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The analytic expressions for the free energy and entropy of the Casimir-Polder interaction between a
polarizable and magnetizable atom and a graphene sheet are found in the limiting case of low temperature.
In so doing, the response of graphene to electromagnetic fluctuations is described in the framework of the Dirac
model by means of the polarization tensor in (2+1)-dimensional space-time. It is shown that the dominant
contribution to the low-temperature behavior is given by an explicit dependence of the polarization tensor on
temperature as a parameter. We demonstrate that the Lifshitz theory of atom-graphene interaction satisfies the
Nernst heat theorem, i.e., is thermodynamically consistent. On this basis possible reasons of thermodynamic
inconsistency arising for the Casimir-Polder and Casimir interactions in the case of Drude metals are discussed.
The conclusion is made that, although large thermal effect arising in the Casimir interaction between Drude
metals at short separations should be considered as an artifact, the giant thermal effect predicted for graphene
systems is an important physical phenomenon which awaits its experimental observation.
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I. INTRODUCTION

Physical phenomena known under a generic name of the
Casimir-Polder interaction refer to the fluctuation-induced
forces acting between polarizable and (or) magnetizable
atoms (atomic systems) and material surfaces. These forces
depend on the atomic and material properties, on the atom-
surface separation, and on the temperature. At the shortest
separations below a few nanometers they are of nonrelativis-
tic character and are often called the van der Waals forces
[1], whereas the relativistic generalization was obtained by
Casimir and Polder [2] for the case of an ideal-metal plane
surface. Independent of separation, the Casimir-Polder inter-
action is of an entirely quantum nature. Similar to the Casimir
interaction, which refers to two macroscopic bodies separated
by a narrow gap, it is described by the Lifshitz theory [3]. In
the framework of this theory, the Casimir-Polder interaction
was investigated for different atoms and surface materials
[4–11]. Calculations of this kind are useful for interpretation
of experiments on Bose-Einstein condensation [12–14], quan-
tum reflection [15–17], and, e.g., for understanding of the res-
onance interaction of two atoms near a boundary surface [18].

In the past few years much attention has been focused
on the Casimir-Polder interaction of different atoms with
graphene and graphene-coated substrates [19–29]. Graphene
is a two-dimensional sheet of carbon atoms packed in a
hexagonal lattice which possesses unusual electrical, optical,
and mechanical properties [30,31]. At low energies it is well
described by the Dirac model which assumes that graphene
quasiparticles are massless, obey a linear dispersion relation,
but move at the Fermi velocity vF ≈ c/300 in place of the
speed of light. As a result, the Casimir-Polder interaction of

atoms with a graphene sheet possesses the giant thermal effect
at short separations [20] predicted earlier for the Casimir force
between two graphene sheets [32].

It has been known that large thermal effect at short sep-
arations arises also in the Casimir interaction between two
metallic plates if the dielectric properties of metal at low
frequencies are described by the Drude model [33,34]. A
similar effect arises in the Casimir-Polder force acting on
an atom possessing both electric polarizability and magnetic
susceptibility when it interacts with a metallic plate described
by the Drude model. For the case of both nonmagnetic and
magnetic metallic plates described by the Drude model an
existence of large thermal effect in the Casimir force at short
separations was unambiguously excluded by many experi-
ments [35–43]. On the theoretical side, it was shown that the
Lifshitz theory comes into conflict with the Nernst heat theo-
rem when the response of metals with perfect crystal lattices
to low-frequency electromagnetic fluctuations is described by
the Drude model. This was proven in different geometries
for the Casimir interaction between nonmagnetic [44–48] and
magnetic [49] metals and, very recently, for the Casimir-
Polder interaction of both polarizable and magnetizable atoms
interacting with metallic plate [50]. This raises a question
of whether the theoretical description of the Casimir-Polder
interaction of atoms with graphene is thermodynamically
consistent. For the Casimir interaction between two graphene
sheets this fundamental question was solved positively [51],
but for an atom possessing both the electric polarizability and
magnetic susceptibility it still remains unsolved.

