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The spin-averaged effective Hamiltonian of orders mα6 and mα6(m/M ) for a one-electron two-center
Coulombic system is derived by using the theory of nonrelativistic quantum electrodynamics (NRQED), without
assuming the Born-Oppenheimer approximation. The separated singularities from the first- and second-order
perturbations are shown to be canceled out analytically for both order mα6 and mα6(m/M ) corrections
by regularizing the effective Hamiltonian. Our results can be used to perform high-precision spectroscopic
calculations of hydrogen molecular ions.
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I. INTRODUCTION

Atomic systems can be precisely described by bound-
state quantum electrodynamic (QED) theories, such as the
quasipotential method for light atomic systems [1] and the
two-time Green’s function method for medium and heavy
atomic systems [2]. Among various forms of bound-state
QED theories, the two-body relativistically covariant Bethe-
Salpeter equation is considered to be exact, but its kernel
has no closed expression even for a simple system such as
positronium [3]. For a light system consisting of more than
two charged particles, the leading-order relativistic correc-
tions to an energy level can be calculated using the many-
electron Dirac-Coulomb (DC) Hamiltonian, together with the
electron-electron Breit operator [4]. The radiative corrections
from high energy interactions can be treated using scattering
theory. In 1986, a different approach, called nonrelativistic
QED (NRQED), was suggested by Caswell and Lepage [5]
to expand a bound-state energy level of a light atom in powers
of the fine-structure constant α. In 2005, using NRQED theory
a complete set of contributions up to order mα6 was derived
by Pachucki [6,7] in the nonrecoil limit. The order mα6

recoil corrections were obtained and calculated only recently
for atomic helium [8,9]. The validity of these calculations
has been precisely tested through comparisons with high-
precision experimental measurements [10–13].

For a molecular system, the transition frequency between
two rovibrational states is much more sensitive to the nucleus
to electron mass ratio than for an atomic system, due to the
nature of rovibrational structure of its energy levels. It was
recently demonstrated that a hydrogen molecular ion can be
used not only for testing QED theory, but also holds the
potential for deriving the proton (deuteron) to electron mass
ratio [14], as well as for determining the proton (deuteron)
charge radius [15], provided both theory and experiment can
reach a sufficiently high precision. The current status of theory
for hydrogen molecular ions is that the relative theoretical un-
certainty of fundamental transitions was reduced to the level

of 7 × 10−12 by taking into account the nonrecoil and recoil
corrections of orders mα6 and mα7, and the contributions of
order mα8 [16]. The whole procedure for achieving such a
level of precision can be divided into two steps. The first step
is three-body calculations of nonrelativistic energies [17] and
the leading relativistic and QED corrections of orders mα4 and
mα5 [18–23]. The three-body Schrödinger equation can be
solved variationally [24] in Hylleraas-type coordinates, which
allows nonrelativistic energies of the hydrogen molecular ions
to reach a precision of 10−15 [25,26] for a wide range of
rovibrational states and up to 10−30 or lower [17,27] for some
particular low-lying rovibrational states. The order mα4 con-
tribution is described by the Breit-Pauli Hamiltonian [28] and
the leading nuclear recoil effects are well understood [29,30].
For the order mα5 contribution [21,31], it has been derived
from the NRQED in a way similar to what has been done for
the atomic helium [32,33]. All these contributions have been
calculated numerically to sufficiently high precision nonadia-
batically by treating three constituent charged particles on the
same footing.

The second step of the procedure is to derive higher-
order relativistic and QED corrections of orders mα6, mα7,
and mα8. Korobov and coworkers have performed these
calculations with the adiabatic approximation applied to the
nonrelativistic wave functions [16,34,35], where the effective
Hamiltonian is built for the interaction of an electron with
the external field produced by the two nuclei [34] and the
calculations are carried out in the framework of the Born-
Oppenheimer (BO) approximation together with the adiabatic
corrections [36]. This way of treating higher-order corrections
is basically equivalent to a problem of an electron in an exter-
nal field [3]. Moreover, the nuclear recoil effects are handled
within the realm of two-body bound states. As an example,
the relativistic recoil contribution of order m(Zα)6(m/M ) is
taken from Ref. [37] and the radiative recoil contribution from
Refs. [38,39]. It is, therefore, desirable to derive the effective
Hamiltonian of order mα6, including the recoil terms, by
treating all three constituent charged particles of a hydrogen
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FIG. 1. The coordinates for a one-electron two-center system,
where O is the origin of the laboratory frame, the electron is denoted
as e, and the two nuclei are denoted as particle 1 and 2.

molecular ion on the same footing without explicitly resorting
to the Born-Oppenheimer approximation.

The aim of this work is to derive the spin-averaged or-
der mα6 effective Hamiltonian for one-electron molecular
systems such as hydrogen molecular ions. We will give a
detailed description about how to analytically cancel out the
singularities in the first- and second-order corrections in order
to obtain finite expressions. The remaining part of this paper
is organized as follows. Section II introduces the NRQED
used to calculate the energy levels. Section III presents the
derivation of the spin-averaged effective Hamiltonian H (6) for
the mα6-order corrections. The divergent terms of mα6-order
corrections are separated and then canceled out in Sec. IV.
Section V gives a conclusion and discussion.

II. NRQED APPROACH

In this section, natural units are used where c = h̄ = 1 and
α = e2/(4π ). In NRQED theory, an energy level of a light
system can be expanded in powers of α:

E(α) = E(2) + E(4) + E(5) + E(6) + E(7) + O(α8), (1)

where E(n) is a contribution of order mαn and may include
nuclear recoil terms. Each term E(n) can be obtained from the
expectation value of the corresponding effective Hamiltonian.

In Eq. (1), E(2) ≡ E0 is the eigenvalue of the nonrelativis-
tic Hamiltonian H (2) ≡ H0 with the associated eigenstate φ

satisfying H0φ = E0φ, where

H0 = 1

2me

p2
e + 1

2m1
p2

1 + 1

2m2
p2

2 +α

(
z1ze

r1
+ z2ze

r2
+ z1z2

r12

)
.

(2)

The Hamiltonian H0 is expressed in a way of explicitly
embodying the kinetic energy operators for each particle in
the center-of-mass frame with �p1 + �p2 + �pe = 0, as shown
in Fig. 1, where the adopted notations will be employed
throughout this paper. The relative vector positions between
particles are

�r1 = �re − �R1, �r2 = �re − �R2, �r12 = �R2 − �R1. (3)

For the sake of convenience, we denote the individual compo-
nents of Coulomb interactions as

V12 = α
z1z2

r12
, Va = α

zaze

ra

, a = 1, 2, (4)

and the total Coulomb potential is thus

V = V1 + V2 + V12. (5)

The term E(4) in Eq. (1) is the expectation value of the
Breit-Pauli Hamiltonian H (4) [18,19,40], which represents all
mα4-order interactions between the constituent particles. It is
noted that the second-order perturbation of H (4) contributes
to the spin-averaged mα6-order correction. Since we are in-
terested in the nonrecoil and leading-order recoil corrections
of H (6), we only consider the required operators here:

H (4) = HB + HR + HS, (6)

where

HB = − �p4
e

8m3
e

− πα

2m2
e

∑
a

zazeδ(�ra ), (7)

