 ∓ vx

c

√
1 − S2±

⎤
⎦

= dS±
J±

. (C20)

Note that, if we invert this change of variable, we get

S+ = α+
1 − (

vx

c

)√
1 + α2+

[(
vx

c

)2 − 1
]

α2+
(

vx

c

)2 + 1
∀ α+ ∈ (0, 1) ‖ ∀ S+ ∈

(
0,

1

γ

)
, (C21)

S+ = α+
1 + (

vx

c

)√
1 + α2+

[(
vx

c

)2 − 1
]

α2+
(

vx

c

)2 + 1
∀ α+ ∈ (1, γ ) ‖ ∀ S+ ∈

(
1

γ
, 1

)
, (C22)

S− = α−
1 + (

vx

c

)√
1 + α2−

[(
vx

c

)2 − 1
]

α2−
(

vx

c

)2 + 1
∀ α− ∈ (0, 1) ‖ ∀ S− ∈ (0, 1). (C23)

Then, we observe that the change of variables is different, in the first integral, for the interval S+ ∈ (0, 1
γ

) than for the other

interval S+ ∈ ( 1
γ
, 1), therefore, we have to divide this integral in two parts, taking into account that the transformation from S+

into α+ is subtly different in each integral. Then, we have

C0 =
√

γ

πdt
lim
vx→c

lim
d�σ

∫ γ

0
dα+J+

α
5/2
+
S2+

sin

(
π

4
+ 2dt

γ
α+

)
−

√
γ

πdt
lim
vx→c

lim
d�σ

∫ γ

1
dα+J+

α
5/2
+
S2+

sin

(
π

4
+ 2dt

γ
α+

)

−
√

γ

πdt
lim
vx→c

lim
d�σ

∫ 1

0
dα−J−

α
5/2
−
S2−

sin

(
π

4
+ 2dt

γ
α−

)
, (C24)

C1 = −
√

γ

πdt

vx

c
lim
vx→c

lim
d�σ

∫ γ

0
dα+J+

α
5/2
+
S+

cos

(
π

4
+ 2dt

γ
α+

)
α+

α+ − S+
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+
√

γ

πdt

vx

c
lim
vx→c

lim
d�σ

∫ γ

1
dα+J+

α
5/2
+
S+

cos

(
π

4
+ 2dt

γ
α+

)
α+

α+ − S+

+
√

γ

πdt

vx

c
lim
vx→c

lim
d�σ

∫ 1

0
dα−J−

α
5/2
−
S−

cos

(
π

4
+ 2dt

γ
α−

)
α−

α− − S−
. (C25)

In the next step, we separate the first integral in two parts, the first one for α+ ∈ (0, 1) and the second one for α+ ∈ (1, γ ). Next,
we write S± explicitly as functions of α±, S± = S±(α±) taking into account in which dominion of α± we are, and we drop the
subindices ± because, at the end of the day, α∓ are dummy dimensionless integration variables. Then, we have two integrals, one
for the interval α+ ∈ (0, 1) and another one for the interval α+ ∈ (1, γ ).

In the next step, we apply a high-velocity limit to the integrand of the first integral vx → c, and an asymptotic expansion of α

around α = γ to the integrand of the second integral, obtaining

C0 =
√

γ

πdt
lim
d�σ

∫ 1

0
dα sin

(
π

4
+ 2dt

γ
α

)√
α

[
1

1 − vx

c

+ O[α0]

]

+
√

γ

πdt
lim
d�σ

∫ γ

1
dα sin

(
π

4
+ 2dt

γ
α

)√
α

[
vx

c

√
2γ 5/2

√
γ − α

+ O[(γ − α)1/2]

]
, (C26)

C1 = vx

c

√
γ

πdt
lim
d�σ

∫ 1

0
dα cos

(
π

4
+ 2dt

γ
α

)
α3/2[−1 + O[α2]]

−
√

γ

πdt
lim
d�σ

∫ γ

1
dα cos

(
π

4
+ 2dt

γ
α

)
α3/2

[ √
2γ√

γ − α
+ O[(γ − α)1/2]

]
. (C27)

The first integral can be carried out analytically, and in the large distance limit we obtain√
γ