In this paper, we investigate the low-temperature behav-
ior of the Casimir-Polder free energy and entropy for a
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polarizable and magnetizable atom interacting with a
graphene sheet. All derivations are made in the framework
of the Lifshitz theory and graphene is described by the Dirac
model. The response of graphene to electromagnetic fluctu-
ations is found on the basis of first principles of quantum
electrodynamics at nonzero temperature using the polarization
tensor in (2+1)-dimensional space-time. It is shown that both
a summation over the discrete Matsubara frequencies and an
explicit temperature dependence of the polarization tensor
contribute to the Casimir-Polder free energy and entropy.
The behaviors of both the free energy and entropy at low
temperature are found analytically. In so doing, the dominant
contribution to them originates from an explicit dependence
of the polarization tensor on temperature. We demonstrate
that the Lifshitz theory of atom-graphene interaction is in
agreement with the Nernst heat theorem and, thus, is thermo-
dynamically consistent. On this basis some conjectures con-
cerning the reasons of inconsistency arising when the Drude
model is used are inferred. Specifically, it is concluded that,
although large thermal effect arising in the Casimir interaction
between Drude metals should be considered as an artifact,
the giant thermal effect for graphene is an important physical
phenomenon which awaits its experimental observation.

The paper is organized as follows. In Sec. II the general
formalism for the free energy of an atom-graphene interaction
at low temperature is presented. Section III contains calcula-
tion of the contribution to the Casimir-Polder free energy due
to an implicit temperature dependence. The contribution due
to an explicit temperature dependence is found in Sec. IV. In
Sec. V the Nernst heat theorem for an atom interacting with
graphene is proven and some relevant problems are touched
on. Section VI contains our conclusions and a discussion.

II. CASIMIR-POLDER FREE ENERGY FOR A
POLARIZABLE AND MAGNETIZABLE ATOM

INTERACTING WITH GRAPHENE
AT LOW TEMPERATURE

We consider an atom characterized by the dynamic electric
polarizability α(ω) and magnetic susceptibility β(ω) sep-
arated by a distance a from a graphene sheet in thermal
equilibrium at temperature T . In this case the free energy is
given by the Lifshitz formula [7,11]

F (a, T ) = −kBT

∞∑
l=0

′ ∫ ∞

0
k⊥dk⊥qle

−2aql

×
{

2[αlrTM(iξl, k⊥) + βlrTE(iξl, k⊥)]

− ξ 2
l

q2
l c

2
(αl + βl )[rTM(iξl, k⊥) + rTE(iξl, k⊥)]

}
.

(1)

Here, kB is the Boltzmann constant, k⊥ is the magnitude of
the projection of the wave vector on the plane of graphene,
q2

l = k2
⊥ + ξ 2

l /c2, ξl = 2πkBT l/h̄ with l = 0, 1, 2, . . . are
the Matsubara frequencies, αl = α(iξl ), βl = β(iξl ), and the
prime on the summation sign means that the term with l = 0
has to be multiplied by 1/2. The quantities rTM and rTE are

the reflection coefficients of electromagnetic fluctuations on
graphene with the transverse magnetic (TM) and transverse
electric (TE) polarizations. Their explicit form is specified
below.

Note that the free energy (1) is an approximate expression
obtained as the first perturbation order in the small parameters
αl and βl . The nonperturbative generalization of the zero-
temperature Casimir-Polder force between an atom and an
ideal-metal plane to the case T �= 0 was obtained only a few
years ago [52]. Very recently, the nonperturbative generaliza-
tion of Eq. (1) was also derived for the case of any material
plate [53]. It was shown, however, that the exact and pertur-
bative free energies may differ for no more than 1% and only
at a < 1 nm [53]. Taking into account that the Dirac model
of graphene is applicable at frequencies below approximately
2 eV ≈ 3.05 × 1015 rad/s, the formalism developed in this
section works well at atom-graphene separations a > 50 nm.
In this separation region the perturbative free energy (1) is
indistinguishable from the exact one.

It is convenient to introduce the dimensionless variables

y = 2qla, ζl = 2aξl

c
≡ τ l, (2)

where

τ = 4π
akBT

h̄c
= 2π

T

Teff
(3)

and the effective temperature for the Casimir effect is defined
as kBTeff = h̄c/(2a). In terms of these variables the free
energy (1) takes the form

F (a, T ) = −kBT

8a3

∞∑
l=0

′ ∫ ∞

ζl

dy e−y
{
2y2[αlrTM(iζl, y)

+βlrTE(iζl, y)] − ζ 2
l (αl + βl )[rTM(iζl, y)

+ rTE(iζl, y)]
}
. (4)

The reflection coefficients rTM and rTE on a graphene sheet
have been expressed via its polarization tensor in Ref. [54].
Here we use an equivalent form for the reflection coefficients

rTM(iζl, y) = y�̃00(iζl, y)

y�̃00(iζl, y) + 2
(
y2 − ζ 2

l

) ,
(5)

rTE(iζl, y) = − �̃(iζl, y)

�̃(iζl, y) + 2y
(
y2 − ζ 2

l

) ,
where �̃nm with n, m = 0, 1, 2 is the dimensionless polar-
ization tensor of graphene connected with the dimensional
one, �nm, by �̃nm = 2a�nm/h̄, the quantity �̃ is defined as

�̃(iζl, y) = (
y2 − ζ 2

l

)
tr�̃nm − y2�̃00, (6)

and tr�̃nm = �̃ n
n is the trace of the polarization tensor.

