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Optical telecommunication is at the heart of today’s internet and is currently enabled by the transmission
of intense optical signals between remote locations. As we look to the future of telecommunication, quantum
mechanics promise new ways to be able to transmit and process that information. Demonstrations of quantum
key distribution and quantum teleportation using multiphoton states have been performed, but only over ranges
limited to a few hundred kilometers. To go beyond this, we need repeaters that are compatible with these
quantum multiphoton continuous-variable pulses. Here we present a design for continuous-variable quantum
repeaters that can distribute entangled and pure two-mode squeezed states over arbitrarily long distances with
a success probability that scales only polynomially with distance. The proposed quantum repeater is composed
from several basic known building blocks such as non-Gaussian operations for entanglement distillation and
an iterative Gaussification protocol (for retaining the Gaussian character of the final state), but complemented
with a heralded non-Gaussian entanglement swapping protocol, which allows us to avoid extensive iterations of
quantum Gaussification. We characterize the performance of this scheme in terms of key rates for quantum key
distribution and show a secure key can be generated over thousands of kilometers.
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I. INTRODUCTION

Today’s society has ready access to more knowledge and
information than at any time in our history. A key enabler
of this is the internet which is underpinned by the worldwide
telecommunications infrastructure. The way we currently pro-
cess, manipulate, and transmit information is “classical” in na-
ture; however, with recent technological advances new paths
are opening that allow us to exploit quantum mechanics and
it principles [1–3]. Quantum communication [4] and quantum
computation [5,6] are such examples where we can perform
certain tasks that are either extremely hard or impossible with
our classical hardware. The most mature quantum information
technology is known as quantum key distribution (QKD) and
is a mechanism to establish secret communication between
two remote parties [7,8]. Compared to traditional modern but
classical cryptography implementations, it provides provable
security based on the law of physics and not on the computa-
tional hardness of certain problems. QKD requires a quantum
communication channel between the two parties, but does not
necessarily require challenging quantum operations necessary
for large-scale quantum computers. Consequently, devices for
QKD have reached a high degree of experimental maturity
with commercial products available [9] and long-time field
tests have been conducted under real world conditions [10,11].

The majority of the QKD implementations are realized
using weak coherent light or single photons with a dis-
crete variable (DV) encoding such as polarization, path, and
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time bin [12]. However, as the traditional telecommunica-
tion industry uses intense light fields, there is a possibility
of incompatibility if one wants to use the existing network
infrastructure for both classical and quantum applications.
This can be overcome by using a continuous-variable (CV)
encoding into phase-space degrees of freedom [13,14]. Since
CV QKD only requires generation of Gaussian states and ho-
modyne detection, it allows technologically simple, efficient,
and high-frequency implementations. Regardless of whether
DV or CV quantum states of light are used, QKD (and
quantum communication in general) are severely limited in
their communication distances by the exponential fiber losses
[12,15].

Quantum repeaters (QR) are the natural solution to this
issue [16,17], as they are considered the quantum analog of
signal amplifiers used in the conventional telecommunica-
tions industry. Various designs for single photon (DV based
encoded) have been proposed in the past decade and their
performance extensively studied [12,15,18–20]). The basic
individual components for these repeaters have been imple-
mented within a number of experimental efforts, yet their full
integration has yet to be achieved.

The continuous-variable quantum repeater case is unfor-
tunately the opposite. The field is still in its infancy as we
do not even know whether a continuous-variable quantum
repeater (CV QR) is possible using polynomial resources.
However, given CV QKD’s practical implementation advan-
tages, it seems essential that we determine whether its range
limitation of approximately 150 km or less (due to finite-size
effects and excess noise) can be overcome using quantum
repeaters [14,21]. Further complicating this is the fact that it is
well known that a CV QR cannot solely be based on Gaussian
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operations [22] due to the Gaussian entanglement distillation
no-go theorem [23–25]. Non-Gaussian (NG) entanglement
distillation protocols with subsequent Gaussification have
been proposed [26–31] and shown to allow a larger degree
of entanglement to be distributed than that expected from
direct transmission [31]. A preliminary CV quantum repeater
scheme [32] has been proposed (using noiseless linear am-
plifier [33] based channel purification) that overcomes the
exponential EPR fidelity scaling with distance but still scales
exponentially in the number of swapping operations. More-
over, their scheme only allows one to extend a channel with
already low transmission to a channel with larger distance but
the same transmission, meaning a strongly entangled CV state
cannot be generated.

In this article, we propose a CV quantum repeater scheme
that distributes CV entangled states with arbitrary fidelity and
a polynomial scaling in the distance. Our proposal builds
on the NG entanglement distillation protocols [28,29] and
Gaussification protocols [26,27] supplemented with a her-
alded NG entanglement swapping operation, which allows
one to postpone the Gaussification protocol to the very end of
the protocol. This avoids the need to run too many iterations
of the Gaussificaiton protocol for which the convergence for
practical situations is not known. There are a number of means
by which we can analyze the performance of our QR scheme
but the most natural here is in terms of CV QKD ranges
and rates as this would be one of the first applications of
such a repeater. We need to show that it outperforms direct
transmission for various distances.

