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Testing atomic wave functions in the nuclear vicinity: The hyperfine structure
with empirically deduced nuclear and quantum electrodynamic effects
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Calculations of the magnetic hyperfine structure rely on the input of nuclear properties—nuclear magnetic
moments and nuclear magnetization distributions—as well as quantum electrodynamic radiative corrections for
high-accuracy evaluation in heavy atoms. The uncertainties associated with assumed values of these properties
limit the accuracy of hyperfine calculations. For example, for the heavy alkali-metal atoms Cs and Fr, these
uncertainties may amount collectively to almost 1% or 2%, respectively. In this paper, we propose a method for
removing the dependence of hyperfine structure calculations on assumed values of nuclear magnetic moments and
nuclear magnetization distributions by determining these effects empirically from measurements of the hyperfine
structure for high states. The method is valid for s, p1/2, and p3/2 states of alkali-metal atoms and alkali-metal-like
ions. We have shown that for s states, the dependence on QED effects may also be removed to high accuracy.
The ability to probe the electronic wave functions, through hyperfine comparisons, with significantly increased
accuracy is important for the analysis of atomic parity violation measurements, and it may enable the accuracy
of atomic parity violation calculations to be improved. More broadly, it paves the way for further development
of high-precision atomic many-body methods.
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I. INTRODUCTION

Studies of atomic parity violation provide important low-
energy tests of the standard model of particle physics. The
largest effect in atoms arises from the nuclear weak charge,
which depends on a unique combination of fundamental
coupling constants. This makes atomic parity violation mea-
surements uniquely sensitive to certain types of new physics,
complementing searches for new physics performed at high
energies [1–3].

Extraction of the nuclear weak charge from atomic measure-
ments requires high-precision atomic calculations (see, e.g.,
reviews [4,5]). To gauge the accuracy of these calculations,
a comparison of theoretical and experimental determinations
of electric dipole transition amplitudes, energy intervals, and
hyperfine structure constants is made [6,7]. The hyperfine
structure is sensitive to the atomic wave functions in the nuclear
region, and it is the hyperfine structure for which the largest
deviations are seen.

The atoms and ions of interest for atomic parity violation
measurements include Cs [8,9], Fr [10–12], Ba+ [13,14], and
Ra+ [15]. The highest precision in atomic parity violation
studies has been reached for 133Cs, the measurement accurate
to 0.35% [16], and calculations accurate to within 0.5%
[6,7,17,18]. The future of nuclear spin-independent atomic
parity violation studies on a single isotope depends on the
ability to control the error of atomic calculations to ≈0.1%.
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In the current work, we pave the way for significantly
improved understanding of the electronic wave functions in the
nuclear region. We propose a method for empirically correcting
the unknown or neglected nuclear properties and quantum elec-
trodynamic (QED) radiative corrections in hyperfine structure
calculations by exploiting the scaling of different effects for
higher states.

Beyond the uncertainties associated with many-electron
correlations in the atomic theory evaluation of the hyperfine
structure, there are several other sources of uncertainty related
to assumed values of (i) the nuclear magnetic moment, (ii) the
finite-magnetization distribution of the nucleus, and (iii) QED
radiative corrections (or their neglect). The size of the error
associated with each of these may be several 0.1%, or even
≈1%, for the systems of interest for parity violation studies.
Controlling these errors is crucial if 0.1% tests of the atomic
theory are to be performed.

Indeed, (i) in the comparison between theory and exper-
iment for the hyperfine structure, a value for the nuclear
magnetic moment is assumed. However, for the Fr isotopes,
these are not known to better than 1–2% [19,20]. (ii) An
assumed magnetization distribution is used in atomic calcula-
tions, the most routinely used being the uniformly magnetized
sphere. There are data, however, for the hyperfine structure for
the neutron-deficient isotopes of Fr [21,22] that support the
validity of the single-particle model for that system. In our
recent work on the ground-state hyperfine structure [23], we
demonstrated that using the single-particle model gives a result
for 211Fr that differs by 1.3% from that found using the sphere;
for 133Cs this difference is 0.5%. (iii) Rigorous calculations
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of QED radiative corrections to the ground-state hyperfine
structure have been performed at the one-loop level for the
alkali-metal atoms [23,24] and only recently for alkali-metal-
like ions Ba+ and Ra+ [23], with contributions entering at
around 0.5% for Cs, Ba+, Fr, and Ra+. Overwhelmingly, these
effects have been neglected or crudely estimated in theoretical
determinations of the hyperfine structure.