It is convenient to present the polarization tensor in the
form

�̃00(iζl, y) = �̃
(0)
00 (iζl, y) + �T �̃00(iζl, y),

(7)
�̃(iζl, y) = �̃(0)(iζl, y) + �T �̃(iζl, y),

where �̃
(0)
00 and �̃(0) are found at T = 0 but with continuous

dimensionless frequencies ζ replaced by the discrete Matsub-
ara frequencies ζl and �T �̃00, �T �̃ have the meaning of
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thermal corrections. The polarization tensor at T = 0 has a
very simple form [54,55]

�̃
(0)
00 (iζl, y) = πα

(
y2 − ζ 2

l

)
g̃l

,

(8)
�̃(0)(iζl, y) = πα

(
y2 − ζ 2

l

)
g̃l ,

where α = e2/(h̄c) is the fine-structure constant,

g̃l = g̃l (y) = [
ṽ2

F y2 + (
1 − ṽ2

F

)
ζ 2
l

]1/2
(9)

and ṽF = vF /c ≈ 1/300. Taking this into account, one can
safely put

g̃l ≈ [
ṽ2

F y2 + ζ 2
l

]1/2
. (10)

The thermal corrections to the polarization tensor can be
presented in the form valid only at the pure imaginary Mat-
subara frequencies [54] and over the entire plane of complex
frequencies [55,56]. The latter form is used below. It is given
by

�T �̃00(iζl, y) = 8αg̃l

ṽ2
F

∫ ∞

0

du

eBlu + 1

⎧⎨
⎩1 − 1√

2

⎡
⎣
√

(1 + u2)2 − 4
ṽ2

F

(
y2 − ζ 2

l

)
u2

g̃2
l

+ 1 − u2

⎤
⎦

1/2⎫⎬
⎭,

(11)

�T �̃(iζl, y) = 8αg̃l

ṽ2
F

∫ ∞

0

du

eBlu + 1

⎧⎪⎪⎨
⎪⎪⎩−ζ 2

l + g̃2
l√
2

⎡
⎣
√

(1 + u2)2 − 4
ṽ2

F

(
y2 − ζ 2

l

)
u2

g̃2
l

+ 1 − u2

⎤
⎦

1/2

×

⎡
⎢⎢⎣1 − ṽ2

F

(
y2 − ζ 2

l

)
g̃2

l

√
(1 + u2)2 − 4

ṽ2
F

(
y2−ζ 2

l

)
u2

g̃2
l

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭,

where Bl = πg̃l/τ .
From Eq. (11) it is seen that Bl → ∞ when τ → 0 and,

thus,

lim
T →0

�T �̃00(iζl, y) = lim
T →0

�T �̃(iζl, y) = 0, (12)

whereas, according to Eq. (8),

lim
T →0

�̃
(0)
00 (iζl, y) = παy

ṽF

�= 0,

(13)
lim
T →0

�̃(0)(iζl, y) = παy3ṽF �= 0.

Therefore, at sufficiently low T , one obtains

�T �̃00(iζl, y)

�̃
(0)
00 (iζl, y)


 1,
�T �̃(iζl, y)

�̃(0)(iζl, y)

 1. (14)

Substituting Eq. (7) in Eq. (5) and expanding up to the first
power in small parameters (14), we find

rTM(iζl, y) = r
(0)
TM(iζl, y) + �T rTM(iζl, y),

(15)
rTE(iζl, y) = r

(0)
TE (iζl, y) + �T rTE(iζl, y).

Here, r
(0)
TM(TE) are the reflection coefficients at zero

temperature calculated at the pure imaginary Matsubara
frequencies [55]

r
(0)
TM(iζl, y) = απy

απy + 2g̃l

,

(16)

r
(0)
TE (iζl, y) = − απg̃l

απg̃l + 2y
.

They are obtained by the substitution of Eq. (8) in place
of Eq. (7) in Eq. (5). The quantities �T rTM(TE) in Eq. (15)
have the meaning of the thermal corrections to the reflection

coefficients calculated up to the first order in parameters (14).
They are given by

�T rTM(iζl, y) = 2απyg̃l

(απy + 2g̃l )2

�T �̃00(iζl, y)

�̃
(0)
00 (iζl, y)

,

(17)

�T rTE(iζl, y) = − 2απyg̃l

(απg̃l + 2y)2

�T �̃(iζl, y)

�̃(0)(iζl, y)
.

