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We theoretically demonstrate the feasibility of producing an electron spin beam splitter using Kapitza-Dirac
diffraction on bichromatic standing waves which are created by the fundamental frequency and its third
harmonic. The relativistic electron in the Bragg regime absorbs three photons with a frequency of ω and emits
a photon with a frequency of 3ω; we introduce this as the four-photon Kapitza-Dirac effect. In this four-photon
Kapitza-Dirac effect distinct spin effects arise in different polarizations of the third harmonic laser beam. It is
shown that the shape of the Rabi oscillation between the initial and scattered states is changed and finds two
unequal peaks for all polarizations of laser beams. For the case of circular polarization of the fundamental and
third harmonic, despite Rabi oscillation, the spin down electron beam in 0.23 fs intervals maintains its momentum
and spin. Also we find that if a suitable combination of a linearly polarized fundamental laser beam and a
third harmonic with circular polarization in the condition �p · �A term is involved, it results in a spin-dependent
oscillation that preserves the spin state of the initial electron.
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I. INTRODUCTION

The Stern-Gerlach experiment provided evidence for the
existence of spin as an intrinsic, nonclassical property [1].
A beam of silver atoms traveling through an inhomogeneous
magnetic field is deflected up or down depending on their
spin. Strangely, this experiment did not work with beams
of electrons [2]. Bohr and Pauli emphasized that free elec-
trons cannot be spin polarized by exploiting magnetic fields,
because of the combined effects of the Lorentz force and
quantum uncertainty principle. This conclusion was due to the
concept of classical particle trajectories and became a general
argument in scientific literature [3–5].

One of the first efforts refuting the Bohr and Pauli state-
ment was using a longitudinal magnetic field configuration
instead of the standard transverse geometry of Stern-Gerlach.
In this way, the complete spin splitting with quantum-
mechanical analysis was reported [6-9]. In recent theoretical
studies, the use of the grating and electromagnetic fields
resulted in the spin separation for electrons. Tang et al.
proposed a spin-polarized Talbot effect which is nonparaxial
for an electron beam scattered from a grating of magnetic
nanostructures [10]. Also a transverse Stern-Gerlach magnet
which diffracts electrons by a magnetic phase grating was
discussed by McGregor et al. [11]. They indicated that by
flowing a current to the solenoids, a spin-dependent phase
difference is created between the two arms of the Mach-
Zehnder interferometer [12]. Moreover, a space-variant Wien
filter, named the “q filter,” which is composed of space-variant
orthogonal electric and magnetic fields can act as an effi-
cient spin-polarization filter. This filter couples spin angular
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momentum to orbital angular momentum for electron, neu-
tron, or atom beams [13,14].

The Kapitza-Dirac (KD) effect, the quantum-mechanical
diffraction of an electron on a periodic spatial structure
formed by a standing light wave, confirmed that it could
be a way to detect the spin of electrons [15]. Ahrens et al.
theoretically showed complete spin-flip transitions apply-
ing relativistic treatment of the KD effect [16,17]. It was
demonstrated that electrons according to their spin state in
the interaction with circularly polarized counterpropagating
monochromatic standing waves can be separated [18]. In the
meantime, Dellweg et al. reported a spin-dependent Kapitza-
Dirac scattering by using bichromatic (ω : 2ω) laser beams
[19,20]. Also Dellweg showed that spin dynamics of electrons
in the bichromatic KD effect is dependent on the polarization
of laser beams and therefore the spin direction of the output
beams can be controlled [21,22].

One major result of these studies is that the initial electron
with spin up state is transferred to the scattered electron with
spin down and vice versa. This is symmetric flipping spin
dynamics. For two special cases, circularly polarization in
the KD effect with equal frequency [18] and combination of
linear-circular polarization in the bichromatic KD effect with
a frequency ratio of 2 [22], the spin of the electron does not
flip and preserves its state.