πdt
lim
d�σ

∫ 1

0
dα sin

(
π

4
+ 2dt

γ
α

)[ √
α

1 − vx

c

]
= 1

1 − vx

c

√
γ

2πdt

γ

2dt

[
sin

(
2dt

γ

)
− cos

(
2dt

γ

)]
, (C28)

−vx

c

√
γ

πdt
lim
d�σ

∫ 1

0
dα cos

(
π

4
+ 2dt

γ
α

)
α3/2 = vx

c

√
γ

2πdt

γ 2

2d2t2

[
cos

(
2dt

γ

)
− sin

(
2dt

γ

)]
. (C29)

The second one can be carried out as well in the high-velocity limit: first, we approximate the lower limit of the integral from 1 to
0. After applying the change of variable α = γβ, then, the limits of integration change to β ∈ (1/γ, 1) and, in the high-velocity
limit, we have 1/γ → 0. When we apply the high-velocity limit and the large distance limit, we get the following result:√

γ

πdt
lim
v→c

lim
d�σ

∫ γ

1
dα sin

(
π

4
+ 2dt

γ
α

)[
vx

c

√
2αγ 5/2

√
γ − α

]
= γ 4

√
2

πdt

vx

c
lim
v→c

lim
d�σ

∫ 1

1/γ

dβ
√

β
sin

(
π
4 + 2dtβ

)
√

1 − β

= γ 4

√
2

πdt

vx

c
lim
d�σ

∫ 1

0
dβ

√
β

sin
(

π
4 + 2dtβ

)
√

1 − β

= γ 4

√
2

πdt

vx

c

√
π

2dt

[
sin(2dt ) + cos(2dt )

8dt

]
, (C30)

−
√

γ

πdt
lim
v→c

lim
d�σ

∫ γ

1
dα cos

(
π

4
+ 2dt

γ
α

)
α3/2

[ √
2γ√

γ − α

]
= −γ 3

√
2

πdt
lim
v→c

lim
d�σ

∫ 1

1/γ

dβ cos
(π

4
+ 2dtβ

) β3/2

√
1 − β

= −γ 3

√
2

πdt
lim
d�σ

∫ 1

0
dβ cos

(π

4
+ 2dtβ

) β3/2

√
1 − β

= −γ 3

√
1

2πdt

√
2π

dt

[
cos(2dt ) − 3

8dt
sin(2dt )

]
. (C31)

Then, the dominant contribution at large distances is

C0 = γ 4 vx

c

sin(2dt )

dt
, (C32)

C1 = −γ 3 cos(2dt )

dt
, (C33)

which are the results we wanted to demonstrate.
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APPENDIX D: LIPPMAN-SWCHINGER EQUATION
APPLIED TO THE TWO-POINT CORRELATOR IN THE

PRESENCE OF A MACROSCOPIC OBJECT

In this appendix we are going to introduce a general
boundary condition, and then particularize for an infinite plate.
The formalism that we are going to introduce is valid for any
kind of linear boundary conditions. This includes the typical
choices of Dirichlet (e.g., perfect conductor for the electric
field), Neumann, or any other kind of continuity condition with
the field on the other side of the plate.

In the presence of a boundary condition, the two-point
correlator of the scalar field is modified by the introduction
of an extra term that is derived from the Lippmann-Schwinger
equation [54]

Gk = G0
k +

∑∫
k′
G0

kTkk′G0
k′ , (D1)

where G0
k is the two-point correlator for the field in free

space, and Tkk′ is the T -scattering matrix of the object that
imposes the conditions on the field. The T -scattering matrix
has all the information about the geometry and the kind of
boundary conditions of the considered object. The symbol

∑∫
represents the sum over the momentum variable k′, which in
the continuum is an integral over the momentum space, but
depending on the multipole basis used, it can be a continuous
or discrete variable [51]. The general expression for the free
two-point correlator function in the multipolar basis is

G0(r0 − r1) =
∫

k

[
φout

k (r0)φ̄reg
k (r1)�(z0 − z1)