II. STRUCTURE OF THE CV QR AND ITS COMPONENTS

The basic structure of a CV quantum repeater (as illustrated
in Fig. 1 and described in its caption) is similar to that used
in the DV approach [16,17]. Each repeater station containing
CV capable quantum memories performs three types of op-
erations: entanglement distribution (a technique to distribute
entanglement between adjacent nodes), entanglement purifi-
cation (a technique to increase the amount of entanglement
shared between the nodes), and entanglement swapping (a
technique to increase the range over which the entanglement is
shared). However, the entanglement source and the protocols
for entanglement distillation (purification) and swapping vary
crucially between the CV and DV cases. More specifically,
our entanglement source is now a two-mode squeezed state
located between the adjacent repeater nodes (rather than
a source of Bell pairs of single photons), our purification
protocols are non-Gaussian entanglement distillation schemes
(rather than simple qubit error detection codes), and our en-
tanglement swapping schemes use homodyne based detection
rather than probabilistic Bell state measurements. Further,
the CV scheme uses a Gaussification operation to return
our distributed entangled state to approximately Gaussian
after non-Gaussian operations have been performed on it (for
example in entanglement distillation). We store the CV states
present in the repeater nodes in our quantum memories when
they are not being used for entanglement distillation or swap-
ping. In the next several sections we will describe these CV
operations.

FIG. 1. Schematic illustration of a traditional first generation
quantum repeater scheme [15] between Alice A and Bob B, where
that communication distance is divided into shorter distances by
adding repeater nodes (stations) in between (three nodes in this
case). The repeater scheme begins by establishing entanglement
between the adjacent nodes. This entanglement is stored in quantum
memories present within each repeater node until we require its use.
Then, entanglement distillation (Distillation 1) is performed to distill
a smaller number of highly purified and entangled states (number of
copies is illustrated by the thickness). Subsequently, entanglement
swapping is performed until one established the required entangled
state between Alice and Bob. Distillation 2 and Distillation 3 might
be necessary to compensate the loss of purity and entanglement
during swapping. Instead of using distillation protocols one can
utilize a quantum error correction code for the distribution of the
entanglement and for the errors induced by the swapping operation.

III. ENTANGLEMENT SOURCE

The most fundamental component of any repeater scheme
is the entanglement source depicted in Fig. 2 and for the
continuous-variable scheme it is the two-mode squeezed
vacuum (also known as the Einstein-Podolski-Rosen (EPR)
state [13,34]) depicted in Fig. 2 given by

|χλ〉 =
√

1 − λ2
∞∑

k=0

λk|k, k〉. (1)

Here λ = tanh r ∈ [0, 1) determines the strength of the
squeezing (with r being the usual squeezing parameter). For
λ = 0, we recover the vacuum, while for λ → 1 we ob-
tain the unphysical infinite energy state where both quadra-
tures are perfectly correlated. Of course, as we need to
distribute this entanglement between nodes channel losses
are important. Here we will focus on the fully symmet-
ric situation in which the losses for both modes of the
entangled EPR states are symmetric, meaning the source
is placed in the middle between any adjacent repeater
nodes.

An EPR state with losses can conveniently be characterized
in terms of its covariance matrix (CM). Because the state
is Gaussian and the displacement is zero, this determines
the state uniquely. The CM of an EPR state with symmetric
losses from transmission of each mode through a channel with
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FIG. 2. Schematic illustration of the various CV repeater components. In (a) the two-mode squeezed vacuum entanglement source |χλ〉 =√
1 − λ2

∑∞
k=0 λk|k, k〉 is depicted. In the important Gaussification protocol s is shown which transforms non-Gaussian states back to Gaussian

ones. On both nodes, the two modes are mixed with a balanced 50:50 BS. The operation succeeds conditioned on vacuum port detection (a
Gaussian filtering operation) at both nodes. This procedure can be iteratively executed with the obtained state as the new input state until one
is close enough to the desired Gaussian state. By choosing different filtering operations [31] different Gaussification protocols are obtained. In
(c) the symmetric PR distillation protocol is depicted where both modes are mixed with a single photon using a BS with transmissivity η. The
operation is successful if a single photon is measured at the respective outcome of the BS. Panel (d) shows the operations S and D(q ) used
in the purifying distillation protocol. Here S is a photon replacement with a balanced BS, while D(q ) is a probabilistic operation consisting
of a Mach-Zehnder interferometer with S placed in each path and conditioning on |ξ (q )〉 on one of the output ports. Next (e) illustrates the
purifying distillation operation in which D(q ) is applied to two initial states ρ. Heralding is applied on the successful application of D(q ) on
both sides. The usual Gaussian entanglement swapping protocol S is shown in (f), where the two modes are mixed with a balanced BS and
homodyne detection (HD) is used on both output ports to measure X and P . A correction operation in the form of a displacement depending
on the measurement outcomes is applied on the left and right mode. Finally (g) shows a NG entanglement swapping protocol. The operation
is heralded upon success of the operation D(q ) and measuring the state |ξ (−q )〉.

transmissivity τ (losses 1-τ ) has the form

� =
(

C1I SZ
SZ C1I

)
, (2)

where Z = diag(1,−1), C = 1 + τ [cosh(2r ) − 1], and S =
τ sinh(2r ). Next let us examine the protocols required for
entanglement distillation and swapping.