In the present paper, we theoretically discuss the bichro-
matic KD effect arising from the interaction of the laser beam
with frequency ω and the counterpropagating laser beam
with frequency 3ω. In these fields, the electron exchanges
four photons and the four-photon bichromatic KD occurs.
Recently Kozák discussed the four-photon inelastic scattering
and derived the classical stationary ponderomotive potential
in an optical standing wave formed by two light waves with
frequencies of ω and 3ω [23]. We investigate the spin polar-
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ization of the electron using various polarized counterpropa-
gating laser beams with a frequency ratio of three. We focus
on the electron whose momentum is parallel to the laser beam
axis so that the interaction term �p · �A becomes insignificant.
Our article is organized as follows: In Sec. II we determine
that in bichromatic standing waves with a frequency ratio
of 1 : 3, an electron exchanges four photons. Then based
on the S-matrix approach, the transition amplitude for the
resonant state is calculated and the polarization-dependent
Rabi frequency is taken into account. Numerical solutions of
the time-dependent Dirac equation in momentum space are
applied to clear up relativistic quantum dynamics in Sec. III
and look into the scattering probability result of the different
polarizations of two-color beams. In this paper we consider
h̄ = 1.

II. THEORETICAL DESCRIPTION

A. Electron dispersion in the Bragg regime

The interaction between an electron and two counter-
propagating laser fields of frequency ωi (i = 1, 2) is due to
the absorption of some photons from laser beam 1 and the
stimulated emission of some photons to laser beam 2. In the
case of an intense bichromatic standing wave, the multiphoton
interaction between electron and laser field becomes more
likely. The absorption of Na photons with ω1 frequency and
emission of Ne photons with ω2 frequency conserve energy
and momentum if Naω1 = Neω2. In the case of ω1 = ω and
ω2 = 3ω, a free electron absorbs three ω photons and emits
one 3ω photon or vice versa. Since a photon has the energy
ch̄k and the momentum h̄k, the total transferred energy is
�E = c(Nak1 − Nek2) and the total transferred momentum
is �p = (Nak1 + Nek2). In the presence of the fundamental
frequency and its third harmonic with Na = 3 and Ne = 1,
after the interaction the electron momentum change is 6k.

FIG. 1. Sketch of dominant pathway of four-photon KD effect in
bichromatic standing waves. The dispersion relation of energy and
momentum is in the Bragg regime and each wiggly arrow shows a
photon.

The relativistic energy-momentum relation secant and
quantum pathway that increases electron momentum by 6k are
shown in Fig. 1. The total exchange of energy and momentum
of the electron with laser beams is represented by the horizon-
tal dashed line. This slope is given by s = �E

�p
and connects

initial and final momenta of the diffracted electron [17]. All
pathways in the Bragg regime start and end exactly on the
dispersion relation secant. Theoretically, other transitions are
also possible as well, but we focus on the resonant two-state
quantum dynamics in the Bragg regime. Absorption of one
photon of 3ω and emission of three photons of ω make no
difference in the result.

B. S-matrix approach

The evaluation of the relativistic electron in the four-
photon Kapitza-Dirac process and in the presence of a given
external electromagnetic 4-potential A = (φ, �A) is described
quantum mechanically by the Dirac equation[

i /∂ + e

c
/A(x) − mc

]
ψ (x) = 0, (1)

in which /A is denoted by the Feynman slash /A = γ · A and γ

stands for Dirac matrices.
An analytical treatment for multiphoton-stimulated Comp-

ton scattering such as bichromatic Kapitza-Dirac scattering
was accomplished through the S-matrix approach with suit-
able approximations [22]. The Dirac equation has a well-
known solution, the Volkov state for an electron in the case
of the external potential being a plane wave. By using the fun-
damental laser mode and Volkov states for the incident elec-
tron, the remaining four-photon Kapitza-Dirac process can be
represented within first-order perturbation theory [24,25]. We
begin with the S matrix as used for multiphoton Compton
scattering,

S = ie

c

∫
d4x ψ̄p′,s ′ /A2ψp,s . (2)

Here ψp,s (x) is the Dirac-Volkov state with �p a field-
dependent term in the exponent:

ψp,s (x) =
√

mc

Vp0

(
1 − e/k1 /A1(k1 · x)

2ck1 · p

)
up,se

−ip·x+i�p , (3)

�p = 1

ck1 · p

∫ k1·x [
ep · A1(φ) + e2

2c
A2

1(φ)