+φ
reg
k (r0)φ̄out

k (r1)�(z1 − z0)
]
, (D2)

where φ
reg/out
k are the incoming and outgoing multipoles to

and from the origin of coordinates. The outgoing multipoles
are regular at infinity, while the incoming multipoles are
regular at the origin of coordinates (for all complex frequencies
ω with positive real and imaginary parts), those multipoles
will be related with uk and u∗

k later. �(x) is the Heaviside
theta function, and we use the the definition

∫
k = ∫

d3k. We
are going to obtain the general two-point correlator in the
presence of one object. Later, we will particularize the result for

Cartesian multipoles and the object to an infinite plate. Finally,
we are going to use this expression of the Lippmann-Schwinger
equation to obtain the method of images explicitly and the
expression of the two-point correlator used in the text in
Eq. (38), which is a central result, widely used in all the
calculations of the paper.

In general, theT matrix operator that defines the interaction
of the object with the scalar field is not defined in the same
coordinate system as the multipoles of the free two-point
correlator (for example, the T matrix of a plate is calculated
from a coordinate system centered in one point of its surface
that of a sphere is calculated in in a frame set on its center, and
sor a cylinder the origin is taken to be at a point of its axis,
etc.), while, in our paper, the free two-point function is defined
in the quantization frame and pulled back to the smeared
trajectory of the detector. Therefore, we have to apply a change
of coordinates from the multipole basis where the two-point
function is defined (centred in x = 0) to the multipole basis
where the T matrix is defined, and it is done by the use of the
translation matrices X [51,54]:

φ̄
reg
k (rα ) =

∫
v

X†
k,v (Xαβ )φ̄reg

v (rβ ), (D3)

φreg
q (rα ) =

∫
w

φreg
w (rβ )Xw,q (Xαβ ), (D4)

where Xαβ = rα − rβ describes the relative position of the
two origin of coordinates. X and X† correspond to V and W in
[51], respectively. Note that rα is the same point of the space
as rβ , but represented in the translated reference system (see
Fig. 1 of [51]). We are going to write all the expressions in
terms of the T operator defined in its own coordinate system
[51,54]

Tk,u = −
∫

d3r2

∫
d3r3φ̄

reg
k (r2)T(r2, r3)φreg

u (r3), (D5)

therefore, we have to translate the mutipoles of the free two-
point correlators to the coordinate system where theT operator
is defined. Assuming r4,z > r0,z > r1,z, where r4 is the point
where the object is placed, we apply a direct substitution in the
second term of the right-hand side of the Lippmann-Schwinger
equation obtaining

G0TG0 =
∫

d3r2

∫
d3r3G0(r0, r2)T(r2, r3)G0(r3, r1)

=
∫

d3r2

∫
d3r3

∫
k

0φ
out
k (r0)0φ̄

reg
k (r2)44T(r2, r3)

∫
q

1φ
reg
q (r3)1φ̄

out
q (r1). (D6)

Each two-point correlator is defined in one system of reference centered in one point. The subindex i in iφ
reg/out
k (r ) indicates that

the point where the multipole basis is centered is r i , therefore, iφ
reg/out
k (r i ) = φ

reg/out
k (0). Note that we assume that the object is

placed in r4, and that r2 and r3 are integration variables. We have to change the system of coordinates where the scalar multipoles
are defined from the frame of the source to the frame of the object (of the T operator). Symbolically,

0φ̄
reg
k (r2) =

∫
v

X†
k,v (X40)4φ̄

reg
v (r2), (D7)

1φ
reg
q (r3) =

∫
w

4φ
reg
w (r3)Xw,q (X41), (D8)
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where X40 and X41 are the relative distance between the two coordinate systems considered here. Note that this definition is
equivalent to the one shown in Eq. (D3). In our particular case, X40 = (x, y, d ). In what follows, we will write the second term
of the right-hand side of the Lippmann-Schwinger equation in the basis centered in r0:

G0TG0 =
∫

d3r2

∫
d3r3

∫
k

0φ
out
k (r0)0φ̄

reg
k (r2)44T(r2, r3)

∫
q

1φ
reg
q (r̃ ′

P )1φ̄
out
q (r1)

=
∫

d3r2

∫
d3r3

∫
k

0φ
out
k (r0)

∫
v

X†
k,v (X40)4φ̄

reg
v (r2)44T(r2, r3)