HR =
∑

a

− zazeα

mema

pi
e

[
1

2ra

(
δij + ri

ar
j
a

r2
a

)]
pj

a, (8)

HS =
∑

a

−zazeα

[
1 + 2ae

2m2
e

1

r3
a

�ra × �pe

− 1 + ae

mema

1

r3
a

�ra × �pa

]
· �se, (9)

a = 1, 2 runs over the two nuclei, and ae is anomalous mag-
netic moment of electron. HB comes from the relativistic
correction of the bound electron, HR is so-called the orbit-
orbit interaction between the electron and nuclei, and HS

stands for the interaction between the electron spin and the
magnetic field generated by the motions of all three particles.
The leading radiative correction E(5) [22,41] is not needed in
the present investigation. The next term E(6) in Eq. (1) is the
subject of this work, which can be expressed as a sum of two
terms,

E(6) = 〈φ|H (4)Q(E0 − H0)−1QH (4)|φ〉 + 〈φ|H (6)|φ〉,
(10)

where Q = 1 − |φ〉〈φ| is the projection operator for the state
of interest. The first term, denoted as E

(6)
2nd, is the second-order

contribution from H (4), and H (6) in the second term is the
spin-averaged effective Hamiltonian of order mα6. It has been
pointed out that each term of E(6) has its own singular part
and all the singular parts from these two terms should yield a
finite result when added [6,36].

In the rest of this section, a brief introduction to the
NRQED theory will be presented. First, the nonrelativistic
expansion of the Dirac Hamiltonian will be obtained by us-
ing the Foldy-Wouthuysen (FW) transformation. Second, the
many-body Lagrangian density will be built. The interactions
corresponding to the exchanges of photons between particles
will then be carried out using Feynman rules based on the
Lagrangian obtained from the second step. Finally, combining
all necessary interactions will result in the required effective
Hamiltonian.

We start with the Dirac Hamiltonian in an external field,

H = �α · �π + βme + eA0, (11)
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where �π = �pe − e �A. The FW transformation is defined as
[42]

HFW = eiS (H − i∂t )e
−iS, (12)

where the FW operator S is chosen to decouple the upper and
lower components of the Dirac wave function up to a specified
order in the 1/m expansion. According to Refs. [6,7], after
performing the FW transformation, the nonrelativistic expan-
sion of the Dirac Hamiltonian has the following form:

HFW = eA0+ 1

2me

(π2−e�σe · �B )− 1

8m3
e

(π4−{e�σe · �B, π2})

− 1

8m2
e

[e �∇e · �E + e�σe · ( �E × �π − �π × �E)]

− e

16m3
e

{ �pe, ∂t
�E} + 3e

32m4
e

{ �E × �pe · �σe, p
2
e

}

+ 1

128m4
e

[
p2

e ,
[
p2

e , eA
0]] − 3

64m4
e

{
p2

e ,∇2
e (eA0)

}

+ p6
e

16m5
e

, (13)

where the first term eA0 is just the potential V defined in
Eq. (5), and

�B = �∇e × �A, (14)

�E = −�∇eA
0 − ∂t

�A. (15)

It is noted that the expression HFW depends on the choice
of the FW operator S, which means that HFW is not unique.
The expression of HFW in Eq. (13) differs from the one used
in Refs. [8,9] since their transformation has some additional
operators. However, all forms of HFW should be equivalent
when taking matrix elements with respect to an eigenstate of
the Schrödinger equation.

Since we only consider the leading-order recoil terms, the
nuclei can be treated nonrelativistically, and the correspond-
ing Hamiltonian for nucleus a can thus be written in the
form

Ha = 1

2ma

( �pa + zae �A)2. (16)

With this, we can now construct the following effective non-
relativistic QED Lagrangian:

L = φ†
e (i∂t − HFW)φe +

∑
a=1,2

φ†
a (i∂t − Ha )φa + LEM, (17)

where LEM is the Lagrangian for the electromagnetic field.
Then the Feynman rules for this Lagrangian can be used to
construct the effective Hamiltonian H (6); see Refs. [6,7] for
details. The photon propagator in the Coulomb gauge is used:

Gμν (k) =
{− 1

�k2 , μ = ν = 0,
−1

k2
0−�k2+iε

(
δij − kikj

�k2

)
, μ = i, ν = j.

(18)

Let us consider a typical interaction of exchanging one photon
Gμν (k) between two particles, for example the electron and

nucleus a:

〈φ|�(E0)|φ〉 = zazee
2
∫

d4k

(2π )4i
Gμν (k)

{
〈φ|jμ

e (k)ei�k·�re

× 1

E0 − H0 − k0 + iε
j ν
a (−k)e−i�k· �Ra |φ〉

+ (e ↔ a)

}
, (19)

where the operator �(E0) is the irreducible contribution due
to the photon exchange, and j

μ
e and jν

a are, respectively, the
electromagnetic current operators for the electron and nucleus
a. Most calculations are carried out in the nonretardation ap-
proximation where k0 = 0 is applied in the photon propagator
and the current operators. Then the k0 integral is performed
after the symmetrization k0 ↔ −k0,

1

2

∫
dk0

2πi

[
1

−�E − k0 + iε
+ 1

−�E + k0 + iε

]
= −1

2
,

(20)

which leads to

〈φ|�(E0)|φ〉 = − zazee
2
∫

d3k

(2π )3
Gμν (k0 = 0, �k)〈φ|jμ

e (�k)

× ei�k·(�ra− �Ra )jν
a (−�k)|φ〉. (21)

The retardation corrections are considered separately.
For the electron, its current operator can be extracted from

HFW and its scalar and vector parts j 0 and �j are respectively
(see Eqs. (33) and (34) of Ref. [6])

j 0
e (�k) = 1 + i

4m2
e

�σe · �k × �pe − 1

8m2
e

�k2 + · · · , (22)

�je(�k) = �pe

me

+ i

2me

�σe × �k. (23)

On the other hand, the scalar and vector parts of the current
operator for the nucleus a are respectively

j 0
a (�k) = 1 + O

(
1

m2
a

)
, (24)

�ja (�k) = �pa

ma

+ i

2ma

�σa × �k. (25)

The �k integral in Eq. (21) is the Fourier transform of the
Coulomb gauge photon propagator in the nonretardation ap-
proximation

Gμν (�r ) =
∫

d3k

(2π )3
Gμν (�k)

= 1

4π

{− 1
r
, μ = ν = 0,

1
2r

(
δij + ri rj

�r2

)
, μ = i, ν = j.

(26)

III. mα6-ORDER SPIN-AVERAGED EFFECTIVE
HAMILTONIAN

In this section the spin-averaged effective Hamiltonian
H (6) will be derived, including the spin-independent operators
and scalar contributions from the electron spin-spin inter-
actions. To this end we will follow Refs. [6–8]. Since we
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investigate the interactions involving the nuclei, the effective
Hamiltonian contains not only the nonrecoil terms but also the
first-order recoil ones. For recoil terms higher than the first
order, they are small enough to be ignored in the following
derivation.