]
dφ. (4)

The calculation of the S matrix is the same as that used
in the three-photon KD effect, except that a further pho-
ton participates in the interaction [22]. In the case of a
vector potential as a plane wave regarding radiation gauge
A1(k1 · x) = A1(x), and with a complex polarization 4-vector
ε1 = (0, �ε), and the wave 4-vector k1 = ω

c
(1, �ez), satisfying

ε∗
1 · ε1 = −1 and ε1 · k1 = 0. A similar notation is employed

for the counterpropagating wave A2(x) with ε2 and k2 =
3k1 = 3k, respectively. In the presence of the third harmonic
the S matrix for transition from p to p′ by absorbing three
photons from A1 as a beam with fundamental frequency and
emitting one photon into A2 as a beam with 3ω frequency is
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given by

S ≈ ie

h̄cV

∫
d4x ūp′,s ′

(
/A

(+)
2 J̃3e

i(p′−p−3k1 )·x

− e

2c

[
/A

(−)
1 /k1 /A

(+)
2

k1 · p′ + /A
(+)
2 /k1 /A

(−)
1

k1 · p

]
J̃2e

i(p′−p−2k1 )·x

+ e2

4c2

[
/A

(−)
1 /k1 /A

(+)
2 /k1 /A

(−)
1

(k1 · p′)(k1 · p)

]
J̃1e

i(p′−p−k1 )·x
)

up,s

≈ ie

2h̄
T ūp′,s ′

[
a2J̃3/̄ε2 − ea1a2

4c
J̃2

(
/ε1/k1/̄ε2

k1 · p′ + /̄ε2/k1/ε1

k1 · p

)

+ e2a2
1a2

16c2
J̃1

/ε1/k1/̄ε2/k1/ε1

(k1 · p′)(k1 · p)

]
up,s . (5)

Here, /A
(−)
1 = 1

2a1/ε1e
−ik1·x is the component that defines the

absorption of one photon from A1 with /ε1 = ε1 · γ , and
/A

(+)
2 = 1

2a2/̄ε2e
ik2·x , where /̄ε2 = ε∗

2 · γ is the component that
describes emission of one photon into A2. Also J̃1,2,3 are
generalized Bessel functions. In this derivation only the res-
onant scattering process was considered, which fulfills the
Bragg condition. Therefore the d4x integration does result
in the factor cV T , with T the interaction time and V quan-
tification volume [22]. The initial and scattered electron mo-
menta are set respectively to p = (p0, px, 0,−3h̄k) and p′ =
(p0, px, 0,+3h̄k). The Dirac spinors for theses momenta are
corresponding to Pauli spinors by

u(p,s) = 1√
2mc(p0 + mc)

(
(p0 + mc)χs

�p · �σχs

)
. (6)

We can calculate a part of Eq. (5) as

(ūp′,s ′ /̄ε2up,s )s ′,s = − px

mc
�ε ∗

2 · �ex + 3ih̄ω

mc2
(�ε ∗

2 × �ez) · �σ (7)

and in a similar way for the second part(
ūp′,s ′

[
/ε1/k1/̄ε2

k1 · p′ + /̄ε2/k1/ε1

k1 · p

]
up,s

)
s ′,s

≈ 2�ε1 · �ε∗
2

mc
− 6ih̄ω

m2c3
(�ε1 × �ε∗

2 ) · �σ . (8)

The other term of the S matrix in Eq. (5) due to (k · σ )2 = 0
is zero. Also from the Taylor series of the generalized Bessel
functions, we can estimate

J̃1 ≈ −3
ea1

mc2

px

mc
�ε1 · �ex,

J̃2 ≈ e2a2
1

m2c4

(
9

2

p2
x

m2c2
( �ε1 · �ex )2 − 3

8
�ε 2

1

)
,

J̃3 ≈ e3a3
1

m3c6

(
−9

2

p3
x

m3c3
( �ε1 · �ex )3 + 9

8

px

mc
( �ε1 · �ex )�ε 2

1

)
. (9)

Putting all this together, the S matrix of Eq. (5)
for small transverse momentum is estimated as

TABLE I. The Rabi frequency �̂ for various polarizations of
bichromatic (ω : 3ω) standing waves. The definition σ± = σx ± iσy

is applied.