IV. GAUSSIFICATION PROTOCOL

Our entanglement distribution process uses Gaussian states
that retain this Gaussian nature even under loss. However,
some of our entanglement distillation protocols result in non-
Gaussian states being formed and so the resulting NG states
can no longer be fully described by the CM. Instead we
need a different parametrization. It is useful to use the matrix

coefficients of the state in the photon number basis. For any
two-mode state ρ, we denote the matrix elements in the
number basis by ρkl,αβ = 〈k, l|ρ|α, β〉, where {|n〉} denotes
the number basis of a single mode. A lossy EPR state satisfies
the constraints

ρkl,αβ = ρlk,βα, (3)

ρkl,αβ = 0, if k − α �= l − β, (4)

ρkl,αβ ∈ R, (5)

where the explicit form of the coefficients for low photon
numbers can be found in [28]. It is important that this NG
state can be made more Gaussian in nature as we attempt our
long CV entanglement generation process, which is where the
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Gaussification protocols come into play [26,27,30,31]. Let us
examine this in more detail.

Consider that our initial resource state is given by the
two-mode state ρ0, where the two modes are at two spacelike
separated nodes N and M . Then, in the first iteration of the
Gaussification protocol [see Fig. 2(b)] two resource states
ρ0 ⊗ ρ0 are used to generate a two-mode state ρ1 on N and M

in a probabilistic but heralded fashion. In the second iteration,
the same procedure is applied with the resource state ρ1.
Hence, from ρ1 ⊗ ρ1, a two-mode state ρ2 is generated. In
the limit of infinite iterations i → ∞ one obtains a Gaussian
state ρ∞, whose form for the CM has been shown in [30,31].

The characterization of the CM is simple if the
low photon matrix in the Kronecker basis {|0, 0〉, |0, 1〉,
|1, 0〉, |1, 1〉} F1(ρ0) := (ρ0

kl,αβ )1
k,l,α,β=0 has the form

F1(ρ) =

⎛
⎜⎝

ρ00,00 0 0 ρ11,00

0 ρ01,01 0 0
0 0 ρ01,01 0

ρ11,00 0 0 ρ11,11

⎞
⎟⎠. (6)

which is certainly the case for the symmetric EPR state
(3)–(5). Then, the CM is determined by the low photon
number matrix F1(ρ) only and the CM of the corresponding
Gaussified state has the same form as an EPR state with
symmetric losses (2). In order to express the CM in terms of
ρkl,αβ it is convenient to introduce the quantities

ε(ρ) = ρ10,10

ρ11,00
, �(ρ) = ρ11,00

ρ00,00
. (7)

The CM of ρ∞ is then given by (2) with [28]

C = �2(1 − ε2) + 1

(1 − ε�)2 − �2
, S = 2�

(1 − ε�)2 − �2
, (8)

where ε = ε(ρ) and � = �(ρ). We need to point out ex-
plicitly that there exists states ρ for which the obtained CM
is not physical, that is, it does not satisfy the necessary
condition � + i� � 0 with � the symplectic form [13]. In
this case, the Gaussification protocol does not converge. We
can now invert our expressions C = 1 + τ [cosh(2r ) − 1] and
S = τ sinh(2r ) from Eq. (2) to express the state ρ∞ as a
lossy EPR state with squeezing parameter λ = λ∞(ρ) and
symmetric transmissivity τ = τ∞(ρ) given by

λ∞(ρ) = ε(ρ) + �(ρ)[1 − ε(ρ)2], (9)

τ∞(ρ) = [1 − ε(ρ)2]�(ρ)/λ(ρ), (10)

which yields [28]

ε(ρ) = λ∞(ρ)[1 − τ∞(ρ)]. (11)

Finally, although we make a strong distinction between NG
entanglement distillation and Gaussification, we emphasize
that generally the Gaussification protocol also increases the
entanglement of the input state. NG entanglement distillation
is however much more efficient than Gaussification and so let
us turn our attention to such protocols.

V. ENTANGLEMENT DISTILLATION
AND PURIFICATION PROTOCOLS

Entanglement distillation is the process by which we can
take several copies of the quantum state and operate on them
to obtain a new quantum state with increased entanglement.
We are now going to examine two distillation protocols
that are both based on a probabilistic approach in which
the desired states are distilled by conditioning on a suitable
measurement outcome. The first one called symmetric photon
replacement (PR) [26,27] has the ability to efficiently increase
the entanglement of the resulting state, but not its purity [29].
The second protocol called purifying distillation overcomes
this problem and allows one to purify the state arbitrarily [29];
however, it has the disadvantage that the success probability
is very low and its implementation is much more demanding.

It is necessary at this stage to mention how we are going
to characterize the states ρ resulting from the entanglement
distillation and purification protocols. We have many choices
available including a number of entanglement measures but
as our overall aim is the generation of remote long-range
EPR states, we can consider the Gauss parameters λ∞(ρ) and
τ∞(ρ), which would be the state we get after many rounds of
Gaussification. In a real sense this indicates how the squeezing
parameter and symmetric transmissivity have changed due to
the distillation and purification protocols. It may be indirect in
nature, but it is our choice here.