Before deriving the effective Hamiltonian, let us introduce
some convenient notations. We employ the shorthand notation

〈X〉 = 〈φ|X|φ〉. (27)

The individual vectors for static electric fields are denoted as

e�ε12 = αz1z2
�r12

r3
12

, e�εa = αzaze

�ra

r3
a

, a = 1, 2. (28)

The static electric fields felt by the electron and two nuclei are
respectively

e �Ee = e(�ε1 + �ε2), (29)

e �Ea = −e[�ε1 + (−1)a+1�ε12], a = 1, 2. (30)

The vector potential at the position of electron produced by
the two nuclei is

eAi
e = −

∑
a

zaα

2ra

(
δij + ri

ar
j
a

r2
a

)
p

j
a

ma

, (31)

and the vector potential at the position of nucleus a produced
by the electron and the other nucleus b is

eAi
a = zeα

ra

(
δij + ri

ar
j
a

r2
a

)
p

j
e

me

+ zeα

2me

(�σe × �ra )i

r3
a

− zbα

rab

(
δij + ri

abr
j

ab

r2
ab

)
p

j

b

mb

. (32)

The spin-averaged H (6) can be expressed as a sum of
various contributions:

H (6) =
8∑

i=1

δHi. (33)

In the above, δH1 is the kinetic energy correction of order
mα6, which is the last term of HFW in Eq. (13):

δH1 = p6
e

16m5
e

. (34)

δH2 is the total contribution from the remaining last three
terms of Eq. (13). Since we consider the spin-averaged op-
erators, the term involving �σe can thus be ignored. Then the
correction δH2 includes the Coulomb interactions between the
electron and nuclei:

δH2 = 1

128m4
e

[
p2

e ,
[
p2

e , V
]]+ 3α

64m4
e

{
p2

e , 4π
∑

a

zazeδ(�ra )

}
.

(35)

δH3 is the correction from the fifth term in HFW of Eq. (13):

− e

16m3
e

{ �pe, ∂t
�E}. (36)

Assuming that the electron interacts via this term and the
nucleus via the nonrelativistic coupling eA0, we can write

down this correction as an integral of one-photon exchange
according to Eq. (19):

δE3 =
∑

a

−zazee
2
∫

d4k

(2π )4i

1
�k2

1

16m3
e

{
〈φ|{ �pe, �kei�k·re}

× k0

E0 − H0 − k0 + iε
e−i�k· �Ra |φ〉

− 〈φ|e−i�k· �Ra
k0

E0 − H0 − k0 + iε
{ �pe, �kei�k·re }|φ〉

}
.

(37)

Performing the k0 integral yields

δE3 =
∑

a

−zazee
2

2

∫
d3k

(2π )3

1
�k2

1

16m3
e

{〈φ|{ �pe, �kei�k·�re}

× (H0 − E0)e−i�k· �Ra |φ〉
+ 〈φ|e−i�k· �Ra (H0 − E0){ �pe, �kei�k·�re}|φ〉}. (38)

By using the commutation relation of (H0 − E0)e−i�k· �Raφ =
[p2

a/(2ma ), e−i�k· �Ra ]φ, one can obtain the effective operator for
this correction,

δH3 =
∑

a

− 1

32m3
ema

[
p2

a,
[
p2

e , Va

]]
. (39)

δH4 is the relativistic correction to the transverse photon
exchange between the electron and one of the two nuclei. The
nucleus is coupled to �A by the nonrelativistic term

−zae

ma

�pa · �A − zae

2ma

�σa · �B (40)

and the electron by the relativistic correction from the third
term of HFW,

− 1

8m3
e

(
π4−{

e�σe · �B,p2
e

}) →− zee

8m3
e

{
p2

e , 2 �pe · �Ae + �σe · �B}
.

(41)

In the non-retardation approximation, the �Ae field of the
electron can be replaced by the static field �Ae produced by
the two nuclei. Thus after discarding the pure spin-dependent
terms, one obtains

δH4 = − zee

8m3
e

{
p2

e , 2 �pe · �Ae

} = − 1

8m2
e

{
p2

e , 2HR

}
, (42)

where HR = ze �pe · e �Ae is the transverse photon exchange
correction of order mα4 that is part of the Breit-Pauli Hamil-
tonian H (4), as shown in Eq. (8).

δH5 comes from the coupling of the second term in HFW,

e2

2me

�A2. (43)

Again, in the nonretardation approximation the �Aa field of
nucleus a is replaced by the static fields �Aa produced by other
two particles. Therefore, δH5 has the following form:

δH5 = e2

2me

�A2
e +

∑
a=1,2

z2
ae

2

2ma

�A2
a. (44)
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Examining the expressions of �Ae and �Aa in Eqs. (31) and (32), δH5 contains some operators which contribute to the second-order
recoil correction and can thus be ignored in this work. The remaining δH5 can thus be recast as

δH5 =
∑

a

z2
a

2ma

{[
zeα

2ra

(
δij + ri

ar
j
a

r2
a

)
p

j
e

me

][
zeα

2ra

(
δil + ri

ar
l
a

r2
a

)
pl

e

me

]
+ z2

eα
2

4m2
e

�σe × �ra · �σe × �ra

r6
a

}
. (45)

δH6 comes from the nonrelativistic one-transverse-photon exchange between the electron and the nuclei. One can write down
the corresponding integral for this interaction from Eq. (19) and perform the k0 integration to obtain

δE6 = zazee
2
∫

d3k

(2π )32k

(
δij − kikj

k2

)
〈φ|j i

e (k)ei�k·�re
1

E0 − H0 − k
jj
a (−k)e−i�k· �Ra |φ〉 + (e ↔ a), (46)

where k = |�k|. It can be further expanded by using the following expansion:

1

E0 − H0 − k
= −1

k
+ H0 − E0

k2
− (H0 − E0)2

k3
+ · · · . (47)

The first term gives rise to the Breit-Pauli Hamiltonian, the second term to E(5), and the third term to δE6. It can further be split
into three parts of non-spin, single-spin, and double-spin terms. In this work, we will only consider the non-spin term,

δE6 =
∑
a=1,2

−zazee
2
∫

d3k

(2π )32k4

(
δij − kikj

k2

)
〈φ| �pe

me

{
ei�k·�re (H0 − E0)2e−i�k·�ra − (E0 − H0)2

} �pa

ma

|φ〉. (48)

Using the commutator identity

ei�k·�re (H0 − E0)2e−i�k· �Ra − (E0 − H0)2 = (H0 − E0)(ei�k·�ra − 1)(E0 − E0) + (H0 − E0)

[
p2

a

2ma

, ei�k·�ra − 1

]

+
[
ei�k·�ra − 1,

p2
e

2me

]
(H0 − E0) +

[
p2

a

2ma

,

[
ei�k·�ra − 1,

p2
e

2me

]]
, (49)

the effective Hamiltonian δH6 can be extracted from δE6

δH6 =
∑

a

− α

mema

{[
pi

e, V
]
X ij (ra )

[
V, pj

a

] + pi
e

[
X ij (ra ),

p2
e

2me

][
V, pj

a

]}
, (50)

where all the second-order recoil terms are ignored, and

X ij (r ) =
∫

d3k
4π

k4

(
δij − kikj

k2

)
(ei�k·�r − 1) = 1

8r
[rirj − 3δij r2]. (51)