Case �ε1 �ε2 �̂ω:3ω

1 �ex �ex − 27i

8
pxω

c
σy

2 �ex �ey
27i

8
pxω

c
σx − 9i

16 ωσz

3 1√
2
(�ex + i�ey ) 1√

2
(�ex + i�ey ) 0

4 1√
2
(�ex − i�ey ) 1√

2
(�ex − i�ey ) −27

16
pxω

c
σ+ + 9

16 ωσz

5 1√
2
(�ex + i�ey ) �ex 0

6 1√
2
(�ex − i�ey ) �ex

−27i

8
√

2
pxω

c
σy + 9

16
√

2
ωσz

7 �ex
1√
2
(�ex + i�ey ) 27

8
√

2
pxω

c
σ− − 9

16
√

2
ωσz

8 �ex
1√
2
(�ex − i�ey ) −27

8
√

2
pxω

c
σ+ + 9

16
√

2
ωσz

follows:

S ≈ i

2
T

e4a3
1a2

m4c8

[
27i

8

px

mc
ω( �ε1 · �ex ) �ε1

2( �ε∗
2 × �ez) · �σ

− 9i

16
ω �ε1

2( �ε1 × �ε∗
2 ) · �σ − 9

4h̄

p2
x

m
( �ε1 · �ε∗

2 )( �ε1 · �ex )2

− 9

8h̄

p2
x

m
( �ε1 · �ex ) �ε1

2( �ε∗
2 · �ex )

]
= i

2
T ξ 3

1 ξ2�̂. (10)

For order in m−1, we derive the Rabi frequency as

�̂ = − 9i

16
ω �ε1

2( �ε1 × �ε∗
2 ) · �σ

+27i

8

px

c
ω( �ε1 · �ex ) �ε1

2( �ε∗
2 × �ez) · �σ . (11)

Here, ξ1,2 = ea1,2

mc2 are the common dimensionless field ampli-
tudes used in atomic physics. It is worth noting that the terms

with p2
x

h̄
in Eq. (10) are of the same order as the pxω

c
term, but

the latter is the more effective term for electron spin dynamics.
The Rabi frequency is indicated for various combinations of
polarizations of laser beams in Table I.

III. NUMERICAL RESULTS

In this section, the numerical results will be presented
for the spin-dependent Kapitza-Dirac scattering in bichro-
matic counterpropagating laser fields with a frequency ratio
of 3. Taking into account the combined vector potential
and rewriting the Dirac equation in momentum space, we
find a system of coupled ordinary differential equations. The
numerical solution of differential equations is obtained by
employing a Crank-Nicholson scheme [17]. The solutions are
the absolute square values of the expansion coefficients that
represent scattering probability of the electron in the particular
quantum state. c

ζ
n (n = 0,±1,±2, . . .) coefficients represent

electrons with momentum pn = (px, 0, nk). The index ζ ∈
{+ ↑,+ ↓,− ↑,− ↓} labels the sign of the energy and the
spin direction. These states can be denoted by |nk, ζ 〉.

In the four-photon KD effect, the vector potential for the
bichromatic field (ω : 3ω) can be described in the form of

�A = A1{cos[k(z ± ct )]ε̂1} + A2{cos[3k(z ± ct )]ε̂2}, (12)
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where A1 and A2 are the amplitudes of standing waves and ε1,
ε2 are polarization vectors. The electron with initial longitu-
dinal momentum of pz = −3k in presence of the mentioned
vector potential is scattered into mirror mode with longitudi-
nal momentum pz = +3k by exchanging 6k momentum. For
all the next calculations, we start with longitudinal momentum
pz = −3k and spin projection either up or down, while the
other momentum modes at initial time will be zero. As men-
tioned in the Bragg regime, transfer of population is restricted
to pz = +3k for the final state and the occupation probability
of other momentum modes is very small. When the electron
has a component perpendicular to the laser beam direction, all
four states |−3,+ ↑〉, |−3,+ ↓〉, |+3,+ ↑〉, and |+3,+ ↓〉
participate in the interaction. It is worth noting that because
of focusing on the effect of �σ · �B in this work, we choose
the electron momentum to be parallel to the axis of the laser
beam; however practically the influence of �p · �A cannot be
ignored.