It was shown [51] that for sufficiently low temperatures,
satisfying the condition

kBT 
 h̄vF

2a
≡ kBT

(g)
eff , (18)

where T
(g)

eff �= Teff is one more effective temperature for the
Casimir effect in graphene systems, the dominant contribu-
tions to the parameters (14) at l � 1 take the form

�T �̃00(iζl, y)

�̃
(0)
00 (iζl, y)

= 48ζ (3)

πg̃3
l

(
T

Teff

)3

,

(19)
�T �̃(iζl, y)

�̃(0)(iζl, y)
= 96ζ (3)

πg̃3
l

(
T

Teff

)3(3ζ 2
l

2g̃2
l

− 1

)
.

Here, ζ (z) is the Riemann ζ function.
Finally, substitution of Eq. (19) in Eq. (17) results in the

formulas

�T rTM(iζl, y) = 92ζ (3)αy

g̃2
l (απy + 2g̃l )2

(
T

Teff

)3

,

(20)

�T rTE(iζl, y) = − 192ζ (3)αy

g̃2
l (απg̃l + 2y)2

(
T

Teff

)3(3ζ 2
l

2g̃2
l

− 1

)
,

which are valid for any l � 1. Equations (4), (15), (16), and
(20) are used below to find the low-temperature behavior of
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the Casimir-Polder free energy and entropy (special attention
will be given to the case l = 0).

III. CONTRIBUTION TO THE FREE ENERGY DUE TO
IMPLICIT TEMPERATURE DEPENDENCE

Substituting Eq. (15) in Eq. (4), one can present the
Casimir-Polder free energy as a sum of two contributions

F (a, T ) = F (1)(a, T ) + �
(2)
T F (a, T ), (21)

where both F (1) and �
(2)
T F have the same form as Eq. (4),

but the reflection coefficients rTM(TE) are replaced with r
(0)
TM(TE)

and �T rTM(TE), respectively.
In the lowest order with respect to the parameter ζl = τ l,

we can restrict our attention to the static electric polarizability
and magnetic susceptibility (note that the latter is essentially
independent of frequency for many atoms [57]). If this is the
case, using Eq. (4), the quantity F (1) can be written in the form

F (1)(a, T ) = −kBT

8a3

∞∑
l=0

′
�(τ l), (22)

where

�(τ l) =
∫ ∞

τ l

dy e−y
{
[2y2α0 − (τ l)2(α0 + β0)]r (0)

TM(iτ l, y)

+ [2y2β0 − (τ l)2(α0 + β0)]r (0)
TE (iτ l, y)

}
(23)

and α0 = α(0), β0 = β(0).
Note that the Casimir-Polder energy at zero temperature

can be represented in the same form [34]

E(a) = − h̄c

32πa4

∫ ∞

0
dζ �(ζ ), (24)

where

�(ζ ) =
∫ ∞

ζ

dy e−y
{
[2y2α0 − ζ 2(α0 + β0)]r (0)

TM(iζ, y)

+ [2y2β0 − ζ 2(α0 + β0)]r (0)
TE (iζ, y)

}
. (25)

It is seen that Eq. (24) is obtainable from Eq. (22) in the
case that a summation over the discrete Matsubara frequencies
is replaced with an integration along the imaginary frequency
axis in accordance to the rule

kBT

∞∑
l=0

′ → h̄c

4πa

∫ ∞

0
dζ. (26)

Thus, by applying the Abel-Plana formula [34]
∞∑
l=0

′
�(l) =

∫ ∞

0
�(t )dt + i

∫ ∞

0

�(it ) − �(−it )

e2πt − 1
dt, (27)

which is valid for any function analytic in the right half-plane,
one can represent the quantity F (1) as

F (1)(a, T ) = E(a) + �
(1)
T F (a, T ), (28)

where

�
(1)
T F (a, T ) = −i

kBT

8a3

∫ ∞

0

�(iτ t ) − �(−iτ t )

e2πt − 1
dt. (29)

From Eqs. (28) and (29) it is apparent that the thermal cor-
rection �

(1)
T F represents an implicit temperature dependence

of the free energy which arises from a summation over the
Matsubara frequencies in the contribution calculated with the
zero-temperature reflection coefficients.

Direct calculation using Eqs. (25), (16), and (10) results in

�(iτ t ) − �(−iτ t ) = −2iτ 3t3(CTM + CTE), (30)

where

CTM = 2απα0

ṽF (απ + 2ṽF )3
+ α0 + 3β0

3(απ + 2ṽF )
,

(31)

CTE = απṽF α0

2
− απβ0

2ṽF

.