The next term, δH7, is the mα6-order nonrecoil radiative correction that can be treated approximately as a bound electron in an
external field instead of the whole Coulomb three-body framework. It can thus be obtained from the bound-state hydrogen theory
using the external field approximation [3]. The nonrecoil radiative correction of order mα6 can be expressed in the form [34]

δH7 = α3 4π

m2
e

∑
a

{(
139

128
− ln 2

2
+ 5

192

)
z2
aδ(�ra ) −

(
1

4π2

)[
2179

648
+ 10

27
π2 − 3

2
π2 ln 2 + 9

5
ζ (3)

]
zaδ(�ra )

}
. (52)

δH8 is the leading radiative recoil correction of order mα6 due to the interactions between the electron and the nuclei. Again,
these interactions can be obtained from the bound-state hydrogen theory and δH8 can thus be written as

δH8 = δHA
8 + δHB

8 + δHC
8 , (53)

where the first term comes from the pure recoil correction due to three-photon exchange [43],

δHA
8 =

∑
a

(zaα)3 me

ma

(
ln 2 − 7

8

)
4πδ(�ra ), (54)

the second term comes from the forward-scattering radiative recoil diagrams and has the form (see Fig. 1 and Eq. (8) of Ref. [38])

δHB
8 =

∑
a

α(zaα)2 me

ma

[
3

4
+ 6

π2
ζ (3) − 14

π2
− 2 ln 2

]
πδ(�ra ), (55)

and the last contribution comes from the vacuum polarization-recoil correction (see Fig. 2 and Eq. (72) of Ref. [44])

δHC
8 =

∑
a

α(zaα)2 me

ma

(
2

9
π2 − 70

27

)
1

π
δ(�ra ). (56)
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IV. CANCELLATION OF SINGULARITIES

As has been demonstrated before [6,36], both the first-order and second-order contributions of mα6-order correction are
individually divergent; the divergence, however, cancels out analytically when summing up all the divergent terms.

A. The first-order correction

In this subsection, we investigate the correction from the first-order terms in Eq. (10). Using Eq. (33), the matrix elements
of the effective Hamiltonian are denoted as δEi = 〈δHi〉 with i = 1–8, see Eqs. (57)–(65). Since the procedure of separating
the singularity is very tedious, we move the derivation to Appendix A. Here we only present the final results (in atomic units
e = me = h̄ = 1)

E
(6)
1st = α4

8∑
i=1

δEi, (57)

where

δE1 = 1

16

{
E0

[
2
〈
p4

e

〉 − 4
〈
(V1 + V2)p2

e

〉 + 16〈V12V 〉] − 8E2
0〈V12〉 + 8�ε1�ε2 + 4

〈
(2V1V2 + V1V12 + V2V12)p2

e

〉

+
∑
a 	=b

4

(
1 − 2

ma

)〈
ε2
a

〉 − 8

(
1 − 3

ma

)[〈
V 3

a

〉 + 〈
V 2

a (Vb + V12)
〉 − E0

〈
V 2

a

〉]

+ 4

ma

[〈
ε2

12

〉 + 3(−1)a〈�εa�ε12〉 + E0
〈
(2V + V1 + V2)p2

a

〉 + 2E0
〈
V 2

12p
2
a

〉 − E2
0

〈
p2

a

〉
− 3

〈
V 2

a

(
p2

a − p2
e

)〉 − 〈(
4V1V2 + 5V1V12 + 5V2V12 + 3V 2

b + 3V 2
12

)
p2

a

〉]}
, (58)

δE2 = 1

128

∑
b 	=a

{
− 4

(
1 − 1

ma

)〈
ε2
a

〉 − 4〈�εa�εb〉 − 4

ma

(−1)a〈�εa�ε12)〉 + 6

ma

〈
V 2

a

(
p2

a − p2
e

)〉 + 2

ma

〈
VbVp2

a

〉}

+ 3π

8

∑
b 	=a

zaze

{
2

(
1 − 1

ma

)
[E0〈δ(�ra )〉 − 〈(Vb + V12)δ(�ra )〉 − 〈Vaδ(�ra )〉] − 1

ma

〈〈
δ(�ra )

(
p2

a − p2
e

)〉 − 1

mb

〈
δ(�ra )p2

b

〉}
,

(59)

δE3 = 1

8

∑
b 	=a

1

ma

{〈
ε2
a

〉 + (−1)a+1〈�εa�ε12〉
}
, (60)

δE4 = − E0〈HR〉 −
∑

a

1

2ma

{〈 �peVaV �pa

〉 + 〈
( �pe · �ra )

VaV

r2
a

(�ra · �pa )

〉
+ 〈

ε2
a

〉〉}
, (61)

δE5 =
∑

a

1

8ma

{〈 �peV
2
a �pe

〉 + 3

〈
( �pe · �ra )

V 2
a

r2
a

(�ra · �pe )

〉
+ 2

〈
ε2
a

〉〉}
, (62)

δE6 =
∑

a

− 1

8ma

{
7

〈
( �pe · �ra )

V 2
a

r2
a

(�ra · �pe )

〉
− 3

〈 �peV
2
a �pe

〉}
, (63)

δE7 = 4π
∑

a

{
0.7654055763 . . . z2

a〈δ(�ra )〉 + 0.02735334841 . . . za〈δ(�ra )〉}, (64)

δE8 = −4π
∑

a

1

ma

{
0.1818528194 . . . z3

a〈δ(�ra )〉 + 0.4615527501 . . . z2
a〈δ(�ra )〉}. (65)

Here the convention �v1�v2 ≡ �v1 · �v2 is used for some terms and
the common factor α4 has been pulled out from each δEi .
In the above expressions, all the singularities are absorbed
into the matrix elements 〈ε2

a〉 and 〈V 3
a 〉. Let us denote Si be

the singular part of δEi , which can be written as

S1 = 1

4

[(
1 − 2

ma

)〈
ε2
a

〉
S

− 2

(
1 − 3

ma

)〈
V 3

a

〉
S

]
, (66)

S2 = − 1

32

[
7

(
1 − 1

ma

)〈
ε2
a

〉
S

− 12

(
1 − 2

ma

〈
V 3

a

〉
S

)]
, (67)

S3 = 1

8ma

〈
ε2
a

〉
S
, (68)

S4 = − 1

2ma

〈
ε2
a

〉
S
, (69)

S5 = 1

4ma

〈
ε2
a

〉
S
, (70)

S6 = S7 = S8 = 0. (71)
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Here the subscript S stands for the singular part of the corre-
sponding matrix element. Summing up all the singular parts,
one finally isolates the total singularity of 〈H (6)〉:

S1st =
∑

a

1

32

[(
1 − 13

ma

)〈
ε2
a

〉
S

− 4

(
1 − 6

ma

)〈
V 3

a

〉
S

]
.

(72)

B. The second-order correction of the Breit-Pauli Hamiltonian

The second-order correction E
(6)
2nd of the Breit-Pauli Hamil-

tonian Eqs. (6) and (10) can be divided into three terms:

E
(6)
2nd = α4[EB + ER + ES], (73)

EB = 〈HBQ(E0 − H0)−1QHB〉, (74)

ER =〈HBQ(E0−H0)−1QHR〉+〈HRQ(E0 − H0)−1QHB〉,
(75)

ES = 〈HSQ(E0 − H0)−1QHS〉, (76)

where HB , HR , and HS are defined in Eqs. (7)–(9) and
expressed in a.u. while the common factor α2 has been pulled
out.

