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With this work we start a project calculating the QED contribution of order a’m to the 23P—23S transition
energy in helium, aiming for an accurate determination of the nuclear charge radius rg from measurements of the
corresponding transition frequency. Together with the complementary determination of r from muonic helium,
this project will provide a stringent test of universality of electromagnetic interactions of leptons in the Standard
Model. We report a calculation of the relativistic corrections to the Bethe logarithm for the 23S and 2 3P states,
which is the most numerically demanding part of the project.
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I. INTRODUCTION

One of the prominent low-energy tests of the Standard
Model (SM) with a possible signature of new physics is based
on a comparison of the Lamb shift in muonic hydrogen H and
electronic hydrogen H. The lepton universality of SM implies
that the same physical laws and physical constants define the
energy levels in H and wH. However, it has been found that
the proton root-mean-square charge radius, extracted from
the comparison of theory and experiment for the Lamb shift,
turned out to be significantly different for the electronic [1]
and muonic [2,3] hydrogen,

rp(H) = 0.8759 (77) fm,
rp(uH) = 0.84087 (39) fm.

This 4.5 ¢ discrepancy, known as the proton radius puzzle,
may signal the existence of interactions that are not accounted
for in the Standard Model. Several experiments aiming to
resolve the puzzle have been accomplished recently, namely,
the measurement of the 25—4 P transition energy in Garching
[4], 25-2 P Lamb shift in Toronto [5], and two measurements
of the 15-3S transition energy performed in Paris [6] and in
Garching [7]. These experiments yield conflicting results for
the proton charge radius, which does not solve the puzzle
but suggests the presence of unknown systematic effects
in hydrogen measurements. Further experiments directed to
clarify the proton radius puzzle are currently being pursued,
notably, measurements of the 15-2S transition energy in He™
[8,9], transitions between circular Rydberg states in H-like ions
[10], and the direct comparison of the cross sections of the e-p
versus (- p elastic scattering [11].

An alternative way to solve the proton charge radius puzzle
can be gained through spectroscopy of the helium atom.
Specifically, a comparison of the nuclear charge radius from
the helium spectroscopy with the radius from muonic helium,
expected soon from the CREMA collaboration [12], would
provide an independent test of the lepton universality in atomic
systems. On the experimental side, several transition energies
in the helium atom are already known with an accuracy
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sufficient for determining the nuclear charge radius on a 1073
fractional level [13—19]. In order to achieve a similar level
of accuracy in theoretical predictions, one needs to improve
the previous helium calculations [20,21] by completing the
next-order term of the NRQED expansion, namely, the o’m
correction. This is a very challenging theoretical problem.
Among few-electron atoms, it has so far been solved only for
the helium fine structure [22-24].

With this paper, we start a project calculating the complete
a’m correction for energy levels of two-electron atoms. At
present, we restrict ourselves to the triplet states, for which the
nonrelativistic wave function ¢ (71, 7») vanishes at 7| = 7. As
aresult, the whole class of the so-called contact operators does
not contribute, thus making the derivation of o’ m operators
more tractable. An improved theory of the triplet states will
allow the determination of the nuclear charge radius from the
23§-2°P transition in *He, which was accurately measured by
the Hefei group [18].

The present status of theory of helium energy levels com-
plete up to order a®m is described in our recent review [25].
The next-order o’m contribution can be represented as a sum
of three parts,

ED — (HDy L2 g@®
(H'") + E_Hy

H(5)> +EL, (1)

where H®, H®_ and H? are the effective Hamiltonians of
order a*m, a®m, and o' m, respectively; H and E are the
nonrelativistic Hamiltonian and its eigenvalue, respectively;
and E; is the low-energy contribution, also known as the
relativistic correction to the Bethe logarithm, which is the main
subject of this work.

Out of the three terms contributing to E7), the relativistic
correction to the Bethe logarithm is numerically the most
demanding one and thus is the crucial part of the whole a’ m
project. The calculation of (the spin-dependent part of) such a
correction was first performed in Ref. [26] for the fine structure
of helium and later improved in Refs. [23] and [24]. For the
Coulomb two-center systems (H+, HD™, etc.), the relativistic
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corrections to the Bethe logarithm were calculated by Korobov
et al. [27]. The goal of the present work is to calculate the
spin-independent low-energy correction E; for the 23S and
2P states of helium.

II. NONRELATIVISTIC LOW-ENERGY CONTRIBUTION

The leading nonrelativistic (dipole) low-energy contribu-
tion of order &> m is given by

Ero(A) = 62/ Ik (g KK
A= Joa @r)32k K2

i 1 j
><<P —E_H_kpf>, )

where P = p; + P, and A is the high-momentum cutoff.
Eo(A) diverges when A — oo and requires subtraction of
the leading terms in the large- A asymptotics.