Note that, when calculating CTE, we neglect by not only ṽ2
F ,

but also by απṽF , as compared to unity. Note also that the
next contribution on the right-hand side of Eq. (30) is of the
order of τ 4 ln τ .

Substituting Eqs. (30) and (31) in Eq. (29), one obtains

�
(1)
T F (a, T ) = −kBT

4a3
τ 3(CTM + CTE)

∫ ∞

0

t3 dt

e2πt − 1

= −π3(kBT )4

15(h̄c)3
(CTM + CTE). (32)

This result is of the same order in T as for an atom interacting
with a dielectric plate [34].

The main contribution to Eq. (32) is given by the first term
in the coefficient CTM defined in Eq. (31). Thus, if we assume
that α0 ∼ β0, the first term in CTM is more than the second
one and than |CTE| by the factors of 5 × 105 and 1.5 × 105,
respectively. If we assume that α0 � β0, the same ratios are
equal to ≈2 × 106 and ≈4 × 1011, respectively.

IV. CONTRIBUTION TO THE FREE ENERGY DUE TO
EXPLICIT TEMPERATURE DEPENDENCE

We are coming now to the second contribution to the
Casimir-Polder free energy on the right-hand side of Eq. (21).
It is obtained by a replacement of the reflection coefficients
rTM(TE) in Eq. (4) with �T rTM(TE) defined in Eq. (17),

�
(2)
T F (a, T )

= −kBT

8a3

∞∑
l=0

′ ∫ ∞

ζl

dy e−y
{
2y2[α0�T rTM(iζl, y)

+β0�T rTE(iζl, y)] − ζ 2
l (α0 + β0)[�T rTM(iζl, y)

+�T rTE(iζl, y)]
}
. (33)

Here, as explained in Sec. III, it is possible to restrict
ourselves to the case of static polarizability and susceptibility.
This contribution depends on the thermal correction to the
polarization tensor of graphene and takes into account its
explicit dependence on the temperature as a parameter. Here,
we find the low-temperature behavior of Eq. (33). For this
purpose, we present Eq. (33) as a sum of two terms

�
(2)
T F (a, T ) = �

(2)
T F(l�1)(a, T ) + �

(2)
T F(l=0)(a, T ) (34)

and consider each of them separately.
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We start from �
(2)
T F(l�1) which includes all terms of Eq. (33) except for the term with l = 0. In this case the thermal corrections

to the reflection coefficients in the lowest perturbation order are expressed by Eq. (20). Substituting Eq. (20) in Eq. (33), one
obtains

�
(2)
T F(l�1)(a, T ) = −12ζ (3)αkBT

a3

(
T

Teff

)3 ∞∑
l=1

∫ ∞

τ l

dy
ye−y

g̃2
l

[
2α0y

2 − (τ l)2(α0 + β0)

(απy + 2g̃l )2

− 2β0y
2 − (τ l)2(α0 + β0)

(απg̃l + 2y)2

(
3τ 2l2

g̃2
l

− 2

)]
. (35)

Now we consider sufficiently low temperatures satisfying a condition τ l 
 ṽF y and expand the quantity g̃2
l defined in Eq. (10)

in powers of the small parameter (τ l/ṽF y)2 taking into account that the major contribution to the integrals in Eq. (35) is given
by y ∼ 1. In so doing one can neglect by 3τ 2l2/(2g̃2

l ) as compared to unity. We also take into account that απṽF ≈ 7.6 × 10−5

and thus απg̃l ≈ απṽF y 
 2y. As a result, Eq. (35) can be rewritten as

�
(2)
T F(l�1)(a, T ) = −12ζ (3)αkBT

ṽ2
F a3

(
T

Teff

)3 ∞∑
l=1

∫ ∞

τ l

dy
e−y

y3

[
2α0y

2 − (τ l)2(α0 + β0)

(απ + 2ṽF )2
+ 2β0y

2 − (τ l)2(α0 + β0)

2

]
.