A. Symmetric photon replacement distillation

The starting point for this distillation procedure shown in
Fig. 2(c) is a two-mode state ρ shared between two nodes N

and M . In the symmetric PR distillation protocol, both modes
are mixed at a beam splitter with transmittance η with a single
photon. The output port of the single photon is then measured
with a single photon detector. The operation is successful if on
both modes a single photon is detected and the corresponding
output state is denoted by ρ̃.

At this stage we need to be able to characterize how
effective our distillation has been. As shown in [28], the
symmetric PR distillation can be characterized by

ε(ρ̃ ) = ε(ρ), (12)

�(ρ̃) = β(η)2�(ρ), (13)

where �(ρ) = ρ11,00/ρ00,00 and β(η) = (2η2 − 1)/η. By tun-
ing η the Gauss parameter λ̃∞ can be made arbitrary close
to 1 but at the expense of decreasing the success probability.
Care also needs to be taken to ensure that η is not chosen
such that �∞(ρ̃ ) > 1/(1 + ε); otherwise, λ̃∞ > 1, which is
unphysical (further it means that the Gaussification protocol
will no longer converge). Now since the low photon matrix of
a symmetric EPR state has the form (6) and it is conserved
by the symmetric photon replacement (and all operations
considered in here), the Gauss parameters provide a handy
tool to characterize the effect of the distillation. It also enables
us to define ε(ρ) = λ∞(ρ)[1 − τ∞(ρ)], which turns out to
be equal to ε(ρ) = 〈1, 0|ρ|1, 0〉/〈1, 1|ρ|0, 0〉 [28]. The sym-
metric photon replacement has now the simple property that
ε(ρ̃ ) = ε(ρ) [28].
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However, as pointed out in [29], any operation that leaves
ε invariant cannot increase the purity of the state. In order
to increase the purity ε has to be decreased. Hence the
disadvantage of symmetric PR distillation is that it will always
decrease the purity of the resulting state [29] as it increases
entanglement. This can cause a problem for a CV QR as, for
instance, subsequent application of entanglement swapping
reduces the purity. For instance, with the symmetric PR distil-
lation alone, we are not able to show that our CV QR scales
for all distances only polynomial in the distance.

B. Purifying distillation

As the name suggests the purifying distillation protocol
introduced in [29] overcomes the problem of the symmetric
PR distillation protocol and allows us to increase the purity
of the state. It however requires two two-mode states ρ as a
resource in order to distill a two-mode state ρ̃ that has higher
purity. The structure of the protocol depicted in Figs. 2(d) and
2(e) consists of a NG operations D(q ) performed on the two
copies of the state ρ. The core operation D(q ) consists of
a Mach-Zehnder interferometer in which a probabilistic NG
operation S is placed in both paths followed by a measurement
projection onto the state

|ξ (q )〉 = 1√
1 + q2

(q|0〉 + |1〉) with 0 � q � ∞. (14)

Such a measurement can be implemented by displacements
and photon addition together with projecting on the vacuum
[35]. Next critical to this D(q ) operation is the choice of S

and in this case we choose a photon replacement operation
with a balanced BS [see Fig. 2(d)] due to its easy experi-
mental implementation. This operation has the mathematical
form

S = 1√
2n̂+1

(n̂ − 1), (15)

with n̂ denoting the number operator and filtering out the
single-photon components. This approximates the operation
n̂ − 1I originally proposed by [29] up to a factor depending
on the photon number. The idea behind this choice is that
it maps up to a phase 〈0| and 〈1| in the Heisenberg picture
to 〈00| and 〈11|, because the states 〈01| are filtered out by
the Mach-Zehnder interferometer if in both arms the single-
photon events are filtered out. This has the consequence
that ρ̃ik,αβ ∼ ρ2

ik,αβ , which implies that ε(ρ̃ ) = ε(ρ)2. Hence,
since ε is smaller than 1, ε decreases, which leads to Gauss
parameters corresponding to a Gaussian state with increased
purity (see the Appendix for further details).

The implementation of D(q ) is more complicated than
symmetric photon replacement distillation as it requires PR
to be implemented twice within each repeater node as well
as the measurement based projection onto the state (14).
Further the success probability of the purifying protocol is
much lower than PR. In particular, higher-order photon terms
are strongly suppressed. To illustrate this we plot in Fig. 3 the
success probability of the purifying distillation as well as the
Gauss parameter for the output transmissivity.

VI. ENTANGLEMENT SWAPPING PROTOCOLS

We have now established entanglement distribution and
distillation protocols for our CV quantum repeater scheme.
The final protocol required is entanglement swapping, which
allows us to extend the range of our entanglement beyond
what we can create between adjacent repeater nodes. Here
two main swapping options are possible: Gaussian entan-
glement swapping and non-Gaussian entanglement swapping
[see Figs. 2(f) and 2(g)].

A. Gaussian entanglement swapping protocols

If the initial states are lossy EPR states one can simply
choose the standard Gaussian swapping protocol [36] based
on Gaussian teleportation [37–39]. In such a case the two
modes at the same node are mixed with a balanced BS,
whereupon homodyne detection is used to measure the X am-
plitude of one output and the P amplitude of the other output
[see Fig. 2(f)]. The measurement outcomes are then sent to
the other nodes and a corresponding correction operation in
the form of a displacement is made. Given that the outcomes
of the X and P measurement are x and p, the displacement
on the left mode is g

√
2(−x + ip) and on the right mode

g
√

2(x + ip), where g is the gain that has to be adjusted [36].
It is now critical to mention that these displacements are likely
to increase the proportion of two photons moving us out of the
subspace we preferred for the entanglement distillation.