In all simulations, smooth switchings on and off laser fields
are sin2 slopes for five-cycle laser periods with a flat-top func-
tion. To study spin effects in four-photon KD diffraction, the
following various polarizations of this bichromatic standing
wave are considered.

A. Linear polarization for two laser beams (lin-lin)

In the first setup, the fundamental field and its third har-
monic are linearly polarized along the x axis:

�A = A1{cos[k(z − ct )]êx} + A2{cos[3k(z + ct )]êy}. (13)

The incident electron is −3h̄k along the laser propagation
direction and has no component parallel to the polarization
direction. The overall laser intensity in the lin-lin setup is

I = ω2A2
1+(3ω)2A2

2
8πc

, when the amplitudes of beams are at maxi-
mum of their values. The laser parameters of the fundamental
laser beam for all numerical solutions correspond to a peak
intensity of 2 × 1022 W cm−2 and a photon energy of 2.0 keV.
The corresponding laser parameter can be attained from high-
power x-ray free-electron lasers such as the European XEFEL
(Hamburg) or LCLS (Stanford) [26]. Figure 2 presents the
typical behavior of an electron in both linear laser beams. For
the electron that is injected with spin up, a Rabi oscillation
takes place between |−3,+ ↑〉 and |+3,+ ↓〉. The interaction
in this field configuration is independent of the initial electron
spin state so that the electron at initial momentum and the spin
down state |−3,+ ↓〉 is also scattered into the reflected mo-
mentum and spin up state |+3,+ ↑〉 and the Rabi oscillation
is similarly as in Fig. 2. This symmetry of spin flipping exists
also in the three-photon bichromatic (ω : 2ω) KD effect with
linear polarization [22].

The shape of oscillation in the bichromatic four-photon KD
effect is sinusoidal and has two distinct peaks that are different
in size in Fig. 2. The probability of |c+↑

−3 |2 has a sinusoidal
oscillation whose minimum amplitude alternatively changes
between 0.22 and 0.0 while |c+↓

+3 |2 oscillates similarly to

|c+↑
−3 |2 but its maximum amplitude changes between 0.78 and

1.0. The Rabi oscillation period is about 2.8 fs and simulation
shows that even with changing the standing-wave amplitudes,

FIG. 2. Temporal evolution of the occupation probability in four-
photon KD effect with linear fundamental beam and counterprop-
agating linear third harmonic. The overall laser intensity is 8.8 ×
1022 W cm−2 with wavelength λ = 0.6 nm; field parameters for
beam ω and 3ω are eA1 = 6 × 104 eV and eA2 = 2 × 104 eV,
respectively. The electron enters the laser fields with pz = −3k along
the laser field direction.

these two distinct peaks for |c+↑
−3 |2 and |c+↓

+3 |2 will not be
destroyed.

The vector potential A(x) = f (t )[A1(k1 · x) + A2(k2 · x)]
with slow envelope function f (t ) in the bichromatic (ω : 2ω)
KD effect results in a typical Rabi oscillation with one peak
[22]. Our results confirm that with similar vector potential for
the bichromatic (ω : 3ω) KD effect

�A = f (t ){A1[cos(kz)êx] + A2[cos(3kz)êx]}, (14)

the typical oscillatory behavior with sinusoidal oscillation ap-
pears as shown in Fig. 3. The Rabi cycle is fully developed in
Fig. 3 and the period of Rabi oscillation is 2π/�R = 0.84 fs.
By comparing vector potentials mentioned in Eq. (13) and
Eq. (14), it is obvious that the existence of the cos(ωi=1,2t )
part of numerical solutions results in different oscillation
behavior.