Performing the angular integration and dropping the overall
prefactor o>m, one obtains

2 A
ELo(A)=—/ kdk P(k), 3)
3rn 0
where
- 1 -
Pky=(P ——P). 4
(k) < o — > @)
The large-k expansion of P (k) is
5 D
kP(U)=—(PY) 4+ )

where D =27 Z (83(r1) + 83(r»)). The finite part of the
low-energy contribution is then defined by dropping terms
proportional to A and In(2 A) as

2
Epo=—=—D Inko, (6)
37

where In kj is the standard Bethe logarithm,
1 [ ) D
lnkoz——/ dk|k P(k)+ (P°)y — — 602k —1)
D J, k

_(P(H-E)In[2(H — E)] P) .
B 27 Z(Y, 83(r.) ’
and 0(x) is the Heaviside step function.

The numerical calculation of the Bethe logarithm for the
helium atom remained for a long time a very difficult problem
[28,29], which has been successfully solved only relatively
recently [30-32].

II1. RELATIVISTIC LOW-ENERGY CORRECTIONS

There are three types of relativistic corrections of order a’m
to the low-energy contribution (2),

E,=Epn+Ep+Er3. ®)

The first part E;; is a perturbation of the nonrelativistic
low-energy contribution E;¢ in Eq. (2) by the Breit Hamil-
tonian H™®, the second part Ep, is Lnduced by the relativistic
correction to the current operator P, whereas the third term

E 3 is the retardation correction. All of these corrections are
defined as remainders after dropping divergent in A terms,
such as A and In A.

A. Breit correction E

The low-energy contribution perturbed by the (spin-
independent part of the) Breit Hamiltonian H® is

2 A
Enh) = 5 fo kdk Poy(K). ©)

where
1 o 1 o
P P
(E—HY E-H-k

Pri(k) = 2<H<4>

> 1 1 -
@) _ )
+<PE—H—I<[H (H >]E—H—kP>’

(10)
where (with » = ry3)
) L4 NIRRT 3 3
HY = — g(P1 +p2)+7[5 (r)) + 87 (r)] + 7 8°(r)
L, (87 rri\
—sh( =+ ) (1
The large-k expansion of Py (k) is given by
B CiInk D

kPLi(k) = Aj+ — + — — (12)

+ +ee
Jk ok k
where the asymptotic constants are derived in Appendix A.
We construct the finite part of the Breit correction as

2 o0
Epn = —/ dk [kPLl(k) - Ay
R¥4 0

—ﬁ—(c‘ 1nk+ﬂ>9(k—1)] (13)
Jk k k

2 K 00
= —{/ kdk PLl(k)—‘r/ dk |:kPL1(k) — A

3m 1 Jo K

Jk |k k

C
—[A1K+2BI«/?+711112K+D1 an“,

Bl Cllnk D1:|

(14)

where K > 1 is a free parameter.

B. Current correction E;,

The second low-energy contribution of order a’m is in-
duced by a correction to the current operator in Eq. (2),
P — P +§j,with

8ji = i[H(4), rf + ré]

1 . . 1 (SU rirj . .
= =5 (PiPi+pip) - 5<7 + r—3> (P! + p3),

15)
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where [ , ] denotes a commutator. The corresponding low-energy correction is
4 A
Epp(A) = —/ kdk Ppy(k), (16)
3w 0
where

. 1 .

The large-k expansion of Py, (k) has the same form as that of Py (k),
Bz C2 Ink Dz

kPiyk) =A)+ —= + + 4+, 18
L2(k) 2+ X T (18)
where the asymptotic constants are derived in Appendix B.
The finite part of the low-energy correction is constructed as
4 [ B CyInk D,
Epp,=— dk |k Ppatk) — Ay — —= — Ok —1 19
=50 [Lz()zﬁ(k+k( ) (19)
4 K o0 Aj B, Cylnk D, Cy
= kdk Ppa(k kdk | Pra(k) — =2 ——>— 2= Ay K+2BVK + — I K+D, InK |,
371{/0 L2()+/I; [LZ() T Pr @ kz][z-l-z K+ —In +2I1“
(20)
where K > 1 is a free parameter.
C. Retardation correction E;;
A retardation correction to the low-energy contribution is
2 A
En(d) = o= [ kdk Paco). e
3n 0
where
3 ki kI P ik 1 j ik
Prs(k) = / dszk( B ) Y e <pa et e e ), (22)

a,b=1,2

where ;2 (. . .) denotes the quadratic in k term of the small-k expansion of the exponential functions in the matrix element (.. .).
Performing the expansion and integrating over angular variables, we obtain