The singularities of the second-order terms are mainly
caused by the Dirac delta functions appeared in the Breit-Pauli
Hamiltonian HB . Consider the Hamiltonian HB acting on the
eigenstate φ:

HBφ ∼
∑

a

π

(
1

2
− 1

ma

)
zazeδ(�ra )φ. (77)

Usually, a transformation for HB is used to separate singular-
ities:

H ′
B = HB − (E0 − H0)U − U (E0 − H0), (78)

where

U = λ1V1 + λ2V2. (79)

The parameters λ1 and λ2 are chosen below in such a way that
the Dirac delta functions can be eliminated from H ′

Bφ:

λa = −1

4

[
1 − 3

ma

]
+ O

(
1

m2
a

)
, a = 1, 2. (80)

From Eq. (78), the second-order correction EB is thus trans-
formed to

EB = 〈H ′
BQ(E0 − H0)−1QH ′

B〉 + 〈{HB,U}〉 − 2〈U 〉〈HB〉
− 〈U (E0 − H0)U 〉. (81)

The divergent matrix element 〈{HB,U}〉 above can be ex-
pressed as follows:

〈{HB,U}〉 =
∑
a 	=b

−λa

8

[〈{
p4

e , Va

}〉 + 8π〈Va (zazeδ(�ra )

+ zbzeδ(�rb ))〉], (82)

where the divergent matrix elements 4πzaze〈Vaδ(�ra )〉 and
〈{p4

e , Va}〉 can be found in Eqs. (A10) and (A15) respectively.

Thus 〈{HB,U}〉 becomes

〈{HB,U}〉 = − 1

8

∑
a 	=b

λa

{
4E0

[〈
Vap

2
e

〉 − 1

ma

〈
Vap

2
a

〉

− 1

mb

〈
Vap

2
b

〉] + 4

mb

〈
VaVp2

b

〉 − 4
[〈�εa�εb〉

+ 〈
Va (Vb + V12)p2

e

〉] + 4

ma

[
(−1)a+1〈�εa�ε12〉

+ 〈
V 2

a

(
p2

a − p2
e

)〉 + 〈
Va (Vb + V12)p2

a

〉]
+ 8π [zbze〈Vaδ(�rb )〉 + zaze〈Vaδ(�ra )〉]

− 4

(
1 − 1

ma

)〈
Vap

2
eVa

〉}
. (83)

The other divergent matrix element 〈U (E0 − H0)U 〉 in EB

can be simplified to

〈U (E0 − H0)U 〉 = −
∑
a 	=b

{
1

2

(
1 + 1

ma

)
λ2

a

〈
ε2
a

〉

+ λaλb〈�εa�εb〉
}
, (84)

where Eqs. (A6)–(A9) have been applied. We can now iden-
tify the singular part of EB as

SB = −
∑

a

1

32

[(
1 − 5

ma

)〈
ε2
a

〉
S

− 4

(
1 − 6

ma

)〈
V 3

a

〉
S

]
.

(85)

We now turn to ER , which can be expanded using the
transformation Eq. (78):

ER = 〈H ′
BQ(E0−H0)−1QHR〉+〈HRQ(E0 − H0)−1QH ′

B〉
+ 〈{HR,U}〉 − 2〈HR〉〈U 〉. (86)

The matrix element 〈{HR,U}〉 can be reduced to

〈{HR,U}〉 = −
∑

a

λa

ma

[〈
ε2
a

〉 − 2(zaze )3〈πδ(�ra )〉]

−
∑

a

1

ma

[
〈 �peVaU �pa〉

+ 〈( �pe · �ra )
VaU

r2
a

(�ra · �pa )〉
]
, (87)

where its singular part is

SR =
∑

a

1

4ma

〈
ε2
a

〉
S
. (88)

As for ES it is convergent. We thus finally obtain the total
singular part of E

(6)
2nd by summing up Eqs. (85) and (88)

S2nd = −
∑

a

1

32

[(
1 − 13

ma

)〈
ε2
a

〉
S

− 4

(
1 − 6

ma

)〈
V 3

a

〉
S

]
.

(89)
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V. DISCUSSION AND CONCLUSION

The spin-averaged effective Hamiltonian H (6) of orders
meα

6 and mα6(m/M ) for a one-electron two-center system
has been obtained nonadiabatically in Eqs. (34), (35), (39),
(42), (45), (50), (52), and (53) by using NRQED theory, where
we have considered not only the nonrecoil contributions but
also the first-order recoil contributions. The first two terms,
Eqs. (34) and (35), are due to the mα6-order relativistic
correction for the electron, which can be taken directly from
HFW. These two terms contain both nonrecoil and recoil
contributions that belong to the mα6-order and mα6(m/M )-
order corrections respectively. The other terms are pure recoil
corrections due to the interactions between the electron and
two nuclei. The nonrecoil effective Hamiltonian used for a
one-electron system [36,45] can be expressed as

H
(6)
1-e = p6

e

16m5
e

+ 5

128

[
p2

e ,
[
p2

e , V
]] + 1

8m3
e

E2
e

+ 3

64m4
e

{
p2

e , 4π
∑

a

zazeδ(�ra )

}
, (90)

which corresponds to our first three effective Hamiltonians

δH1 + δH2 + δH3

= p6
e

16m5
e

+ 1

128

[
p2

e ,
[
p2

e , V
]] −

∑
a

1

32ma

[
p2

a,
[
p2

e , Va

]]

+ 3

64m4
e

{
p2

e , 4π
∑

a

zazeδ(�ra )

}
. (91)

The equivalence between H
(6)
1-e and δH1 + δH2 + δH3 can be

explained by the equation

1

128

〈[
p2

e ,
[
p2

e , V
]]〉 − ∑

a

1

32ma

〈[
p2

a,
[
p2

e , Va

]]〉

= 5

128

〈[
p2

e ,
[
p2

e , V
]]〉 + 1

8

〈
E2

e

〉
, (92)

which comes from the identity〈[
p2

e ,
[
p2

e , V
]]〉 = −4

〈
E2

e

〉 − ∑
a

1

ma

〈[
p2

a,
[
p2

e , Va

]]〉
. (93)

Although some similar operators can be read from Eq. (50)
of Ref. [8], it is not meaningful to compare our one-electron
results with the two-electron formulas derived in the dimen-
sional regularization scheme [8,9]. The obtained effective
Hamiltonian is also valid for a hydrogen-like system that
contains one nucleus, and thus only one pair of electron-
nucleus interaction needs to be considered.