B. Corotating circular fundamental and third
harmonic fields (cir-cir)

We now look over an electron in two circular
bichromatic counterpropagating but corotating waves

FIG. 3. Rabi oscillation in both linear polarization setups for
vector potential mentioned in Eq. (13). All other laser and electron
parameters are the same as in Fig. 2.
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FIG. 4. Temporal evolution of the occupation probability in four-
photon KD effect with corotating circular bichromatic waves. The
combined laser intensity is 19 × 1023 W cm−2 with wavelength λ =
0.6 nm; field amplitude for both beams is eA1 = eA2 = 9 × 104 eV.
The electron enters the laser fields with pz = −3k along the laser
direction. Upper panel of the figure shows that an electron with spin
up does not scatter in this setup.

given by

�A = A1√
2

[cos(kz) cos(ckt ) + cos(3kz) cos(3ckt )](êx )

− A2√
2

[sin(kz) cos(ckt ) − sin(3kz) cos(3ckt )](êy ).

(15)

If the electron is initially in |−3,+ ↑〉, no diffraction occurs
at all as shown in the upper panel of Fig. 4. In contrast,
for the electron with spin down and initial momentum −3k

in the lower panel, a Rabi oscillation between two states
|−3,+ ↓〉 and |+3,+ ↑〉 takes place in this configuration.
This spin-dependent diffraction behavior implies that it is
possible to separate electrons based on their initial spin state
in circularly polarized laser beams. The effective scattering
term of the Rabi matrix is expected to be proportional to σ+
due to the spin-dependent behavior, but the result of Table I
in this configuration, for an electron with momentum parallel
to the laser propagation, shows only the σz term. Considering
the high nonlinear scattering, only our numerical simulations
confirm that the electron with spin up and momentum −3k

is not diffracted. It is interesting to say that the electron
with initial |−3,+ ↑〉 state in these fields polarization can be
diffracted, provided that it has a momentum in the x direction.
We find from numerical results that the electron with initial
|−3,+ ↑〉 state maintains its spin state and oscillates between
|−3,+ ↑〉 and |+3,+ ↑〉 modes.

The shape of Rabi oscillation in the cir-cir setup for an
electron with spin down is interesting too. Two distinguished
peaks in oscillation exist. The maximum values of peaks are
0.90 and 0.96; the difference in maximum of these peaks is
less in this setup. As represented in Fig. 4, for an interval of

FIG. 5. Temporal evolution of the occupation probability in four-
photon KD effect with a hybrid setup that the fundamental laser beam
is linear and the third harmonic is circularly polarized. The other
simulation parameters are the same as in Fig. 2. The electron just has
momentum −3k along the laser propagation.

about 0.23 fs the population of modes does not transfer and the
electron maintains its momentum and spin. In fact, similarly
to Fig. 2 the electron does not have instant varying momentum
and spin and the modes with time delay exchange their
population. Also in this setup, the vector potential without the
cos(ckit ) and cos(3cki t ) parts in Eq. (15) results in a typical
sinusoidal Rabi oscillation similar to Fig. 3.

C. Combination of linear and circular
polarization fields (lin-cir)

To examine the result of the last section about spin separa-
tion, we focus on a bichromatic setup in which the fundamen-
tal beam is linearly polarized and the third harmonic beam is
circularly polarized:

�A =
[

cos(kz) cos(ckt ) + A2√
2

cos(3kz) cos(3ckt )

]
(êx )

− A2√
2

[sin(3kz) cos(3ckt )](êy ). (16)

When the electron has no momentum along the field’s po-
larization direction (px = py = 0), by choosing the high-
frequency beam to be circularly polarized, the Rabi oscillation
for spin up and spin down electrons at −3h̄k momentum
occurs. As shown in Fig. 5, a similar oscillation with spin-
flipping symmetry happens for both spin states of the electron.
The Rabi period is 2.8 fs and with the same field amplitudes
as the lin-lin setup, the population of modes does not transfer
completely. The maximum of Rabi amplitude of the |+3,+ ↓
〉 state only reaches 0.94. According to case 7 of Table I,
the Rabi matrix in this setup with px = 0 is proportional
to �̂ = −9

16
√

2
ωσz. Therefore the analytical frequency has no

spin-dependent term contribution and the numerical result in
Fig. 5 confirms that. In this setup, the Rabi oscillation with
the symmetry of spin flipping exists for the electron without
influence of �p · �A.