(36)

After the change of integration variable y = τ lz, we bring Eq. (36) to the form

�
(2)
T F(l�1)(a, T ) = −12ζ (3)αkBT

ṽ2
F a3

(
T

Teff

)3 ∞∑
l=1

{∫ ∞

1
dz

e−τ lz

z

[
2α0

(απ + 2ṽF )2
+ β0

]

−
∫ ∞

1
dz

e−τ lz

z3
(α0 + β0)

[
1

(απ + 2ṽF )2
+ 1

2

]}
. (37)

Now we make the summation first and calculate the integrals under a condition τ 
 1 with the result

�
(2)
T F(l�1)(a, T ) = −12ζ (3)αkBT

ṽ2
F a3

(
T

Teff

)3
Teff

T

{
2α0

(απ + 2ṽF )2
+ β0 − 1

2
(α0 + β0)

[
1

(απ + 2ṽF )2
+ 1

2

]}
, (38)

or, equivalently,

�
(2)
T F(l�1)(a, T ) = −48ζ (3)α(kBT )3

ṽ2
F (h̄c)2a

(Q1 + Q2), (39)

where

Q1 = 3α0 − β0

2(απ + 2ṽF )2
, Q2 = −α0 − 3β0

4
. (40)

It is easily seen that the major contribution to Eq. (39) is
given by the first term with a coefficient Q1. For instance, if
α0 ∼ β0 the coefficient Q1 is larger than Q2 by the factor of
2300. If α0 � β0 one has Q1 ≈ 3400Q2.

Comparing Eqs. (32) and (39), we conclude that in the re-
gion of low temperatures an explicit temperature dependence,
originating from the Matsubara terms with l � 1, is stronger
than an implicit one.

Now we consider the term �
(2)
T F(l=0) on the right-hand side

of Eq. (34) which is equal to the zero-frequency contribution
to Eq. (33), i.e.,

�
(2)
T F(l=0)(a, T ) = −kBT

8a3

∫ ∞

0
dy e−yy2[α0�T rTM(0, y)

+β0�T rTE(0, y)], (41)

where the thermal corrections to the reflection coefficients are
obtained from Eq. (17),

�T rTM(0, y) = 2απṽF

(απ + 2ṽF )2

�T �̃00(0, y)

�̃
(0)
00 (0, y)

,

(42)

�T rTM(0, y) = − 2απṽF

(απṽF + 2)2

�T �̃(0, y)

�̃(0)(0, y)
.

Here, the polarization tensor at T = 0, ζ0 = 0 is found from
Eq. (8),

�̃
(0)
00 (0, y) = παy

ṽF

, �̃(0)(0, y) = παṽF y3, (43)

and the thermal correction to it at ζ0 = 0 from Eq. (11),

�T �̃00(0, y) = 8αy

ṽF

∫ ∞

0

du

eB0u + 1
(1 −

√
1 − u2),

(44)

�T �̃(0, y) = −8αy3ṽF

∫ ∞

0

du

eB0u + 1

u2

√
1 − u2

,

where B0 = πṽF y/τ .
It is more convenient to rearrange Eq. (44) to an equivalent

form [56]

�T �̃00(0, y) = 32αakBT

h̄cṽ2
F

∫ 1

0
dx ln[1 + e−B̃y

√
x(1−x)],

(45)

�T �̃(0, y) = −16αṽF y3
∫ 1

0

√
x(1 − x)dx

eB̃y
√

x(1−x) + 1
,
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where B̃ = 2B0/y = T
(g)

eff /T . Substituting Eqs. (43) and (45) in Eqs. (42) and (41), one obtains

�
(2)
T F(l=0)(a, T ) = −4αkBT

a3

{
α0

2akBT

h̄c(απ + 2ṽF )2

∫ ∞

0
dy e−yy

∫ 1

0
dx ln[1 + e−B̃y

√
x(1−x)]

+β0
ṽF

4

∫ ∞

0
dy e−yy2

∫ 1

0

√
x(1 − x)dx

eB̃y
√

x(1−x) + 1

}
, (46)

where we have neglected by παṽF , as compared to 2, in the second line of Eq. (42). Taking into account that
√

x(1 − x)

eB̃y
√

x(1−x) + 1
= − 1

B̃

d

dy
ln[1 + e−B̃y

√
x(1−x)], (47)

and integrating by parts with respect to y, the second term of Eq. (46) can be rewritten in the form

β0
ṽF

4B̃

∫ 1

0
dx

∫ ∞

0
dy(2 − y)y e−y ln[1 + e−B̃y

√
x(1−x)]. (48)

Now we represent the logarithms in both the first and second terms of Eq. (46) as the power series in exp[−B̃y
√

x(1 − x)]
and integrate with respect to y:

�
(2)
T F(l=0)(a, T ) = −8α(kBT )2

a2h̄c

{
α0

(απ + 2ṽF )2

∞∑
n=1

(−1)n−1

n

∫ 1

0

dx

[1 + nB̃
√

x(1 − x)]2

+ β0

2

∞∑
n=1

(−1)n−1

n

∫ 1

0
dx

[
1

[1 + nB̃
√

x(1 − x)]2
− 1

[1 + nB̃
√

x(1 − x)]3

]}
. (49)