ki k/ . 1 - . . 1 .
Pp3(k) = —/Qk( 8" ) > <p; (k- 7o) —————(k - 73) pj — pjy (k - 7o)’ —p{,> (23)
el E—H—k E—H—k
k i 7\@ 1 NG 5 -
- mH(””l Hn)” g ) ) - g )
. . 1 . .
_2<[pll(281]r1 r r1)+p2(25’/r2 —rérzj)]E_—H_k(p{—f-pé)ﬂ, (24)

where (a'b))? = (a'b/ + a’/b')j2 —G - b8 /3and L = F, x pi + 7> x p». The large-k expansion of P;5(k) is of the form
B3 C3 Ink D3

k Prs(k) = G3k* + Fak + Ay + —= — 4, 25
13 (k) 3k + F3k+ Az + NG + A + P + (25)
where the asymptotic constants are derived in Appendix C.
We construct the finite part of the retardation correction as
2 e B3 Cz; Ink D3

Eps==— [ dk kPpk)—k*Gy—kFy— Ay — —= — ok — 1 26
L3 =3 /0 { £3(k) 3 smA- [ X ( ) (26)

2 K o B'; C3 Ink D';

= dk kPp3(k dk |kPp3(k) — G3k* — Fsk — Ay — —= — —— — —

3]1{/0 L3()+/K |: 13(k) — G3 3 Tk . k:|
K3 K? C

—[G3T—|—F37+A3K+2B3\/K+73ln2K+D31nK]}, 27)

where K > 1 is a free parameter.

032503-3



YEROKHIN, PATKOS, AND PACHUCKI

PHYSICAL REVIEW A 98, 032503 (2018)

IV. NUMERICAL EVALUATION

A. Transformation to a regularized form

The Breit Hamiltonian H® [Eq. (11)] contains singular operators (8(r,), D, 4) which complicates numerical evaluations of the
Breit correction E ;. In order to achieve high numerical accuracy, we transform Eq. (10) to a more regular form. Specifically, by

using the identity

H®\¢) = H|¢) + (H — E, 0})I9), (28)
where |¢) is the eigenfunction H with energy E,
1 z 2
Q=-- +——- (29)
4 r r
and
1 1 Z 7 Z 7 1 8 piyd ;
HYp)=| —=(E-VP+-VV2 - 21 .y, 22.v,— - o), 30
A|¢>[2< PV I ‘4,»2322”1 —+ ) pi|ie) (30)
with V. = —-Z/r| — Z/r, + 1/r, we transform the first term in the right-hand side of Eq. (10) to a regularized form,
Pput(k) =2(H\Y p P)—2([0 —(Q)]P ——— P). 31
ot () <A(E_H), T [0 (0P ——— (31)
Furthermore, by using the identity
1
HY = H +{H ~ E. 05} = 5 (H = E)’. (32)
where
0p=-2-1(2.2.2 (33)
L T rnoornor)
and

) 1 A
HY =3 -V)(E-1)+7Vvi- i+ -

1\ . Z 1+1 R I (Sij+rirj j (34)
pr=yh oo P23 iy )P

we transform the second term in the right-hand side of Eq. (10) to the regularized form,

Perll) = (P —1 H<4>—2kQB—k—2—(H(4>) U BV (2B s+ kPl— BV LBy s)
E—H—k| ® 2 B E—H—k E—H—k 2

B. Angular decomposition

In our approach, we express all wave functions and perform
the angular momentum algebra in Cartesian coordinates. The
reference-state wave functions of the 3§ and >P? symmetry are
represented as

¢CS) = F(ri,r,r)— (1 < 2), (36)
' CP°) =rl F(ri,ra, 1) — (1 < 2), (37)

where the scalar functions F are linear combinations of
exponential functions,

F@ri,rm,r)= Zci exp (—o;ry — Bira — vir). (38)

i

The wave functions are normalized by (¢|¢) =1 and
(9'l9') =1

The angular decomposition of formulas in Sec. III is mostly
performed in the same way as for the nonrelativistic Bethe
logarithm. In that case, for the 3§ reference state, only 3po

(

intermediate states contribute,

P(k) = (¢p(S)| P! < P 1$(S))

E—H-— k)an
= (p(S)| P'|8¢' CP?)), (39)

where 8¢’ is the perturbed wave function of the *P° symmetry,
. ¢l (3P0 .
8¢'CP°) = Z (@, CPOIPYICS) . (40)

The angular decomposition for the *P¢ reference state is
performed by using the identity

ik~ Loz 2z, 1 = =
]¢—33] ¢+261k1(1><¢)1
Lk ki 2k 7
t3 Je +J¢—§5 j®). 41)