The uncertainty associated with the nuclear magnetization
distribution also poses a problem in the area of QED tests in
few-electron highly charged ions. That problem is addressed
by constructing a difference between hyperfine intervals of the
ion in question and the hydrogen-like ion that cancels the effect
[25]. This difference, however, relies on precise knowledge
of the nuclear magnetic moment. This proved problematic
in studies of Li-like 208Bi, where the accepted value of this
moment turned out to be inaccurate [26].

II. THE HYPERFINE STRUCTURE ACROSS PRINCIPAL
QUANTUM NUMBER

A. Factorizing the hyperfine structure

The magnetic hyperfine interaction is given by

hhfs = cα · A = 1

c

μ · (r × α)

r3
F (r ), (1)

where α is a Dirac matrix, A is the nuclear vector potential,
μ = μI/I is the nuclear magnetic moment (and I is the nu-
clear spin), and F (r ) describes the magnetization distribution.
We use atomic units (|e| = m = h̄ = 4πε0 = 1, c = 1/α).
F (r ) = 1 corresponds to the case of point-nucleus magne-
tization. For a finite-nucleus magnetization distribution, the
value F (r ) − 1 differs from zero within the nucleus, r � rn.
Account of finite-nucleus magnetization gives a correction
to the (point-magnetization) hyperfine structure—the Bohr-
Weisskopf (BW) effect [27].

The splitting due to the magnetic hyperfine interaction (1)
may be quantified in terms of the magnetic constant A. In
the zeroth-order approximation (lowest-order in the atomic
potential and for point-nucleus magnetization), the hyperfine
A constant for the state with principal quantum number n and
angular momentum quantum number κ (κ = −1, 1,−2, . . .

for s, p1/2, p3/2, . . . ) is given by

Anκ = − α2

mp

gIκ

J (J + 1)

∫ ∞

0
dr f (r )g(r )/r2. (2)

Here J is the electronic angular momentum, mp is the proton
mass, gI = μ/(μNI ) is the nuclear g-factor, and f (r ) and
αg(r ) are the upper and lower radial components of the
relativistic wave functions ϕ that satisfy the Dirac equation,

[cα · p + (β − 1)c2 + Vnuc(r ) + Vel]ϕ = εϕ, (3)

where β is a Dirac matrix. In our many-body calculations
for the hyperfine structure, we use the Hartree-Fock potential
as our starting potential, Vel = VHF. Finite nuclear charge
distribution is included in the determination of the wave
functions, with Vnuc corresponding to a two-parameter Fermi
distribution in our calculations.
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FIG. 1. Relative correlation corrections F � to the hyperfine
structure (in %) for Cs, Ba+, Fr, and Ra+. This corresponds to
evaluation of 〈ϕBr|hhfs + δVhfs|ϕBr〉 − 〈ϕ|hhfs + δVhfs|ϕ〉 relative to
〈ϕ|hhfs + δVhfs|ϕ〉.

We introduce the following parametrization for the hyper-
fine A constant:

Anκ = AMB
nκ

μ

μN

(
1 + α

π
F BW

nκ + α

π
F QED

nκ

)
. (4)

We explicitly separate different aspects of the hyperfine prob-
lem. The nuclear magnetic moment μ is factored out, and
the value for AMB

nκ comes only from electronic many-body
calculations with the nuclear magnetic moment set to μN

and for point-nucleus magnetization. The parameters F BW
nκ

and F QED
nκ give the relative Bohr-Weisskopf correction and

the relative QED correction, respectively. In the following,
we will consider how the relative correlation, BW, and QED
corrections scale with principal quantum number.