In addition to the effective Hamiltonian H (6) of the
first-order perturbation, the total spin-averaged contribution
requires the second-order perturbation by the Breit-Pauli
Hamiltonian Eq. (6). In Sec. IV, the singularities of the
first- and second-order corrections have been separated as
S1st of Eq. (72) and S2nd of Eq. (89) respectively, while the
remaining effective Hamiltonian is suitable for numerical cal-
culations. Both S1st and S2nd contain not only the mα6-order
but also the mα6(m/M )-order singularities, and they cancel
out with each other, namely S1st + S2nd = 0. The complete

cancellation of the singularities between the first- and second-
order terms itself is a strong confirmation of the correctness of
our procedure. In addition, as shown in Appendix B, our re-
sults can be reduced to the known results of atomic hydrogen
obtained from the Dirac equation with the relativistic recoil
terms included. Finally our results are valid not only for the
hydrogen molecular ions but also for the antiprotonic helium.
Our finite operators of orders meα

6 and mα6(m/M ) can be
evaluated numerically to study relativistic and QED effects in
these two-center systems.
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APPENDIX A: DIVERGENT MATRIX ELEMENTS

In this Appendix, the singularities of the effective Hamil-
tonian H (6) and the second-order corrections are transformed
into terms of various regular and divergent matrix elements,
such as 〈Vap

2
eVa〉, 〈{p4

e , Va}〉, and 〈p2
eVap

2
e 〉. Relations be-

tween these matrix elements will be established to separate
the singularities.

1. Matrix elements 〈Va p2
e Va〉, 〈Va p2

a Va〉, and 4π za ze〈Vaδ(�ra )〉
Let us consider the matrix element 〈(1/r )∇2(1/r )〉. This

matrix element can be expressed in different forms:〈
1

r
∇2 1

r

〉
=

〈
1

r2
∇2

〉
− 2

〈 �r
r4

∇
〉
− 4π

〈
δ(�r )

r

〉
, (A1)〈

1

r
∇2 1

r

〉
=

〈
∇ 1

r2
∇

〉
+ 2

〈 �r
r4

∇
〉
−

〈
1

r4

〉
. (A2)

On the other hand, the matrix element of 〈 1
r2 ∇2〉 can be

expressed as〈
1

r2
∇2

〉
=

〈
∇2 1

r2

〉
=

〈
∇ 1

r2
∇

〉
− 4π

〈
δ(�r )

r

〉
+

〈
1

r4

〉
. (A3)

Thus one can deduce the following results from Eqs. (A1)–
(A3): 〈

1

r
∇2 1

r

〉
=

〈
1

r2
∇2

〉
−

〈
1

r4

〉
, (A4)

4π

〈
δ(�r )

r

〉
=

〈
1

r4

〉
−

〈
1

r2
∇2

〉
+

〈
∇ 1

r2
∇

〉
. (A5)

Similarly, one can derive the following formulas for a three-
body system:

〈
Vap

2
eVa

〉 = 〈
ε2
a

〉 + 〈
V 2

a p2
e

〉
, (A6)
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〈
Vap

2
eVb

〉 = 〈�εa�εb〉 + 〈
VaVbp

2
e

〉
, (A7)〈

Vap
2
aVa

〉 = 〈
ε2
a

〉 + 〈
V 2

a p2
a

〉
, (A8)〈

Vap
2
aV12

〉 = (−1)a+1〈�εa�ε12〉 + 〈
VaV12p

2
a

〉
, (A9)

4πzaze〈Vaδ(�ra )〉 = 〈
ε2
a

〉 + 〈
V 2

a p2
e

〉 − 〈 �peV
2
a �pe〉, (A10)

where a, b = 1, 2 and b 	= a.
We now introduce the transformed Schrödinger equation

p2
eφ =

[
2(E0 − V ) −

∑
a

1

ma

p2
a

]
φ, (A11)

which will be used extensively in the procedure of singularity
separation. As an example, the matrix element 〈V 2

a p2
e 〉 can be

transformed into〈
V 2

a p2
e

〉 = 2

(
1 − 1

ma

)[
E0

〈
V 2

a

〉 − 〈
V 2

a (Vb + V12)
〉]

− 1

ma

〈
V 2

a

(
p2

a − p2
e

)〉 − 1

mb

〈
V 2

a p2
b

〉
− 2

(
1 − 1

ma

)〈
V 3

a

〉
, (A12)

where the singularity is absorbed into the matrix element
〈V 3

a 〉. Thus, the singular part of 〈Vap
2
eVa〉 can be isolated as

〈
Vap

2
eVa

〉
S

= 〈
ε2
a

〉
S

− 2

(
1 − 1

ma

)〈
V 3

a

〉
S
. (A13)

The matrix element 〈Vap
2
aVa〉 in Eq. (A8) can be recast into

〈
Vap

2
aVa

〉 = 〈
ε2
a

〉 + 〈
V 2

a p2
e

〉 + 〈
V 2

a

(
p2

a − p2
e

)〉 = 〈
Vap

2
eVa

〉 + 〈
V 2

a

(
p2

a − p2
e

)〉
. (A14)

Since the matrix element 〈V 2
a (p2

a − p2
e )〉 is convergent, the matrix element 〈Vap

2
aVa〉 has the same singularity as 〈Vap

2
eVa〉.

2. Matrix element 〈{ p4
e, Va}〉

By applying the transformed Schrödinger Eq. (A11) one can rewrite the matrix element 〈{p4
e , V1}〉 in the form

〈{
p4

e , Va

}〉 = 4E0

[〈
Vap

2
e

〉 − 1

ma

〈
Vap

2
a

〉 − 1

mb

〈
Vap

2
b

〉] − 4
[〈�εa�εb〉 + 〈

Va (Vb + V12)p2
e

〉]

+ 4

ma

[
(−1)a+1〈�εa�ε12〉 + 〈

V 2
a

(
p2

a − p2
e

)〉 + 〈
Va (Vb + V12)p2

a

〉] + 4

mb

〈
VaVp2

b

〉 − 4

(
1 − 1

ma

)〈
Vap

2
eVa

〉
, (A15)

from which one can identify the singular part as

〈{
p4

e , Va

}〉
S

= −4

(
1 − 1

ma

)〈
Vap

2
eVa

〉
S
. (A16)

3. Matrix element 〈 p2
e Va p2

e〉
Using Eq. (A11) the matrix element 〈p2

eVap
2
e 〉 can be recast into

〈
p2

eVap
2
e

〉 = 2E0

[〈
Vap

2
e

〉 − 1

ma

〈
Vap

2
a

〉 − 1

mb

〈
Vap

2
b

〉] + 1

mb

〈
VaVp2

b

〉

− 2

[〈
Va (Vb + V12)p2

e

〉 − 1

ma

〈
Va (Vb + V12)p2

a

〉 − 1

ma

〈
V 2

a

(
p2

a − p2
e

)〉] − 2

(
1 − 1

ma

)〈
V 2

a p2
e

〉
, (A17)

where b 	= a. Using the expression Eq. (A12) for 〈V 2
a p2

e 〉, the singular part of this matrix element is identified as

〈
p2

eVap
2
e

〉
S

= 4

(
1 − 2

ma

)〈
V 3

a

〉
S
. (A18)

4. Matrix element 〈{ p2
e, 4πδ(�ra )}〉

The matrix element 〈{p2
e , 4πδ(�ra )}〉 can be recast in the form

〈{
p2

e , 4πδ(�ra )
}〉=4π

{
4

(
1 − 1

ma

)
[E0〈δ(�ra )〉 − 〈(Vb + V12)δ(�ra )〉 − 〈Vaδ(�ra )〉] − 1

ma

〈{
p2

a − p2
e , δ(�ra )