∫
q

∫
w

4φ
reg
w (r3)Xw,q (X41)1φ̄

out
q (r1)

=
∫

k

∫
v

∫
w

∫
q

0φ
out
k (r0)X†

k,v (X40)

[∫
d3r2

∫
d3r34φ̄

reg
v (r2)44T(r2, r3)4φ

reg
w (r3)

]
Xw,q (X41)1φ̄

out
q (r1)

= −
∫

k

∫
v

∫
w

∫
q

0φ
out
k (r0)X†

k,v (X40)Tv,wXw,q (X41)1φ̄
out
q (r1). (D9)

The two-point correlator in the presence of one object is

G1 = G0 + G0T1G0 =
∫

k
0φ

out
k (r0)0φ̄

reg
k (r1) −

∫
k

∫
v

∫
w

∫
q

0φ
out
k (r0)X†

k,v (X40)Tv,wXw,q (X41)1φ̄
out
q (r1)

=
∫

k
0φ

out
k (r0)

[
0φ̄

reg
k (r1) −

∫
v

∫
w

∫
q
X†

k,v (X40)Tv,wXw,q (X41)1φ̄
out
q (r1)

]
. (D10)

The formula shown here is general, and valid for any multipolar basis chosen, only changing the integration variable k by the
corresponding set of continuous and discrete integration and summation indices of the particular multipolar basis we choose. The
two-point correlator is the sum of a free correlator, that can be understood as a wave traveling from r1 to r0 plus another one
that is another wave traveling from r1 to r4, where the wave finds the object and is scattered by Tk,q , and travels from r4 to r0.
This expression is general for arbitrary shaped objects. Note as well that the Tv,w operator defined here corresponds to the scalar
analog of F ee

β,α (ω) defined in [51]. If we particularize to the multipolar Cartesian basis, the translation matrices are defined as
[51]

Xk,v (Xαβ ) = e−ik·Xαβ δ(k − v), (D11)

X†
k,v (Xαβ ) = eik·Xαβ δ(k − v), (D12)

where we have used ω2
k = k2

‖ + k2
z to obtain

δ(ωk − ωq ) = |ω|
|kz|δ(kz − qz). (D13)

Then, in the Cartesian multipolar basis we have

G1(r0, r1) =
∫

k
0φ

out
k (r0)

[
0φ̄

reg
k (r1) −

∫
v

∫
w

∫
q
X†

k,v (X40)Tv,wXw,q (X41)1φ̄
out
q (r1)

]

=
∫

k
0φ

out
k (r0)

[
0φ̄

reg
k (r1) −

∫
v

∫
w

∫
q
eik·X40δ(k − v)Tv,we−iw·X41δ(w − q )1φ̄

out
q (r1)

]

=
∫

k
0φ

out
k (r0)

[
0φ̄

reg
k (r1) −

∫
q
eik·X40Tk,qe

−iq·X41
1φ̄

out
q (r1)

]
. (D14)

The T matrix of a plate is diagonal in this particular coordinate basis [51]

Tk,q = Rkδ(k − q ), (D15)

where Rk is the Fresnel reflection coefficient for the particular boundary conditions of the plate. In this case, the two-point
correlator in the presence of a plate is

G1(r0, r1) =
∫

k
0φ

out
k (r0)

[
0φ̄

reg
k (r1) −

∫
q
eik·X40Tk,qe

−iq·X41
1φ̄

out
q (r1)

]

=
∫

k
0φ

out
k (r0)

[
0φ̄

reg
k (r1) −

∫
q
eik·X40Rkδ(k − q )e−iq·X41

1φ̄
out
q (r1)

]

=
∫

k
0φ

out
k (r0)

[
0φ̄

reg
k (r1) − eik·X40Rke

−ik·X41
1φ̄

out
k (r1)

]
, (D16)
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where

φ
reg/out
k (r ) = 1√

2|k|e
∓i(|k|t−ik·r ) = 1√

2|k|e
∓ikμrμ

, (D17)

φ̄
reg/out
k (r ) = 1√

2|k|e
±i(|k|t−ik·r ) = 1√

2|k|e
±ikμrμ

. (D18)

Therefore, we have φ̄out
k (r ) = φ̄

reg
k (r ).