B. Correlation corrections

Our many-body calculations are carried out using the corre-
lation potential approach [28]. A nonlocal, energy-dependent
correlation potential �(r, r′, ε) is constructed such that, in
lowest order, the average value of this potential coincides
with the second-order correlation correction to the energy.
We use the Feynman diagram technique to include in � the
electron-electron screening and the hole-particle interaction
to all orders in the Coulomb interaction [29]. This potential
is added to the relativistic Hartree-Fock equation (3), with
VHF → VHF + �(∞), and correlation-corrected (Brueckner)
energies εBr and orbitals ϕBr are obtained.

The dominant part of the external-field correlation
corrections—the core polarization—is included using the
random-phase approximation with exchange (RPA). From this
we get a correction to the hyperfine operator that corresponds
to a hyperfine-modified Hartree-Fock potential, hhfs + δVhfs

[28]. Inclusion of the correlation potential and RPA cor-
rections corresponds to evaluation of the matrix element
〈ϕBr|hhfs + δVhfs|ϕBr〉.

In Fig. 1 we plot the relative correlation corrections
for ns states from the ground state to principal quantum
number n = 16 for alkali-metal atoms and alkali-metal-like
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ions of interest for parity violation studies, Cs, Fr, Ba+,
and Ra+. These corrections correspond to the difference
〈ϕBr|hhfs + δVhfs|ϕBr〉 − 〈ϕ|hhfs + δVhfs|ϕ〉 relative to
〈ϕ|hhfs + δVhfs|ϕ〉, which we denote by F� . Since most
of the uncertainty in many-body calculations is associated
with evaluation of correlations, the smaller the relative size
of the correlations F� , the smaller the anticipated error in
the many-body calculations. Our calculations for smaller
correlation corrections (structural radiation and normalization
of states that enter at around 1% or less and are not included
in 〈ϕBr|hhfs + δVhfs|ϕBr〉) also demonstrate a reduction
in relative size with an increase in n. We may therefore
expect that significantly higher accuracy may be achieved
for calculations of AMB

n′κ for the higher states compared to
calculations of AMB

nκ for the ground or lower level, where
n′ > n and particularly for n′ � n.

C. Bohr-Weisskopf corrections

We have studied the Bohr-Weisskopf effect in two very
different models: (i) the uniform spherical distribution, where
F (r ) = (r/rn)3, and (ii) the nuclear single-particle model,
with spin nucleon g-factors found from measured nuclear
magnetic moments. We refer the reader to, e.g., Ref. [30]
for the single-particle model expressions for F (r ), derived in
Refs. [27,31–33]. We performed calculations for 133Cs, 211Fr,
135Ba+, and 225Ra+ with 2 × 104 grid points and a grid radius
of r = 230 a.u. for the atoms and r = 120 a.u. for the ions.
Calculations were performed for states ns, np1/2, and np3/2,
with n = 6–10 for Cs and Ba+ and n = 7–11 for Fr and Ra+.
Account of core polarization is important for all non-s states,
and for states with j > 1/2 it is responsible for the effect
entirely. We observe that for the s, p1/2, and p3/2 states, the
Bohr-Weisskopf effect (α/π )F BW

nκ stays the same across n to
within 0.05% for all considered isotopes and magnetization
models (the variability tends to be significantly smaller for the
s and p1/2 states). For example, in the nuclear single-particle
model for 133Cs, the values for F BW at the RPA level are
−0.898, −0.056, and −0.247 for 6s, 6p1/2, and 6p3/2 states,
and the variation across n = 6–10 for α/π F BW is 	 0.1%;
in the spherical model, the values are about 3.4 times larger.
Account of correlations hardly influences the F BW values for
s states and changes the values for p states only on the level
of 1%, while the variation across n stays about the same. Note
that in Rb the n-independence of the Bohr-Weisskopf effect
for s-states has been observed experimentally across n = 5–7
through isotopic ratios of the hyperfine constants [34].