The three terms in the right-hand side of the above expres-
sion give rise to contributions from the 35, 3p¢, and 3D¢
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intermediate states, respectively,

P(k) = Pr—o(k) + Pr=i(k) + Pr=s(k)
—1 W, ! W,
—5( 0|(m)3s| o)

1
2

+1(\1ﬂ'k|(;> W) (42)
4 V2 NE—H—k)sp' 20

-

x ¢, and Wi = jigt + jro’ —

A more complicated situation arises in the evaluation of the
symmetric part of the E; 3 contribution for the 3P reference
state [the first term in brackets in Eq. (24), P;3" . In order to
perform the angular decomposition in this case, we use the
following identity:

5 Z (rclipé +V({p;) ¢k — thk +6lkl le +6}kl Tlt
a=1,2
8jk T'+8” T/k,

(43)

+ 8T +

where T%, T'/ and T' are the components of the (symmetric
and traceless) irreducible tensors of the first, second, and third
rank, respectively,

T =3 (i pi o) (44)
.. 1 . . .
T — E Z[Eﬂm (},.zlt p(ll +ré pla) ¢m
+ e (r) pl+ i pl) "], 45)

1

T'=35 Z[S (ro Pl +ru i) ¢ =2, phd']. (46)

no__ 1 i .
=% [4r Pud' —riphd —rapud']. (D)

Using this identity, we express P35 as a sum of the L = 1,
L =2,and L = 3 parts,

PR (k) = PRy (k) + Pryh (k) + Prysk),  (48)

where
poym 3k 4 i ! i
PN (k) = T§<T|<E 7o k>PDIT), (49)
O Y UL R
2y3“§(k) _ Tkz % (Tijk|<E_;H>w|Tijk>_ (51)

Wave functions of the different symmetries in Cartesian co-
ordinates required in this work are summarized in Appendix D.

C. Numerical details

Numerical evaluation of the relativistic corrections to the
Bethe logarithm was performed according to Egs. (14), (20),
and (27). The general scheme of the computation was similar
to the one developed in our previous calculation of the helium
fine structure [23] (as described in Sec. V E of that work).
Numerical cancelations, however, were much larger in the
present work, because of a greater number of asymptotic
expansion terms that needed to be separated out.

The low-energy part of the k integral, k € (0, K) with
K = 10-100, was evaluated analytically after diagonalizing
the matrix representation of the Schrédinger Hamiltonian.
In order to perform the high-energy part of the integral,
k € (K, 00), we calculated the integrand for several hundreds
different values of k € (5, 10000), subtracted the contributions
of the known asymptotic expansion coefficients, fitted the
residual, and calculated the integral analytically. For fitting
of the subtracted integrands wy;,

Bl C] Ink Dl

wri(k) =k Ppi(k) — Al_ﬁ_T_T’ (52)
wiall) =k Pia) = An = o= LEE 2 )
wrs(k) =k Pr3(k) — Gsk* — Fsk

we assumed the following functional forms of their large-k
expansion [27]:

Cmn
wpi (k) = ZZ W : (55)
m=1 n=0
M
1 o dnaVk + dp Ink + dy,
wiastk) = 4 ) o S (56)

m=1

where ¢; ; and d; ; are fitting coefficients. In order to ensure the
stability of the fitting, high numerical accuracy of the integrand
Py (k) was required, typically 10—12 significant digits.

Such accuracy turned out to be difficult to reach for the
perturbed wave-function part of the Breit correction for the
23 P state. The reason for this is the logarithmic singularity
[27] of the perturbed wave function 3¢,

Y R (57)
(E—Hy 47
In order to ensure good convergence of numerical results for
8¢, we had to choose the basis for the propagator very care-
fully. It was constructed as follows. We start by variationally
optimizing two symmetric second-order corrections,

8 E = <Hj;‘> (58)

1 @)
(E—HY * [’
8E = < ﬁzﬂ) (59)

The form of 6, E is suggested by the expression for the
leading asymptotic constant A, Eq. (A2). In order to account
for the logarithmic singularity present in §; E, we exploit
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TABLE I. Numerical results for the relativistic corrections to the
Bethe logarithm and asymptotic expansion constants for the 23S and
23P (centroid) states of helium, in atomic units.