B. Non-Gaussian entanglement swapping protocols

There is a potential issue with using the conventional
Gaussian entanglement swapping operation. Before the Gaus-
sian entanglement swapping can be applied, a Gaussification
protocol has to be used to turn the NG state after entanglement
distillation again into or close to a lossy EPR state. But since
the above distillation protocols suppress the higher photon
number components, several iterations might be required to
retain the state’s Gaussian character. This is especially a
problem if one wants to distill a highly entangled state. An
alternative NG entanglement swapping protocol is possible
that does not require the Gaussification step [see Fig. 2(f)].

The idea is to swap the entanglement in the low photon
number subspace spanned by the local one photon subspaces.
For simplicity, let us consider the case with no losses, where
the projection of an EPR state onto the local one-photon
subspace is up to normalization given by |χ̃λ〉 = |00〉 + λ|11〉
[see Eq. (1)]. The tensor product is simply

|χ̃〉12 ⊗ |χ̃〉34 = |00〉14|00〉23 + λ2|11〉14|11〉23

+ λ(|01〉14|01〉23 + |10〉14|10〉23), (16)

where modes 2 and 3 are assumed to be at the same node.
Hence, in order to swap the entanglement, we have to project
modes 2 and 3 onto a state proportional to |χ̃a〉 to obtain

|00〉 + a|11〉. (17)

Now letting a = 1/λ we perfectly swapped our initial trun-
cated EPR states. In order to realize a projection onto a
state |χ̃a〉 with experimentally feasible operations, we need
to cut out the components |01〉, |10〉. However, as we have
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FIG. 3. Plot of the Gauss parameter for the transmissivity of the output state τ∞(ρ̃ ) and the corresponding success probability psucc

depending on the Gauss parameter for the transmissivity of the input state τ∞(ρ ). In (a),(b) we illustrate the purifying distillation situation
where our projective measurement |ξ (q )〉 has the free parameter q depending on the choice of state on which we wish to condition. We can
tune q such that the Gaussian parameter for the input squeezing λin

∞ = λ∞(ρ ) and output squeezing λout
∞ = λ∞(ρ̃) are equal but ε(ρ̃) < ε(ρ ),

that is, ρ̃ is more pure than ρ. In (c),(d) we consider the non-Gaussian entanglement swapping situation. The Gaussian parameters for the input
squeezing λin

∞ = λ∞(ρ ) and output squeezing λout
∞ = λ∞(ρ̃) are shown. In order to illustrate the decrease of the Gauss output transmissivity

parameter (c), we also plotted the input transmissivity (dotted line). We see that there exists a minimal initial transmissivity for the protocol
to conserve the desired structure of the input state (i.e., the Gaussification protocol converges). The success probability increases and the
threshold for the initial transmissivity gets reduced for larger squeezing λin

∞ = λout
∞ . The threshold for the initial transmissivity is also reduced

if the output squeezing λout
∞ is larger than initial squeezing λin

∞, but the success probability decreases.

seen in Sec. V B this can be achieved by a Mach-Zehnder
interferometer with photon replacement in the two paths, that
is, an operation similar to D(q ). Indeed, a straightforward
computation shows that

D(q )∗|ξq̄〉 = qq̄|00〉 − 1/4|11〉√
2(1 + q2)(1 + q̄2)

. (18)

Hence, by choosing q̄ = −q we obtain the projection on
a state proportional to |χ̃a〉. This motivates our choice of
the NG swapping operation consisting of an application of
D(q ) followed by condition on the state |ξ−q〉 as illustrated
in Fig. 2(g). It is important to mention that this new NG
swapping protocol is not deterministic and the information
whether or not it succeeded has to be communicated to the
other nodes. This is in contrast to the Gaussian entanglement
swapping, which is deterministic.

We can now characterize the effect of the NG swapping
protocol on a state ρ. By using (18) the resulting state ρ̃ in
matrix form is given by

ρ̃ij,αβ = 1

2(1 + q2)2

(
q4 ρi0,α0 ρ0j,0β + 1

4
ρi1,α1 ρ1j,1,β

+ q2

2
(ρi0,α1 ρ0j,1β + ρi1,α0 ρ1j,0β )

)
, (19)

where the free q parameter can be adjusted to give the
desired Gauss squeezing parameter λ∞. In Fig. 3 we plot the
success probability and Gauss output transmissivity parameter
for different values of the Gauss parameters for the input
squeezing and the output squeezing. We observe that there
exists a threshold for the input Gauss transmissivity parameter
τ∞(ρ) below which the operational interpretation of the Gauss

parameters fails, that is, the Gaussification of the output state
does not converge any more. According to Fig. 3, this thresh-
old crucially depends on the Gauss parameter for the initial
and final squeezing. More precisely, if the Gauss parameter
for the output squeezing is larger than the input squeezing, a
lower Gauss parameter for the transmissivity is possible. But
at the same time this decreases the success probability of the
NG swapping protocol as well as the purity of the output state.