Therefore, for the excited states n′s1/2, n′p1/2, and n′p3/2

we may write the hyperfine constant as

An′κ = AMB
n′κ

μ

μN

(
1 + α

π
F BW

nκ + α

π
F

QED
n′κ

)
, (5)

where the relative BW effect coincides with that for the ground
state. Combining Eqs. (4) and (5), it is seen that the dependence
on nuclear properties may be completely eliminated,

Anκ = AMB
nκ

(
A

exp
n′κ

/
AMB

n′κ
)(

1 − α

π
δF QED

κ

)
. (6)

We have replaced the total hyperfine constant An′κ with its
experimentally determined value A

exp
n′κ and δF QED

κ = F
QED
n′κ −

TABLE I. Relative QED radiative corrections F QED to hyperfine
constants for ns states of 133Cs found in core-Hartree and Kohn-Sham
potentials, VCH and VKS.

F QED

6s 7s 8s 9s 10s

VCH −1.64 −1.49 −1.44 −1.39 −1.31
VKS −1.91 −1.77 −1.71 −1.65 −1.59

F QED
nκ . The nuclear physics input, which has until now been

required in hyperfine structure calculations, may instead be
determined implicitly through hyperfine structure measure-
ments for high states, electronic many-body calculations for
high states, and the difference in QED contributions for the
states being compared. We are confident that these may all be
determined with sub-0.1% uncertainty.

D. QED radiative corrections

We have gone further in this work and explicitly calculated
the QED radiative corrections for ns states for 133Cs over
n = 6–10. Rigorous calculations of the one-loop self-energy
and vacuum polarization corrections were performed using the
extended Furry picture with the core-Hartree (CH) potential
and the Kohn-Sham (KS) potential generated for the ground
state, as in Ref. [23]. In Table I we present our results. The
correction changes relatively significantly from n = 6 to 10
(20% for CH and 17% for KS), however a difference of 20% in
F QED corresponds to |(α/π )δF QED

−1 | ≈ 0.05%, and we expect
similar QED differences across n for s states of other heavy
alkali-metal atoms and alkali-metal-like ions.

E. The hyperfine ratio method

Therefore, we have shown—accurate to within 0.1%—that
we may simplify Eq. (6) further for the s states,

Ans = AMB
ns

(
A

exp
n′s /AMB

n′s
)
. (7)

(We replace the notation An−1 with Ans .) The ratio in paren-
theses in Eq. (7) corresponds to the nuclear and QED aspects
of the problem, μ/μN (1 + α/π F BW + α/π F QED).

The right-hand side of Eq. (7) contains the ratio of the results
of two many-body calculations, AMB

ns /AMB
n′s . We may write

AMB
ns ≈ AHF

ns

(
1 + F δV

ns

)(
1 + F�

ns

)
, (8)

where AHF
ns is the hyperfine constant found in the

relativistic Hartree-Fock approximation, and F δV
ns , F�

ns are the
relative RPA and correlation corrections. The RPA correction
is essentially the same for all principal quantum numbers—for
Cs, F δV

ns ≈ 0.2—and it cancels in the ratio Eq. (7). It means
that the ratio method is largely insensitive to account of core
polarization.

The atomic theory error, however, is mainly associated with
the evaluation of the electron-electron correlations, most of
which may be represented by a correlation potential �. For
the correlation potential, and smaller correlation corrections
such as the structural radiation and normalization of states, the
relative correction is not the same for different n—as we saw

032504-3



J. S. M. GINGES AND A. V. VOLOTKA PHYSICAL REVIEW A 98, 032504 (2018)

TABLE II. Magnetic hyperfine A constants for 6s and 7s states of
133Cs from Refs. [6,7]. Raw values and percentage deviations (% dev.)
from experiment are shown in the first rows of data, values with QED
and Bohr-Weisskopf (single-particle Woods-Saxon) corrections from
Ref. [23] are shown in the following rows, and values for 6s using the
ratio involving 7s, (Aexp

7s /Ath
7s ) Ath

6s , and vice versa for 7s are shown
in the final rows. Units: MHz.

Reference A6s % dev. A7s % dev.