It is convenient to introduce one more small parameter bn = 1/(nB̃ ) = T/(nT
(g)

eff ) and define the integrals

Ik (bn) =
∫ 1

0

dx

[bn + √
x(1 − x)]k

, (50)

where k = 2, 3 and bn < 1/2. Then Eq. (49) takes the form

�
(2)
T F(l=0)(a, T ) = −8α(kBT )2

a2h̄c

(
T

T
(g)

eff

)2{
α0

(απ + 2ṽF )2

∞∑
n=1

(−1)n−1

n
I2(bn) + β0

2

∞∑
n=1

(−1)n−1

n3
[I2(bn) − bnI3(bn)]

}
. (51)

Direct calculation results in

I2(bn) = − 4

1 − 4b2
n

[
1 + 1√

1 − 4b2
n

(
ln

1 −√
1 − 4b2

n

1 +√
1 − 4b2

n

− ln
1 + 2bn −√

1 − 4b2
n

1 + 2bn +√
1 − 4b2

n

)]
,

(52)

I3(bn) = 4(
1 − 4b2

n

)2

[
1 + 8b2

n

2bn

+ 6bn√
1 − 4b2

n

(
ln

1 −√
1 − 4b2

n

1 +√
1 − 4b2

n

− ln
1 + 2bn −√

1 − 4b2
n

1 + 2bn +√
1 − 4b2

n

)]
.

Expanding Eq. (52) in powers of bn one obtains
I2(bn) = −4 ln bn + O

(
b0

n

)
,

(53)

I3(bn) = 2

bn

+ 24bn ln bn + O
(
b0

n

)
.

Substituting these results in Eq. (51) and finding main
contributions to the sums in n, we arrive at

�
(2)
T F(l=0)(a, T ) = 96αζ (3)(kBT )4

ṽ2
F (h̄c)3

(R1 + R2) ln
2akBT

h̄ṽF c
,

(54)

where

R1 = α0

(απ + 2ṽF )2
, R2 = β0

4
. (55)

The major contribution to Eq. (54) is given by the first term
with the coefficient R1. For α0 ∼ β0, R1 is larger than R2 by
the factor of ≈1100 and all the more if α0 � β0.

As is seen in Eq. (54), with decreasing T down to zero
temperature �

(2)
T F(l=0) becomes greater than �

(1)
T F , deter-

mined by the implicit dependence on the temperature, but
less than �

(2)
T F(l�1) originating from the explicit temperature

dependence of all Matsubara terms with nonzero frequency.

V. LOW-TEMPERATURE BEHAVIOR OF THE FREE
ENERGY AND ENTROPY

In Secs. III and IV we have found the low-temperature be-
havior of all contributions to the Casimir-Polder free energy.
According to Eqs. (21), (28), and (34), the free energy is given
by

F (a, T ) = E(a) + �
(1)
T F (a, T ) + �

(2)
T F(l�1)(a, T )

+ �
(2)
T F(l=0)(a, T ), (56)
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where �
(1)
T F in Eq. (32) presents the implicit low-temperature

behavior originating exclusively from a summation over the
Matsubara frequencies, whereas �

(2)
T F(l�1) and �

(2)
T F(l=0)

found in Eqs. (39) and (54), respectively, are determined by
the explicit dependence of the polarization tensor on tempera-
ture as a parameter. As is seen from Eqs. (32), (39), and (54),
with decreasing temperature the major contribution is given
by �

(2)
T F(l�1). Thus, from Eqs. (39) and (56), one can conclude

that

F (a, T ) = E(a) − 48ζ (3)α(kBT )3

ṽ2
F (h̄c)2a

(Q1 + Q2), (57)

where the coefficients Q1 and Q2 are given in Eq. (40).
From Eq. (57) one obtains the low-temperature behavior of

the Casimir-Polder entropy

S(a, T ) = − ∂F (a, T )

∂T
= 144ζ (3)αkB (kBT )2

ṽ2
F (h̄c)2a

(Q1 + Q2).

(58)

From Eq. (54) we find that the next term in the low-
temperature behavior of the entropy is of the order of

kBR1
(kBT )3

(h̄c)3
ln

2akBT

h̄ṽF c
. (59)

Equation (58) allows one to make a conclusion that the
Casimir-Polder entropy is positive and goes to zero with
vanishing temperature in accordance with the third law of
thermodynamics, the Nernst heat theorem. This means that the
Lifshitz theory of atom-graphene interaction is thermodynam-
ically consistent if the response of graphene to a fluctuating
field is described by the polarization tensor in the framework
of the Dirac model.