VII. CV QUANTUM REPEATERS

We now have all the components (entanglement distribu-
tion, entanglement distillation, and entanglement swapping)
required to design and quantitatively analyze how a CV quan-
tum repeater would work. We do however need to specify a
figure of merit for its performance. This will obviously depend
on the application, but as a natural first step we will estimate
the secret key rate if the distributed state had be used for CV
QKD using a homodyne based detection scheme [14]. Here
we are actually generating the entangled state between the two
end nodes of the repeater before it is measured for QKD.

A. Polynomial scalings

The key step for our CV quantum repeater scheme is to
show that in principle it can overcome the exponential decay
of the entanglement generation rate, rather than worrying
initially about whether the performance is optimal or not.
In principle one needs to show that the EPR generation rate
and resources consumed scales polynomial with the total
communications distance (others sometimes use the definition
that the CV repeater EPR generation rate should beat that
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associated with direct transmission but we avoid this as it is
well known that some QKD schemes which are not repeaters
already exceed that).

Consider that the total distance we want to establish our
key over is L and it is divided into 2n equal segments each of
length l = L/2n with a repeater station joining each segment.
In total we have N = 2n − 1 repeater stations (excluding the
end points) and N swapping operations are required. Since we
are examining a symmetric QR protocol, the source is placed
in the middle between any two adjacent repeater stations and
so the initial transmittance of each mode is τ0 = τ (l/2). We
fix the final squeezing λfinal and transmittance τfinal of the
target EPR state we want to distribute between the end nodes.

Our scheme, as depicted in Fig. 1, begins with the distribu-
tion of the EPR state between adjacent nodes. Once this has
been successful, we apply entanglement distillation protocols
(symmetric PR and purifying distillation) to generate a state
that has Gauss parameters that are at least those of the desired
target state. The success probability p0 of the initial distilla-
tion depends on the initial squeezing and the distance between
adjacent nodes l and is thus independent of the total distance.
Subsequently, entanglement swapping is applied. Here we
have two situations depending on whether we use Gaussian
or non-Gaussian entanglement swapping protocols.

Gaussian approach. In this situation we need to perform
Gaussification after each entanglement distillation step be-
fore entanglement swapping can be performed. The success
probability pdist for the entanglement distillation can also
incorporate the success probability for the Gaussification op-
eration. The Gaussian entanglement swapping is deterministic
so pswap = 1.

NG approach. The non-Gaussian entanglement swapping
operation succeeds with probability pswap, which depends
on the Gauss parameter of the input state (i.e., determined
by the target state). Gaussification is not required in this
case before the NG swapping is performed. Another round
of entanglement distillation is used to retain again a state
that complies with the target state. The success probability
pdist for the entanglement distillation only depends on the
properties of the NG swapping protocol and the squeezing and
transmittance of the target state.

In the same way NG swapping and entanglement distil-
lation can simply be applied as many times as required to
reach the desired distance L. Hence we find that the rate as-
sociated with distillation and swapping operations scales with
(pswappdist )n = (pswappdist )log2(L/l ) [40], which is polynomial
(and not exponential) in the total communications distance
L. It is important to mention here that this scaling is not
pN

swap as many of the swapping operations can be attempted
in parallel [41]. Finally, the Gaussification protocol is applied
to generate an approximate Gaussian state with the squeezing
and transmittance. Given that the success probability for the
Gaussification protocol is pGauss, we find that the overall rate
for generated CV entangled links between the end nodes is

R = 2L

c
p0pGauss

(
L

l

)log2(pswappdist )

, (20)

which scales polynomially in the total distance L, where
c is the speed of light in the channel. The average number

of EPR required to generate the long-range EPR is then
NQR ∼ (L/l)log2(2α∗ )−log2(pswappdist )/p0pGauss remembering that
two EPR pairs are required entanglement swapping attempts
and α∗ per distillation attempt (α∗ = 1 for symmetric PR
distillation; 2 for purifying distillation and Gaussification).
The normalized generation rate (raw rate / EPR pairs used)
is then given by RQR = R(ρtarget )/NQR , where ρtarget denotes
the target state. We need to remember here for the Gaussian
entanglement swapping operation pswap = 1 but pdist also
includes the probabilistic nature of the Gaussification
operation. Finally, in this in principle approach, we have
performed entanglement distillation at every round. This is
unlikely to be necessary and the removal of a few rounds
of these should dramatically improve performance as the
success probability for the purifying distillation pdist is quite
low (see Fig. 3). It will not change the overall scaling from
polynomial to exponential.

B. CV quantum key distribution

In order to keep the calculation of the key rate simple
we use the asymptotic key rate formula that is uniquely
determined by the CM of the distributed state [13,14,42]. This
ignores finite-size effects. It is important to note that the state
does not have to be a Gaussian state in order for the key rate
formula to apply due to the extremality property of Gaussian
states [43,44]. Moreover, in [45] it has been shown how the
CM can be estimated without assuming the state is Gaussian.