Term 23§ 2’p

D 33.184 142 629 31.638 617 831 (1)

A —33.989 031 782 (2) —31.977 565 646

D, —132.158 242 69 (5) —127.498 493 92 (10)
Ep —45.1291 (35) —41.7175 (40)

As 42.692 780 038 40.253 149916

D, —53.768 709 997 (3) —50.260 445 50 (9)
E 335.8675 (36) 319.1601 (36)

G, 0.032 569 625 —0.065 018 180

F 2.121 589 807 2.079 835 929

As —49.768 158 799 —47.453 391 8 (3)
D, 1 175.043 968 722 (4) 1121.176 717 34 (10)
Eus —1095.0439 (3) —1045.214 (6)

the flexibility of our exponential basis functions (38) and
emulate the singularity by allowing the nonlinear parameters
to be very large. In order to effectively span large regions of
nonlinear parameters, we used a nonuniform distribution of
nonlinear parameters «;, f;, and y; introduced in Ref. [33],
typically,

ap=Ar+ (1/6 — 1) Ay, (60)

where the variable # has a uniform quasirandom distribution
over the interval (0,1), and A; and A, are the variational
optimization parameters. Finally, we merge the optimized basis
sets for 6; E and 6, E and use the result for calculating the
perturbed wave function §¢. Nonetheless, a large number of
basis functions (N = 3000-5000) were required in order to
reach the desired accuracy.

V. RESULTS

Our numerical results for the asymptotic expansion co-
efficients and the relativistic corrections to the Bethe log-
arithm are presented in Table I. For the 23S-2°P transi-
tion energy in helium, the total relativistic correction to the
Bethe logarithm, E;, = E;; + Ef» + Ey3, amounts to E; =
—4.9743 (13) MHz. This can be compared with the estimate
of Refs. [34] and [25], obtained from the hydrogenic results
by rescaling the electron density at the origin. For the 2°S—2°P
transition energy, this approximation yields

Er(appr) = o' m Z* [L(25) = 3£2p112) — 3£2p31)]

X [(82(r1) + 83 (r))pis — (8°(r1) + 8 (r2))3p 1,
(61)

with L£(2s) = —28.350965, L(2pi,2) = —0.795650, and
L(2p3p) = —0.584517 [35,36]. The corresponding numer-
ical value is E (appr) = —3.7 (0.9) MHz, where we assumed
a 25% uncertainty, like in Ref. [25].

A complete treatment of the o’m correction requires
calculations of the two remaining terms in Eq. (1), which
will be addressed in our future investigations. The numerical
contribution of these terms is expected to be comparable to

that of E;. In particular, for the 235—2°P transition energy
in helium, the hydrogenic approximation for the remaining
contribution yields —4.3 (1.1) MHz.

In summary, in this work we report calculations of the
relativistic corrections to the Bethe logarithm for the 23§
and 2P states of helium. This is the first step on the path
to calculating the complete QED contribution of order a’m
to the triplet states of helium. Being the most numerically
demanding part, the calculation of the relativistic corrections to
the Bethe logarithm indicates the feasibility of the whole o7 m
project.
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APPENDIX A: ASYMPTOTIC COEFFICIENTS OF P,

Here we derive the coefficients Ay, By, C;, and D; of
the large-k expansion of Pp; given by Eq. (12). There are
contributions coming from both the low-energy and the high-
energy regions of the virtual photon momenta. Individually, the
low- and the high-energy parts may contain divergences, which
are regularized by working in d dimensions and are canceled
when both parts are added together.

1. Low-energy part

The low-energy part can be derived by performing a direct
large-k expansion of the expression

; k
§{P'——P"),
E—-H—k
where § denotes the first-order perturbation of the matrix
element by Breit Hamiltonian H®. The coefficient A; from

Eq. (12) comes from the perturbation of the reference-state
wave function,

(AL)

A = —2<H<4>—P2>
(E—HY
_ @ L _ 2
2<HA (E_Hy P >+2<[Q (O P7). (A2)

The low-energy part of the coefficient D; is
D} =8 (P'(H — E)P')

. . 1 . )

“4) i i - i 4) i
<H E—HY H),[P [V, P ]]>+ 2([P J[H®, P)
= D{, + Df;,.

a

(A3)

The second-order term DF, is singular. We employ the reg-
ularized form of the Breit Hamiltonian Hf), Eq. (28), in
order to move singularities into first-order terms and use the

dimensional regularization in order to handle the remaining
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divergences. The result is
1 o= o= 2
Dt = 27(HY — (L .V, +2.¥ EY((Z)-4E
la < A (E-HY r 1—|—r23 2]+ r
A2 (g2, 2 12+122 1 ,Z
. rno ol r 4 r;‘ e 2 Pi 1
2 1 3) ; Z sU pipd j
+ =) )7 Z8(r1) + p; — —+— Py + (1< 2)).
r r r

2
" P>
2E — = + (A4)
ra

Here, [Z/r]c is the d-dimensional form of the Coulomb potential (for details see [20]). The terms [(Z/ r1)’]e and [Z2/ r?]g
contain singularities which will be canceled when combined with corresponding terms coming from the high-energy part. Term

(A5)

DF, is evaluated as
Z-1 _p;

E+=— -2

A .
Df, = < - ( >nzs<3>(r,) +5h P pr+ (1 o 2)>.
r

2. High-energy part
Coefficient B; can be obtained from the forward-scattering two-photon exchange diagram perturbed by the Breit Hamiltonian.
(A6)

The result is
By =2 Zx[8® (1) + 8D (r)]).