Raw
Theory [6], unfitted 2315.0 0.73 545.3 −0.09
Theory [6], fitted 2300.3 0.09 543.8 −0.37
Theory [7] 2306.6 0.37 544.59 −0.23
With QED, BW(SP)
Theory [6], unfitted 2318.4 0.88 546.1 0.06
Theory [6], fitted 2303.8 0.24 544.6 −0.22
Theory [7] 2319.7 0.94 547.69 0.34
Ratio
Theory [6], unfitted 2317.1 0.82 541.3 −0.82
Theory [6], fitted 2308.8 0.46 543.3 −0.46
Theory [7] 2311.8 0.59 542.61 −0.59
Experiment 2298.157a 545.818(16)b

aReference [35].
bReference [36].

earlier—and we have

AMB
ns

/
AMB

n′s ≈ AHF
ns

/
AHF

n′s
(
1 + F�

ns − F�
n′s

)
. (9)

The ratio, therefore, depends on the difference in the relative
correlation corrections between states ns and n′s, F�

ns − F�
n′s .

If we are interested in preserving the dependence on the the-
oretical account of the electron correlations—i.e., we want to
test the accuracy of atomic calculations—then this difference
should be as large as possible, F�

ns � F�
n′s . The most suitable

state to test is therefore the ground state, with the other state
chosen to be as high as possible (see Fig. 1). On the other
hand, for the case in which F�

ns − F�
n′s ≈ 0 (e.g., both states

with high principal quantum number), the dependence on
the correlations is largely removed in the ratio, and we may
perform high-precision predictions of the hyperfine structure.
Note that it may happen that sub-1% many-body contributions
do not appear with the same trend across n—including,
e.g., when fitting procedures are used and states are treated
differently—and the hyperfine structure for the lower states
may be evaluated more accurately than for higher states.

III. APPLICATION OF THE RATIO METHOD

We apply the ratio method to the hyperfine structure results
for states 6s and 7s of 133Cs used to test the accuracy of the
most precise calculations for atomic parity violation performed
in Refs. [6,7]. We are limited to these lowest ns states, as only
data for the states involved in the parity violation transition
were presented in these works. The data are shown in Table II.
We include two sets of results from Ref. [6] corresponding
to ab initio values and values obtained with modified wave
functions found by fitting the calculated binding energies to
measured data. The original theory results are presented in the
first rows. The results of both works [6,7] were obtained by
modeling the nuclear magnetization distribution as a uniform

sphere. The QED radiative corrections were not included in
Ref. [6], while subsequently determined rigorous calculations
for 6s [24] were included in Ref. [7] (with relative QED
corrections for 7s assumed to be equal to those for 6s). The
percentage deviations of these values from experiment are
shown in the following columns. For the hyperfine structure
for 6s, the deviations of the unfitted and fitted results of
Ref. [6] are 0.73% and 0.09%, while the deviation of the
result of Ref. [7] is 0.37%; for 7s, the deviations are −0.09%,
−0.37%, and −0.23%, respectively. We expect that a better
indication of the quality of the wave functions may be obtained
by employing the more well-motivated single-particle model
for the magnetization distribution, as well as accounting for
the QED corrections where these have been omitted. For the
s-states of 133Cs, adjusting the magnetization model accord-
ingly amounts to a correction of 0.53%, and inclusion of QED
radiative effects amounts to a correction of −0.38% [23]. With
these corrections, we obtain values for the magnetic hyperfine
constants—shown in Table II—with the following deviations
from experiment for the unfitted and fitted results of Ref. [6]
and the results of Ref. [7], respectively: 0.88%, 0.24%, and
0.94% for the 6s state; 0.06%, −0.22%, and 0.34% for the 7s

state. The corrections to the hyperfine results of Ref. [7] are
sizeable enough to affect the error assignment for the parity
violating amplitude computed in that work.