To begin let us examine how the key rate can be computed
without CV QR restricting ourselves for simplicity to only
collective attacks. If the input state is independent and identi-
cally given by ρ, the key rate in the asymptotic limit is [42,46]

r (ρ) = I (XA : XB )ρG − I (XB : E)ρG, (21)

where ρG denotes the Gaussian state with the same sec-
ond moments as ρ, I (XA : XB )ρG the mutual information
of Alice’s and Bob’s key generating measurement applied to
the Gaussian state, and I (XB : E)ρG the mutual information
(or Holevo quantity) between the eavesdropper and Bob’s
measurement. We emphasize that the key rate above is for
the case of reverse reconciliation, which is favorable for high
losses. r (ρ) can then be applied to calculate the key rate
for direct transmission. For that, we choose ρ as an EPR
state where one mode is sent through a fiber channel with
transmittance τ (l) = 10−lμ/10, where l is the channel length
and μ the loss per kilometer (set to 0.2 km in the case). For
an asymmetric loss distribution using reverse reconciliation
[47], the key rate for CV QKD decreases linearly with the
transmittance, and thus exponentially with the distance. This
expression also gives us a direct way to compare our repeaters
performance. In addition, we can also compare our scheme
against the upper bounds for direct transmission determined
by [48] which decrease linearly with the transmittance and
exponentially with the distance.

For our CV quantum repeater protocol the distributed en-
tangled states are symmetric in nature rather than the optimal
asymmetric loss distribution used in the original CV QKD.
This has the consequence that a positive key rate cannot be
obtained for low losses and an EPR state with relatively high
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transmissivity is required. In order to compute this key rate,
let us assume that we distribute the state σ using a CV QR.
Then, the key rate associated with the CV QR is then

rQR(σ ) = 1

NQR (σ )
r (σ ), (22)

where NQR(σ ) denotes the average number of initial EPR
states that are consumed to distribute the state σ with the CV
QR. The normalized key rate rQR(σ ) is the important quantity
to analyze the practicality under finite-size effects and excess
noise due to the homodyne detection. However, if rQR(σ ) is
sufficiently large, this means that even under finite-size effects
and additional noise a positive key rate can be obtained. In
fact, for direct transmission the key rate r (ρ) gets so low for
distances above about 150 km that under practical conditions
a positive key rate is no longer currently possible [14,21].

In terms of our CV repeater design we now have a number
of choices for how we perform both the entanglement distil-
lation and swapping operations. We will begin by examining
Gaussian entanglement swapping based approaches.

C. Gaussian entanglement swapping based CV QR

While the scaling of our CV repeater scheme has been
established in a simple fashion, determining its performance
requires us to make assumptions about our physical devices
and their imperfections beginning with the Gaussian entan-
glement swapping based CV QR. A similar protocol has been
considered in [31], where it has been shown that it allows
one to distribute entanglement over longer distances than with
direct transmission. However, the success probability of those
involved protocols have been neglected.

Now let us begin our analysis of the Gaussian entanglement
swapping based CV QR. For simplicity, we will consider an
ideal system here where our only source of error are losses
in the channel and assume perfect quantum memories, single
photon sources and detectors with unity detection efficiency
of and zero dark counts. Further in our analysis we will
ignore finite-key scale effects. Beginning the analysis it is
beneficial due to the channel losses to first distribute a very
weakly entangled state and then use symmetric PR distillation
to increase its entanglement. Moreover, in order to avoid
multiple applications of the Gaussification protocol one wants
to apply only entanglement distillation right after the distri-
bution. Every additional intertwined entanglement distillation
step would also require an additional Gaussification step. This
leads to two difficulties in computing the performance of the
CV QR: First, we have to compute the state as well as the
success probability that is obtained after a number of iterations
of the Gaussification operations. Using the Fock basis to
parametrize the state is not suitable to do and the computation
is very inefficient. Second is the difficulty to characterize
the effect of the Gaussian entanglement swapping protocol
on only approximate Gaussian states after a fixed number of
Gaussification operations. In particular, the essential structure
that allows us to characterize states through their Gauss pa-
rameters is no longer conserved. We avoid these problems
and simply (over)estimate the performance of the CV QR in
Fig. 4 by using the success probability if only three iterations
of the Gaussification protocol are executed and calculate the

FIG. 4. (a) Plot showing the characteristic behavior of the nor-
malized key rate per pulse rQR(σ ) obtained with a CV QR based
on Gaussian swapping. The rates are (over)estimated and computed
under the simplification that three iterations of the Gaussification
protocol would lead to a perfect Gaussian state. (b) Plot showing the
performance of the CV QR based on NG entanglement swapping.
Shown is the comparison of the estimate key rate or pulse for the CV
QR (straight) with the key rate for direct transmission (dashed) using
a CV reverse reconciliation scheme [47] and a tight upper direct
transmission bound (dotted) [48]. We see that the crossing point
is slightly above 350 km (500 kn) for the Gaussian swapping (NG
swapping) and the gap increases fast with the distance. (c) The lower
plot compares the key rate or pulse of the CV QR without (straight)
and with (dashed) additional purifying entanglement distillation. We
observe that, while for low distances the key rate without additional
purifying distance is significantly larger, the gap closes for large
distances above 10 000 km. The dots correspond to actual simulation
points and the curves are interpolations.