The Breit correction to the forward-scattering three-photon exchange diagram contains both the coefficient C; and the high-energy
(A7)

part of the coefficient Dy,
C1 =2 (x[690r1) + 8 (r)]).

and
D' = Z3 (x[6“9(r) + 6<">(r2)])( —8— o+ 91n2) )

1

(A8)

Finally, the coefficient D; is the sum of the low-energy part D and the high-energy part Df’. Making use of the identity
(A9)

z?7 223 +qz2ﬁ+222 N z?
AL nor)

r
we write the result as

1 i = P - 2
e seft g (6 ) 2B

RS
Z . &= Z 5 CZ (8 N
+{=piwé(r)pr+—(E-V) —+—=m
r 2 r 7
1
+ <—> + Zz(—7+9ln2)] 7Z8Yr) + (1 - 2)>,
r

Z+1 2
+[E— o n
r 2
where
z3 1 3 1
— =(=)+Z @ r))|-+2),
ri le r; €
1 O(r —
<—3> = 1im<M +47 83 ) (y +lna)>,
ry a—0 ri
A p% 1. 7%
Xi=—|E-V—-—=)—=-pi—p1.
1 rf( 2) 2P1r12P1
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APPENDIX B: ASYMPTOTIC COEFFICIENTS OF P,

Here we derive the coefficients A,, By, C, and D, of the large-k expansion of Pr, given by Eq. (18).

1. Low-energy part

First we examine contributions coming from the region of low virtual photon momenta. The coefficient A, is the leading-order
term of the direct large-k expansion of Eq. (17), with the result

1 5 8 yipd j j
A= (4E VY =2pi p3+2(E=V)pr- B2+ | — + — | (P + p2) (Pl + 2))- (B1)
The low-energy part of the coefficient D, is
L i i Tl zZ, Z i L L
Dy =(¢l8j" (H — E) j'lé) = (7| 8/" | = ZJFZ 2 J | |) = Daa + D (B2)

Individual terms are

Dy, = <Z[(p’1 Pt + P p3). [[Z + E} ]H> — < - [2 (E = ) - p§i| 7Z8r)

1. 2? z7 z z 1\ 1,22 17Z7h F
L E+|Z+2] - o) -5+ S+ o2), (B3)
2 1. ro rl. r 27 2 r1
and
1[/89  rird ; ; zZ 7 .
pL ({2 L0 J NEZLZ
2 <4[<V * ri >(p1+p2) [V1+’”2 ]H>
Z (8 3rirl =8 r2\  4m Z
_(Z( i (Brir =8 —”—5<3>(r1)+(1<—>2) (B4)
4\ r r3 r 3

2. High-energy part

Now we turn to contributions induced by high momenta of virtual photons. The coefficient B, comes from the forward-scattering
two-photon exchange perturbed by §;' and can be evaluated to yield

By = — Z2 V2 (4n[83(r1) + 83 (r)]). (BS)

Similarly to the case of Pp;, the coefficient C; and the high-energy part of D, are obtained from the forward-scattering
three-photon exchange with additional §;* and j* vertices,

) dlg? diq? (—4amZ\[—4nZ\( —4nZ 2 2\[ —34i @ - ) % ai
¢ (0)/ 2y 2y 3 2 G — ) @ 43 (B (4 - (BO)
Qn 7 qi 95 q1— 42 a (L +k)(L+k) (Z+k) (L+k)

From this expression, we derive the following results:

Z3
Cr=— (@4 [8°(r) + 8 (r2)]) (B7)

and
Dy =(Z’n[““(r) + 3<d>(r2)])<8 - é —61In 2) . (BS)

The total coefficient D, is then the sum of the corresponding low-energy and high-energy parts,

S pipiN (3rir] — 82 E 3Z-1 5—3mn2 p?
D R I (B G0 UGS S I (e _ 72 B2V yr7s®
2= <4<r + r3>< r ) <2+ 6rs 2 g )4z

+(1 < 2)>. (B9)

7
X L
+ 1+213 3

APPENDIX C: ASYMPTOTIC COEFFICIENTS OF P;3;