Method of images

Until now, we have assumed that r4,z > r0,z > r1,z. If we want to obtain the expression of the method of images from this
result, we will have r̄1,z > r4,z > r0,z (where r̄1 is the image of r1). First, we have to exchange φ̄out

k (r ) by φ̄
reg
k (r ), but the

translation matrices have to be modified as well. If we want to do this transformation properly, keeping that φ̄out
k (r ) is regular

at infinity and φ̄
reg
k (r ) is regular at the origin, we must be careful and remember that, for complex ω in the first quadrant of the

complex plane, the kz component also belongs to the first quadrant of the complex plane as well. It means that its imaginary part
produces a (positive) real value that must be kept invariant under the change of r1 by r̄1. In particular, we have

−Im[kz]|X41,z| = −Im[kz]|X̄41,z|. (D19)

We eliminate the absolute values using that r̄1,z > r4,z > r0,z > r1,z:

−Im[kz](r4,z − r1,z) = −Im[kz](r̄1,z − r4,z), (D20)

obtaining that r̄1,z is

r̄1,z = −r1,z + 2r4,z = r1,z + 2(r4,z − r1,z) = r1,z + 2X41,z. (D21)

The x and y components are kept invariant, therefore, we have that

r̄1 = r1 + 2(X41 · ẑ, )ẑ (D22)

and using φ̄out
k (r ) = φ̄

reg
k (r ), the two-point correlator is written as

G1(r0, r1) =
∫

k
0φ

out
k (r0)

[
0φ̄

reg
k (r1) − eik·X40Rke

−ik·X41
1φ̄

out
k (r1)

]
=

∫
k

0φ
out
k (r0)

[
0φ̄

reg
k (r1) − eik·X40Rke

−ik·X̄41
1φ̄

reg
k (r1)

]
. (D23)

We use that the Rk operator and X operator commutes for the Cartesian basis, and e−ik·X̄41 = eik·X̄14 , to obtain

G1(r0, r1) =
∫

k
0φ

out
k (r0)

[
0φ̄

reg
k (r1) − Rke

ik·X40eik·X̄14
1φ̄

reg
k (r1)

]
=

∫
k

0φ
out
k (r0)

[
0φ̄

reg
k (r1) − Rke

ik·X̄10
1φ̄

reg
k (r1)

]
=

∫
k

0φ
out
k (r0)

[
0φ̄

reg
k (r1) − Rke

2ik·(X41·ẑ)ẑeik·X10
1φ̄

reg
k (r1)

]
=

∫
k

0φ
out
k (r0)

[
0φ̄

reg
k (r1) − Rke

2ik·(X41·ẑ)ẑ
0φ̄

reg
k (r1)

]
=

∫
k

0φ
out
k (r0)

[
1 − Rke

2ik·(X41·ẑ)ẑ
]

0φ̄
reg
k (r1). (D24)

Here, we have combined two translation matrices into one (or separate one into two) because, in general,∫
q
Xkq (Xαβ )Xqv (Xβγ ) = Xkv (Xαγ ). (D25)

Finally, we use the definition given in Eq. (D3) instead of the equivalent one given in Eq. (D7) for 2(X41 · ẑ)ẑ, and we obtain

G1(r0, r1) =
∫

k
0φ

out
k (r0)

[
0φ̄

reg
k (r1) − Rk0φ̄

reg
k [r1 + 2(X41 · ẑ)ẑ]

]
=

∫
k

0φ
out
k (r0)

[
0φ̄

reg
k (r1) − Rk0φ̄

reg
k (r̄1)

]
. (D26)
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This last expression is the method of images, where we represent the effect of a planar boundary condition as the presence of a
reflection of an image charge weighted by Rk. In our particular case, a direct substitution gives φ

reg/out
k (r ) = u∗

k(r ), φ̄
reg/out
k (r ) =

uk(r ), and X21 · ẑ = d, then

G1(r0, r1) =
∫

k
u∗

k(r0)[1 − Rke
2ikzd ]uk(r1), (D27)

which is the two-point correlatior used in Eq. (38).
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