}〉 − 1

mb

〈{
p2

b, δ(�ra )
}〉}

,

(A19)

where the expansion of 4π〈Vaδ(�ra )〉 can be taken from Eq. (A10).
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5. Matrix element 〈 p6
e〉

The matrix element 〈p6
e 〉 can be written in a symmetric form,

〈
p6

e

〉 = 2E0
〈
p4

e

〉 − 〈{
p4

e , V12
}〉 − ∑

a

[〈{
p4

e , Va

} + 1

2ma

〈{
p4

e , p
2
a

}〉]
, (A20)

where the matrix element 〈{p4
e , Va}〉 is expressed in Eq. (A15). Concerning 〈{p4

e , V12}〉, it is convergent and can be rewritten as

〈{
p4

e , V12
}〉 = 8

[
E2

0〈V12〉 − 2E0〈V12V 〉 + 〈
V12V

2〉] −
∑

a

8

ma

[
E0

〈
V12p

2
a

〉 − 〈
V12Vp2

a

〉]
. (A21)

The matrix element (1/ma )〈{p4
e , p

2
a}〉 is expressible according to

1

ma

〈{
p4

e , p
2
a

}〉 = 8

ma

[
E2

0

〈
p2

a

〉 − 2E0
〈
Vp2

a

〉 + 〈
Vp2

aV
〉]
, (A22)

where the divergent matrix element 〈Vp2
aV 〉 is〈

Vp2
aV

〉 = 〈[�εa + (−1)a+1�ε12]2〉 + 〈
V 2p2

a

〉
. (A23)

We can thus transform 〈p6
e 〉 into〈

p6
e

〉 = 2E0
〈
p4

e

〉 − 8
[
E2

0

〈
V12

〉 − 2E0
〈
V12V

〉 + 〈
V12V

2
〉] −

∑
a

〈{
p4

e , Va

}〉

−
∑

a

4

ma

[
E2

0

〈
p2

a

〉 − 2E0
〈
(V + V12)p2

a

〉 + 2
〈
Va (Vb + V12)p2

a

〉 + 〈
(Vb + V12)2p2

a

〉
+ 〈

V 2
a (p2

a − p2
e )

〉 + 2
〈
V12Vp2

a

〉 + 2(−1)a+1
〈�εa�ε12

〉 + 〈
ε2

12

〉 + 〈
Vap

2
eVa

〉]
, (A24)

and its singular part can be deduced as

〈
p6

e

〉
S

=
∑

a

4

(
1 − 2

ma

)〈
Vap

2
eVa

〉
S
. (A25)

6. Matrix element (1/ma )〈[ p2
a, [ p2

e, Va]]〉
The matrix element (1/ma )〈[p2

a, [p2
e , Va]]〉 can be written as

1

ma

〈[
p2

a,
[
p2

e , Va

]]〉 = 1

ma

[〈
p2

ap
2
eVa

〉 + 〈
Vap

2
ap

2
e

〉 − 〈
p2

aVap
2
e

〉 − 〈
p2

eVap
2
a

〉]
. (A26)

Using the transformed Schrödinger equation Eq. (A11), it can be simplified as

1

ma

〈[
p2

a,
[
p2

e , Va

]]〉 = − 4

ma

〈�εa (�εa + (−1)a+1�ε12)〉, (A27)

and thus its singular part is

1

ma

〈[
p2

a,
[
p2

e , Va

]]〉
S

= − 4

ma

〈
ε2
a

〉
. (A28)

7. Matrix element 〈W i j (ra ) pi
e p j

a V〉 + 〈VW i j (ra ) pi
e p j

a 〉
Let us denote W ij (r ) as

W ij (r ) = 1

2r

[
δij + rirj

r2

]
. (A29)

Then the sum of the divergent matrix elements 〈W ij (ra )pi
ep

j
aV 〉 and 〈VW ij (ra )pi

ep
j
a〉 can be expressed as〈

W ij (ra )pi
ep

j
aV

〉 + 〈
VW ij (ra )pi

ep
j
a

〉 = 〈
W ij (ra )

[
pi

e,
[
pj

a, Va

]]〉 + 〈
W ij (ra )pi

eVpj
a

〉 + 〈
W ij (ra )pj

aVpi
e

〉
, (A30)

where the first term involves singularity that can be further simplified as

zaze

〈
W ij (ra )

[
pi

e,
[
pj

a, Va

]]〉 = 〈
ε2
a

〉
, (A31)
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and the last two terms are regular:

zaze

[〈
W ij (ra )pi

eVpj
a

〉 + 〈
W ij (ra )pj

aVpi
e

〉] = 〈 �peVaV �pa〉 +
〈
( �pe · �ra )

VaV

r2
a

(�ra · �pa )

〉
. (A32)

8. Matrix elements 〈[ pi
e, V ]X i j (ra )[V, p j

a ]〉 and 〈 pi
e[X i j (ra ), p2

e
2 ](−i )E j

a 〉
Consider the following divergent matrix elements from δH6:

Q1 = 〈[
pi

e, V
]
X ij (ra )

[
V, pj

a

]〉 = 〈
E i

eX ij (ra )Ej
a

〉
(A33)

and

Q2 =
〈
pi

e

[
X ij (ra ),

p2
e

2

]
(−i)Ej

a

〉
=

〈
pi

eX ij (ra )
p2

e

2
(−i)Ej

a

〉
− v

〈
p2

e

2
pi

eX ij (ra )(−i)Ej
a

〉

=
〈
pi

eX ij (ra )

[
p2

e

2
, (−i)Ej

a

]〉
−

〈[
p2

e

2
, pi

eX ij (ra )(−i)Ej
a

]〉
, (A34)

where the last term in Q2 can be identified as Q1. The sum of Q1 and Q2 will thus eliminate the singularities according to

Q1 + Q2 =
〈
pi

eX ij (ra )

[
p2

e

2
, (−i)Ej

a

]〉
= 1

8

[
7〈( �pe · �ra )(Va/ra )2(�ra · �pe )〉 − 3

〈 �peV
2
a �pe

〉]
, (A35)

where all the matrix elements are finite.

APPENDIX B: HYDROGEN LIMIT

In this Appendix, the effective Hamiltonian H (6) is studied for the case of atomic hydrogen in S states. Within the Breit
approximation, we will show that our results of the mα6-order correction reproduce the known formulas for hydrogen derived
from the Dirac equation, including the recoil corrections.

Consider the hydrogen atom where the proton has a finite mass M . The nonrelativistic Hamiltonian is (in atomic units)

H = 1

2μ
p2

e + V, (B1)

where the Coulomb potential V = Zz/r , with Z and z being the charges of the nucleus and the electron respectively, the
momentum operator of the proton �P = − �pe, and the reduced mass μ has the expansion μn ≈ 1 − n/M . For the sake of
convenience, a common factor α4 has been removed from both the first- and second-order contributions in the following context.