We now turn to the derivation of the coefficients G3, F3, Az, B3, C3, and D3 of the large-k expansion of Pp3 given by Eq. (25),
which is the most complicated part.
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1. Low-energy part
In order to derive contributions coming from the low photon momenta, we first make a large-k expansion of the propagator
1/(E — H — k) in Eq. (22). In the obtained expression, we then make a small-k expansion and keep the k? contribution.
Using the angular average identity in d dimensions (with k = k/k)

AU nn o aias 1 . o o
— K"k (8 — k'K ) = ————[(d + 1) 8Y8™" — 56" — 88, Cl
/471 ( ) d(d+2)[( +1) ] (CI)
we get
3 AU i pipin s (i iR Gy Ui ngii i J\pd
Gy=—3 > / = (87 — k'k7) 8, ply e e h>p,§)=g(pl(zslﬂ—rrf)pé), (C2)

a,b=1,2

where the symbol §;, stands for performing a small-k expansion and taking the coefficient at the k? term.
Analogously, the next coefficient F3 is obtained as

3 ko .. A i _ilF iR 1
Fs=3 ) /_(‘3”—’<”<’>8kz<p;e W —E)ypl ) = (E-V - =), (C3)
2a,b=1,2 am 5r
Furthermore,
3 A% i pigie (i ik i iR
Az=—> /T(Sj—kkj)8k2<pae Yo (H — EY py ')
a,b=1.2 T
1 AF P2 =20 PG -F) 2 4 ) . - ) 5
=_ (72 ——= —=—(E=-V)" -6 . 6
10< riirg r2 5( ) (pl p2) + pl P2
j(Zri ik .j ij ok Jkoiy ok zZr 7 3
+ | P 33 B8 r! +387r" —26 r)p2+2r—3~;—2n26*(r1)+(1<—>2) . (C4)
1 1

The low-energy part of the coefficient D3 is the most complicated term and thus will be discussed in some detail. The starting
expression is

3 dQ% . i S Sl
L i i / i _—ikr, 3 ik-ri
D3:§ Z /ﬂ(Sf—kkJ)(Skz(pae (H — E) pj "), (C5)
ab=1.2
It is convenient to split the above expression into two parts, with a = b and a # b. The first part can be evaluated with help of
the identity
e f(p)et = f(p+ ). (C6)
We obtain
pL =3 > / DU si iR, (Pl (H — E + pa -k +K2/2)° pi) (C7)
3a 2 = 47 k2 \Fa a al

After straightforward but tedious manipulations that involve expanding the matrix element in small k£ and retaining the coefficient
in front of k% and using identities

z z? Zr -7 1 Zr - F 2 i 3rird — 8ip?
[ [ 2] (5] - [ 2] - et

1 rfr3 ’ rir3

i ; i i z2 3 Z?l ¥ 1 1 . 3pipd — §iiy2 1 . . . .
i i J J i i J J i
pl[pl,[V,pl]]pl—[Fl—E s + gt PP ———+5nlr.[V.r]lp

zZ 1 3

- <E+——-—&)4nza<3>(rl), (C8)
r,r 2
as well as Eq. (A9), we arrive at
3/7 1 1 . .3ripd —8ly? 1 52Zr-F 4 _ 77 8 72
L __ i - 3) - > >

= (-4 —PP " 4 54nZs e Ty P § ; N /4
3a 2<6r4 12 T I =R R L Al

4 ,7* [28 z 1 p} ,( 8 206 1. .
St | S (E+ 2 -2+ 22— = = =2 ) |7 Z28D(r) — — P 4w 8O 1< 2)). (C9
*3”%,2*[15( o SB35 ) [FEA 0 - g a0 B+ (e D) (©)
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The second term in Eq. (C5) with a # b is evaluated as

ds o R
Dy, = 5/ LS — Iy sp(ple ™1 (H — EY p) &* ) 4+ (1 - 2)

3 [dQ / i ik . 3
e Y | P B N A VR | PRI i

The individual terms 7; are calculated as follows:

1= [ 6 = RSl e VLV V. phe ) + (2 =0
- 2 . .7 >
T :f@((w —/Gfiéf)s,iz<[[pi e kn vy, [v, [% P elk"zm>+(1 <2)
(o). r 2
15 r23 o]’
d . PO . =
Ty =/ﬁ(5'1 —k‘k’)8/'<2<[|:l?'| e ik, 1;1} [V.[V. e ”‘”]]]>+(1 <2)=0
.. 2 2 -
O €T (T LN