The nuclear and QED effects and their uncertainties are
difficult to quantify, however, and application of the ratio
method ensures that any deviations are associated with the
uncertainties of the electronic calculations alone. The results
for the magnetic hyperfine constants for the 6s state of 133Cs,
obtained from the ratio method with data from 7s, are shown in
the final rows of Table II; for illustration, we also present values
for 7s found from the ratio involving 6s. We obtain values for 6s

with deviations 0.82%, 0.46%, and 0.59% for the unfitted and
fitted data from Ref. [6] and the data from Ref. [7], respectively.
In the general case, these deviations are attributable to the errors
associated with both states in the ratio. Note that the procedure
for testing the atomic theory is equivalent to comparing the
theory ratio Anκ/An′κ or AMB

nκ /AMB
n′κ with the empirical one,

A
exp
nκ /A

exp
n′κ . Expressing the many-body value AMB

nκ in terms of
an “exact” value AMB, exact

nκ and a deviation from this value,
δMB
nκ = AMB

nκ − AMB, exact
nκ , the ratio AMB

nκ /AMB
n′κ deviates from

the exact value by (δAMB
nκ /AMB

nκ − δAMB
n′κ /AMB

n′κ ), that is, by
the difference in the relative deviations from the exact or
experimental value. We emphasize that the dependence on
QED corrections is removed in the ratio when both states
are treated in the same way. Similarly, the dependence on the
chosen magnetization distribution, and the nuclear magnetic
moment, is also removed. The relatively large deviations seen
above—connected only with the uncertainties in the electronic
wave functions of the two states—indicate that there is room for
improvement of the wave functions and calculations of atomic
parity violation. It would be more useful, though, to isolate
the uncertainty connected with just one state, that is, e.g.,
(δAMB

6s /AMB
6s ) and (δAMB

7s /AMB
7s ) and not their difference. To

do this, high-precision measurements and calculations for high
states are required, as discussed earlier in the paper. We propose
such a prescription—a detailed study of the hyperfine structure
for a number of states across principal quantum number—in
future analyses of atomic parity violation calculations.
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We would also like to demonstrate the predictive power of
the ratio method. We may use the theory results of Ref. [19]
for states 8s and 9s of 210Fr where the deviations from
experiment for both states are 0.4% and cancel in the ratio.
These calculations were performed using a magnetic moment
with 2% uncertainty, the nuclear magnetization taken to have
a Fermi distribution, and QED corrections omitted, with raw
values 1584 and 624.8 MHz. Using the data for 8s (with the
measurement from Ref. [37]) to make a “prediction” for 9s, we
obtain a value for the hyperfine constant 622.4 MHz compared
to the measured value 622.25(36) MHz [19].

IV. CONCLUSIONS

In summary, the ratio method advocated in the current
work allows the electronic wave functions in the nuclear
region to be probed, through hyperfine comparisons, free from
uncertainties connected with the nuclear magnetic moment,
nuclear magnetization distribution, and QED. We have demon-
strated that by using this method, the remaining electronic
uncertainties are associated with the difference in the relative
errors associated with the two states. This may be reduced
to the electronic uncertainty associated with one state by
making that of the other very small, which we expect is possible
for the highly excited states. This development is important for
the interpretation of atomic parity violation measurements in
several ways. Most directly, it will enable a more reliable error
analysis of the hyperfine structure to be performed, leading
to a more reliable error assignment for the theoretical parity
violating amplitude and deduced nuclear weak charge. It may
also enable improved control of the electronic wave functions
in the nuclear region and higher accuracy in calculations of

atomic parity violation and other short-distance effects. This
may be achieved through empirical fitting of the hyperfine
structure by introducing parameters to the correlation potential
in a similar way to the method used currently for energies. Far
more broadly, the proposed method opens up the possibility
of using the hyperfine structure as a benchmark against which
developments in precision atomic many-body theory may be
tested. Indeed, the hyperfine structure has a different sensitivity
to correlations compared to energies.

Therefore, high-precision measurements—and
calculations—of hyperfine structure constants for high s, p1/2,
and p3/2 states of alkali-metal atoms and alkali-metal-like
ions would prove invaluable for replacing the unknown
nuclear physics parameters and QED in atomic calculations
of the hyperfine structure by means of the proposed ratio
method.
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