This fundamental result returns us to the problem discussed
in Sec. I, i.e., why the Lifshitz theory of the Casimir and
Casimir-Polder interaction violates the Nernst heat theorem
and is inconsistent with the measurement data of several
experiments if the low-frequency electromagnetic response
of metals is described by the well tested under ordinary
conditions Drude model taking into account the relaxation
properties of free charge carriers.

In connection with this, it is significant that the response of
graphene to electromagnetic fluctuations is described by the
polarization tensor on the basis of first principles of quantum
electrodynamics at nonzero temperature. This description is
in full agreement with all fundamental demands, such as
causality, and satisfies the Kramers-Kronig relations [58]. By
contrast, the Drude dielectric permittivity,

εD (ω) = 1 − ω2
p

ω[ω + iγ (T )]
, (60)

where ωp is the plasma frequency and γ (T ) is the re-
laxation parameter, is of entirely phenomenological char-
acter. Although it provides an adequate description of the
electrical conductivity and optical properties of metals and
satisfies the Kramers-Kronig relations at nonzero tempera-
ture, the problem arises in the limiting case of vanishing
temperature.

The point is that for metals with perfect crystal lattices
γ (T ) vanishes when T goes to zero [59]. In this case [60]

lim
γ→0

εD (ω) = 1 − ω2
p

ω2
+ i

ω2
p

ω
πδ(ω), (61)

where δ(ω) is the Dirac δ function. This means that in the limit
of zero temperature the Drude dielectric permittivity cannot
be continued to the upper half plane of complex frequency
and its imaginary part cannot be obtained from its real part by
means of the Kramers-Kronig relation [61]. Thus, in the limit
of zero temperature, the Drude model violates the principle of
causality and cannot be used as a dielectric permittivity. This
gives an insight into why the Lifshitz theory combined with
the Drude model is in conflict with the Nernst heat theorem.
Note that if the plasma model is used for description of the
electromagnetic response of a metal, i.e., γ (T ) in Eq. (60) is
put equal to zero from the outset, the Nernst heat theorem for
the Casimir and Casimir-Polder entropy is satisfied, as well as
the Kramers-Kronig relations in the form valid for functions
possessing the second-order pole at zero frequency [62].

VI. CONCLUSIONS AND DISCUSSION

In the foregoing, we have analyzed the thermodynamic
consistency of the Lifshitz theory used for description of the
Casimir-Polder interaction between a polarizable and magne-
tizable atom and a graphene sheet. In so doing, the response
of graphene to electromagnetic fluctuations was described
by the polarization tensor in (2+1)-dimensional space-time
in the framework of quantum electrodynamics at nonzero
temperature. We have found analytic expressions for the
Casimir-Polder free energy and entropy at low temperature.
For this purpose the thermal correction to the Casimir-Polder
energy was represented as a sum of three contributions. The
first of them originates from a summation on the pure imagi-
nary Matsubara frequencies and two others from an explicit
dependence of the polarization tensor on temperature as a
parameter. It was shown that the dominant contribution to
the free energy and entropy at low temperature is given by
an explicit temperature dependence contained in the nonzero-
frequency terms of the Lifshitz formula.

Using the obtained analytic results, it was demonstrated
that the Casimir-Polder entropy of a polarizable and magne-
tizable atom interacting with a graphene sheet satisfies the
Nernst heat theorem. Thus the Lifshitz theory of an atom
interacting with graphene is thermodynamically consistent.
This fact was correlated with a violation of the Nernst the-
orem in the Lifshitz theory of Casimir and Casimir-Polder
interactions in the case that the plate metal is described by the
phenomenological Drude model. Special attention was paid
to the fact that the Drude dielectric function with vanishing
relaxation parameter ceases to be an analytic function in the
upper half-plane of complex frequency and violates the prin-
ciple of causality. This can be considered as a possible reason
of thermodynamic inconsistency. By contrast, the response
of graphene to the electromagnetic field is described on the
basis of first principles of quantum field theory and is in
agreement with the Kramers-Kronig relations for all values
of parameters.
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On the basis of this discussion we conclude that large
thermal effect at short separations predicted by the Lifshitz
theory for Drude metals and already excluded experimen-
tally should be considered as an artifact. As to the giant
thermal effect in the Casimir and Casimir-Polder interac-
tions for graphene, this is an important physical phenomenon
which awaits experimental observation. Two realistic possi-
bilities on how to observe this effect have been proposed

recently [63–65], making its discovery in the near future very
likely.
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