4 (2 4|2z §i rfrl’ rird +3 zZr 7 1 L 4w z890) + (1 2
=—|= 3Ll — L — T 7 PN ,
15\ r4 r ) o3 3n !
1

dS% i pipi i s DT P: i i
T5=/E(8/—kkf)8,’cz<|:pe k‘,?, Vv, Tz,péekz +(1+2)

16 _ 3) . P'PJ [8Y rird 4 8t rird .
= — 2 Pr sV p+ R Bl R PR

15

where p' = 1(p} — p}).

s o 22
B N

_ 4 =4 8(3)()q+2P"Pj 8t 3r'rj L3 8 8” 3rirj j
T s PP T e 0 157 s )P

d2 ain s Dt Lo
/_k(stj k’k])5112<[[l’l1 e—zk.rl7 %] |:p1 ;’p27 [V, pé elkr ]:|j|>+(1 < 2)

8 5 478D () 5+ 2PIPI (81 3rirj N 16 (81 Srirj i
—— p4ns(r — —3— — — —3— ,
45 ” P 5 77 5P\ T )P

17

and

4o o 2 24 .2 2
Ty :/ (8 - k’k’)3’2<[[lﬂie_’k"‘,%], [%[% pée”‘“ﬂpw <2)=0

Substituting the terms 7;, into Eq. (C10), we obtain the result for the low-energy part of the coefficient D3,

1 . /89 ripd 23 37 1 [ 8 22 4 22
Dy =3(-p' (= -3—|p —=p4ns¥)p+ = —+=1 - S(E-V)+ = 3P
3 73 90 7z

s 304 2 2
1 61Zr -7 4 ,Z? 4 8t Fird\ riri
— 5 4rZs® el A Y (AN VAT Rl
R TR i = R T T Wl =
7 z p\ 231 2 103
—(E+= -2 ) - Z=— 7=+ = |4nZ2 9D 1< 2)t).
+[15( T 2) 457, (3 + 90)} mZ8Tr) (e )}>
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2. High-energy part

The coefficient B3 comes from the corresponding forward-scattering two-photon exchange diagram,

3kf aQ —4r Za P2\, (=2) o i
f e ¢(0)/(2ﬂ)3[ p? } <?>p Grirtael TR

=2 ﬁ Z2 (47 [83(r1) + 82 (1)) . (C20)
Similarly, the analogous forward-scattering three-photon exchange diagram gives rise to the coefficient C3,
Cy= =27 (4n[8°(r) +8°(r)]) , (€21
and the high-energy part of the coefficient D3,
73 2 4
Dy =72 (4x[8L(r1) + 8P )] — =+ = + zIn2). (C22)
45 3e¢ 3
The total coefficient Dj is obtained as a sum of the low-energy part DI and the high-energy part D¥. Using the identity,
; §i 3rirj j 2 _,5(3)( Y 1 n 1 (ZF Zrs 7 (€23)
—_ [ p— “r —_— — PR — =,
A= s )P 3 P P=a5a™y r r3 r3
we express the final result for Dj as
1 - 3=, 16 s rirIN i 3 3 Zr ¥
Diy=—(-3p4nsP ) p+—=+|2Z| 5= —-3—|— 20X, + = p14nZ () p1 — 14— —
5 ré r ) 4 rdoor

7E. 7Z1 231 7 8372
(— 2 _ +1022 1n2> A7 Z 8P+ (1 - 2)}>. (C24)

The operator p; 4 Z 8 (r)) p; requires some clarifications, because its expectation value is conditionally converging. It should
be calculated with the implicit projection into the L = 0 state between p; operators, and this requirement comes from the
dimensional regularization.

APPENDIX D: WAVE FUNCTIONS IN CARTESIAN COORDINATES

Following Schwartz [28], we use the following representations of the wave functions, with F' = F(ry, 1y, r), G = G(ry, 12, 1),
and the upper sign corresponding to the singlet function and the lower sign to the triplet function:

p(138)=F+ (1 © 2), (D1)
d(PP°) =F F+(1 < 2), (D2)
H(P) =F xHF+(1<2), (D3)
¢ (13D = (€“rirbr] + eI rirhr)F £ (1 < 2), (D4)
ijc1,3 lj 2 ijzo7
¢ (D) = (rir] — L8Urd)F + L(rird +7ir] = 289 F - F2)G £ (1 < 2), (D5)
and
Pk (13F0) = [rirljr{‘ — érlz(ﬁ + §kp! + 87k ‘)]F + 3 [r r1 r2 +r r2r1 +r2r1 r1 —z 8”(1’1;’2 + 27 - ?zr{‘)
— $8%(rir] 427 - Far]) — 18 (s + 27 - Bar) ]G £ (1 2). (D6)
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