We obtain the hydrogenic limit by assuming that the index a runs only over one nucleus in Eqs. (34), (35), (39), (42), (45),
and (50). The effective Hamiltonian H (6) can thus be reduced to

H (6) = p6
e

16
+ 1

128

(
1 − 4

M

)[
p2

e ,
[
p2

e , V
]] + 3

64

{
p2

e , 4πZzδ(�r )
} − 1

8

{
p2

e , 2HR

} + 1

2M
(Zz)2

[
pi

eW ij (r )Wjk (r )pk
e

] + 1

4M
ε2

− 1

M

([
pi

e, V
]
X ij (x)

[
pj

e , V
] + pi

e

[
X ij (r ),

p2
e

2

][
pj

e , V
])

, (B2)

where �ε = (Zz)�r/r3, ε2 = (Zz)2/r4, and HR = (1/M )(Zz)pi
eW ij (r )pj

e . The various operators in H (6) can be rewritten
according to

〈
p6

e

〉 = 4μ2
[
E2

n − 4μE2
n〈V 〉 + 6μEn〈V 2〉) + 〈ε2〉 − 2μ〈V 3〉〉], (B3)〈[

p2
e ,

[
p2

e , V
]]〉 = −4μ〈ε2〉, (B4)〈{

p2
e , 4πZzδ(�r )

}〉 = 4μ[4πEnZz〈δ(�r )〉 − 〈ε2〉 + 2μ〈V 3〉 − 2μEn〈V 2〉 + 〈 �peV
2 �pe〉], (B5)

〈{
p2

e , HR

}〉 = 8En〈HR〉 + 4

M
[〈ε2〉 − 〈 �peV

2 �pe〉 − 〈( �pe · �r )(V 2/r2)(�r · �pe )], (B6)

(Zz)2
〈
pi

eW ij (r )W ik (r )pk
e

〉 = 1

4
[〈 �peV

2 �pe〉 + 3〈( �pe · �r )(V 2/r2)(�r · �pe )], (B7)〈[
pi

e, V
]
X ij (r )

[
pj

e , V
] + pi

e

[
X ij (r ),

p2
e

2

][
pj

e , V
]〉 = 1

8
[7〈( �pe · �r )(V 2/r2)(�r · �pe )〉 − 3〈 �peV

2 �pe〉], (B8)
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where we have used the identities

p2
eφ = 2μ(En − V )φ, (B9)〈

Vp2
eV

〉 = 〈ε2〉 − 2μ〈V 3〉 + 2μEn〈V 2〉. (B10)

The expectation values of the relevant operators with respect
to an S-state hydrogenic wave function are

En = −μZ2

2n2
, (B11)

〈V 〉 = 2En, (B12)

〈V 2〉 = 2μ2 Z4

n3
, (B13)

〈Zzδ(�r )〉 = −Z

π

(
μZ

n

)3

, (B14)

〈HR〉 = μ3Z4

M

(
1

n4
− 2

n3

)
, (B15)

〈 �peV
2 �pe〉 = μ4Z6

(
− 2

3n5
+ 8

3n3

)
, (B16)

〈( �pe · �r )(V 2/r2)(�r · �pe )〉 = μ4Z6

(
− 2

3n5
+ 8

3n3

)
. (B17)

Substituting these values into 〈H (6)〉 yields the first-order
correction

〈H (6)〉 = 1

32

(
1 − 13

M

)
〈ε2〉 − 1

8

(
1 − 6

M

)
〈V 3〉

+ Z6

(
5

16n6
− 7

8n5
+ 1

2n3

)

+ Z6

M

(
− 11

8n6
+ 101

24n5
+ 1

6n3

)
. (B18)

For a hydrogen in an S state, the second-order correction is
Esec = EB + ER with

EB = 〈H ′
BQ(En − H )−1QH ′

B〉 + 〈{HB,U}〉
− 2〈HB〉〈U 〉 − 〈U (En − H )U 〉, (B19)

ER = 2〈H ′
BQ(En − H )−1QHR〉 + 〈{HR,U}〉−2〈HR〉〈U 〉,

(B20)

where

H ′
B = HB − {U,En − H }, (B21)

U = λV, λ = −1

4

(
1 − 3

M

)
, (B22)

HB = −1

8

[
p4

e + 4πZzδ(�r )
]
. (B23)

The operators appearing in EB and ER can be reduced as

〈{HB,U}〉=−λ

2
μ

[
2μE2

n〈V 〉−4μE2
n〈V 2〉−〈ε2〉+2μ〈V 3〉],

(B24)

〈U (En − H )U 〉 = λ2

2μ
〈ε2〉, (B25)

〈{HR,U}〉 = − λ

M
〈ε2〉 + λ

M
[〈 �peV

2 �pe〉
+ 〈( �pe · �r )(V 2/r2)(�r · �pe )]. (B26)

When H ′
B acts on an S state wave function, it can be simplified

as

H ′
B = −μ2

2
(En − V )2 + 1

4
i�ε · �pe. (B27)

Therefore, the second-order correction of H ′
B can be ex-

pressed according to

EQ = 〈H ′
BQ(En − H )−1QH ′

B〉 = E1
Q + E2

Q + E3
Q, (B28)

where

E1
Q = μ4

4
〈(En − V )2Q(En − H )−1Q(En − V )2〉, (B29)

E2
Q = 1

16
〈(i�ε · �pe )Q(En − H )−1Q(i�ε · �pe )〉, (B30)

E3
Q = −μ2

4
〈(i�ε · �pe )Q(En − H )−1Q(En − V )2〉. (B31)

By using the analytical form of the reduced Coulomb Green’s
function developed by Swainson and Drake [46], one can
evaluate the second-order corrections analytically and obtain
the following results:

E1
Q = μ7Z6

(
− 1

8n6
+ 1

n5
− 3

2n4
− 1

n3

)
, (B32)

E2
Q = μ5Z6

(
− 7

24n5
− 3

7n4
+ 1

24n3

)
, (B33)

E3
Q = μ6Z6

(
− 1

4n6
+ 1

4n5
+ 3

2n4
+ 1

2n3

)
. (B34)

The second-order term EQR due to HR and H ′
B has the

following analytical expression:

EQR = 2〈H ′
BQ(En − H )−1QHR〉

= − 1

M
Z6

(
2

n6
− 37

6n5
+ 3

n4
+ 11

3n3

)
. (B35)

Inserting all these values into Esec yields

Esec = − 1

32

(
1 − 13

M

)
〈ε2〉 + 1

8

(
1 − 6

M

)
〈V 3〉

+ Z6

(
− 5

8n6
+ 13

8n5
− 3

8n4
− 5

8n3

)

+ Z6

M

(
15

8n6
− 125

24n5
+ 3

8n4
− 1

24n3

)
. (B36)

Summing up Esec and 〈H (6)〉, we obtain the final result

E(6) = Z6

(
− 5

16n6
+ 3

4n5
− 3

8n4
− 1

8n3

)

+ Z6

M

(
1

2n6
− 1

n5
+ 3

8n4
+ 1

8n3

)
. (B37)
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One can see that the singularities in Esec and 〈H (6)〉 totally cancel out with each other. Moreover, the nonrecoil part of E(6) is in
agreement with the exact solution of the Dirac equation by expanding

ED = f (n)

α2
, f (n) =

{
1 + (Zα)2

[n − 1 +
√

1 − (Zα)2]2

}− 1
2

, (B38)

at the order of α4 a.u. Meanwhile, the recoil part of E(6) agrees with the derived result from the Breit equation [47,48],

EM = 1 − E2
D

2M
. (B39)
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