By choosing px = 2h̄k in the hybrid polarization setup
where the low-frequency beam is linearly polarized and the
third harmonic beam is circularly polarized, all four allowed
states |−3,+ ↑〉, |−3,+ ↓〉, |+3,+ ↑〉, and |+3,+ ↓〉 make
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FIG. 6. Temporal evolution of the occupation probability in four-
photon KD effect from a linear polarized fundamental laser beam
and third harmonic with circularly polarization. The fundamental
laser wavelength λ = 0.6 nm and field amplitudes are the same as in
Fig. 2. The incident electron spin up with px = 2h̄k, in upper panel,
after interaction is diffracted to +3k momentum and maintains its
spin state. For spin down electron, in lower panel, the four allowed
modes are populated.

very complicated oscillations. Figure 6 indicates numerical
simulation for spin up and down electron behavior in these
circumstance. In the upper panel when the initial electron
spin is pointing upwards, all four modes populated. When the
electron spin is down and has −3k momentum, the simulation
starting from |−3,+ ↓〉 only travels to the |+3,+ ↓〉 state and
there is no spin-flipping oscillation. A clear spin-dependent
Rabi oscillation emerges in this setup for either right or left
handed circular polarization of the third harmonic laser beam,
which also was predicted by the S-matrix method (cases 7 and
8 in Table I). The existence of σ∓ in Rabi frequency cause
a spin-preserving transition for the spin down and spin up
electrons, respectively.

For the case with a fundamental frequency beam of circular
polarization and a third harmonic beam of linear polarization
and electron with px = 0, the spin-flipping symmetry still
exists; i.e., by choosing c

+↑
−3 (t = 0) = 1 or c

+↓
−3 (t = 0) = 1,

the population is transferred to |+3,+ ↓〉 and |+3,+ ↑〉,

respectively. We have a Rabi oscillation similar to Fig. 5 for
both electron spin states. Furthermore for the electron with
px , the Rabi frequency �̂ = −27i

8
√

2
pxω

c
σy + 9

16
√

2
ωσz derived in

Table I predicts that there is an oscillation for any state of
spin electron. This means that the electron with or without px

oscillates with spin-flipping symmetry. Our numerical results
show Rabi oscillation for this setup, whether the electron has
a momentum along laser polarization or not.

IV. CONCLUSION

Four-photon Kapitza-Dirac scattering occurs in the bichro-
matic standing wave when the electron beam absorbs three
photons from the laser field with ω frequency and emits
one photon to the counterpropagation laser beam with 3ω

frequency. The initial electron spin and photon helicity are two
factors that can affect the polarization of the free electron in
the four-photon bichromatic (ω : 3ω) KD effect. In this work,
it is shown that when the fundamental and third harmonic
laser beams are linearly and circularly polarized, respectively,
Rabi oscillation occurs for spin up and down electrons that
only have momentum along laser propagation. But when the
initial electrons have a momentum component parallel to laser
polarization, the symmetric spin-flipping effect disappears.

In this study, we showed that the shape of the Rabi fre-
quency in the bichromatic (ω : 3ω) vector potential has two
unequal peaks that change with beam amplitude and the laser
intensity. This different shape of oscillation is due to the
fast time varying cos(ckit ) part of the vector potential. Our
results also indicate that these two distinct peaks in the Rabi
oscillation exist for other harmonics such as second and fourth
harmonics.

Four-photon KD numerical simulation in this work shows
that spin-flip transitions happen in lin-lin and lin-cir setups
for zero px , except for the corotating circular laser beams in
which the electron with spin up remains in its initial spin state.
For the combination of the linear fundamental and circular
third harmonic beams, when the �p · �A term is involved for
px �= 0, the spin preserving occurs for the spin up/down
electron beam. This situation also was predicted by the Pauli
theory for circularly polarized fields [18,27].

In summary, the corotating circular configuration in the
bichromatic (ω : 3ω) standing wave acts as a spin polarizer.
It was shown that by choosing properly linear and circular
polarizations for low and high frequencies of laser beams
and nonzero px , the spin-flipping transition is stopped for
electrons and the electrons maintain their initial spin state.
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