Gaussian swapping for an exact Gaussian state corresponding
to the Gauss parameters. We emphasize that this approxi-
mation seems rather rough. In fact, the computation shows
that after three iterations of the Gaussification protocol the
state is still quite far from the corresponding Gaussian state.
This clearly overestimates the CV QR rate significantly which
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is why we emphasize that it is problematic to compare the
actual key rate value with the one using NG entanglement
distillation. But Fig. 4(a) shows the positive effect of the de-
terministic Gaussian entanglement swapping protocol based
QR, which outperforms direct transmission beyond distances
of 350 km. At this crossover point the Gaussian swapping
approach uses approximately 1000 EPR pairs.

D. NG entanglement swapping based CV QR

Now let us turn our attention to the NG entanglement
swapping based CV quantum repeaters using the ideal system
assumptions from the above apart from channel losses. Now
while we must perform entanglement swapping operations
at every nesting level, we do have the freedom to optimize
over whether we perform distillation operations and if so
which type. With these assumptions the key rates are plotted
and compared with direct transmission in Figs. 4(b) and 4(c)
for the NG swapping approaches, respectively. The dots
correspond to the numerically optimized key rates and the
curve is an interpolation through it. We see that the crossing
point where the CV QR scheme performs better than direct
transmission is near 500 km for the NG swapping operations
compared with 350 km for the Gaussian swapping approach.

In the regime between 350 and 600 km the Gaussian swap-
ping scheme is outperforming the NG swapping operation
by two orders of magnitude but we need to be careful here.
The displacement correction gates present in each Gaussian
swapping operation tend to add higher photon number states
to our resulting entangled states, which in turn moves those
states outside the low photon number space required for the
NG distillation. This forces us to start with an entangled
source with reduced squeezing parameter λ (compared to the
NG case). As our communication distance L increases we
need to perform more swapping operations and in turn this
means we need to decrease the squeezing parameter even
further. We need to tune the strength of our entanglement
source depending not only on the distance between adjacent
repeater nodes but also on L. This is not ideal and means
it is hard to guarantee a polynomial scaling for arbitrary
communications distances. Further as we have more repeater
stations we need to increase the number of Gaussification
operations within each Gaussian swapping scheme. This in
turns means the performance decreases further and the NG
swapping operation approach is better.

E. Optimal strategies

In our previous subsections of this section, we have es-
tablished that our CV quantum repeater EPR generation rate
and resources consumed scale polynomial with the overcom-
munications distance. Further we have shown what potential
normalized QKD key rates can be generated using both Gaus-
sian and NG entanglement swapping based approaches. In
both cases we determined the distance at which the repeater
approach beats direct transmission.

We should now consider what the best performance strat-
egy is at the various communication distances of interest.

(i) For distances below 350 km direct transmission (no
repeater stations) is best, while for greater distances CV QRs
are helpful (see Fig. 4).

(ii) For distances between 350 km and 10000 km the
optimal strategy is to first distribute a state with very low
squeezing (λ � 0.05) and apply a symmetric PR distillation
to distill a state with Gauss parameter λ∞ ≈ 1. The reason
is that for low squeezing the decrease in purity due to fiber
losses can be minimized (a higher initial squeezing would
result in a very mixed state after the distribution). Since our
distributed state has high purity, it is not necessary to apply
a purifying distillation protocol and a symmetric PR distil-
lation is sufficient. Indeed, if the symmetric PR distillation
is applied to boost the Gauss parameter to λ∞ ≈ 1, also the
transmittance gets a boost to τ∞ ≈ 1. The price we have to
pay is simply a low success probability of our symmetric
PR distillation, which is still favorable compared to applying
additional purification. The fact that a low initial squeezing is
beneficial in combination with symmetric PR distillation has
already been noted in the context of Gaussian entanglement
distillation [28].

(iii) For distances beyond 10000 km, a similar strategy to
the previous one can be used except that we add one additional
purifying distillation after the first swapping operation. We see
in Fig. 4 that the obtained key rate is slightly lower than with
no additional purification for the plotted distances. However,
the gap becomes closer as the distance gets larger and finally,
after about 10 000 km, a crossing is expected. Moreover,
we expect that the previous strategy without additional pu-
rifying distillation may not allow distribution over arbitrary
distances as the NG entanglement swapping will fail as soon
as the Gauss parameter τ∞ falls below a certain threshold
(see Fig. 3).

In our simulation, we optimized over the initial, final,
and intermediate Gauss parameter for the squeezing and the
number of swapping operations. In Table I, we give example
values of the optimal Gauss parameters for 1500 km and both
strategies. We see that the final state distributed over the total
distance using CV QR has much higher purity for the second
strategy, but the success probability is lower. In both cases
we see that the normalized key rate is relatively high, which
implies that it is robust against finite-size effects and excess
noise. Moreover, since the distributed states provide a high
normalized key rate, the scheme is robust against finite-size
effects. So, even for distances below 500 km our scheme
proves to be useful for practical CV QKD. Typically, long
distance CV QKD fails because the difference between Bob’s
and Eve’s information about the key gets very small or even
goes to zero if noise and finite-size corrections are considered.
Hence long distance CV QKD is not robust against noise and
finite-size effects. However, in our scheme with a repeater
one can distribute a sufficiently entangled state so that in spite
of finite-size effects and noise at the detectors a key can be
distilled.

VIII. COMPARING CV AND DV QR’S

It is necessary with any CV quantum repeater to compare
it to the discrete variable situation as we can always use the
discrete quantum repeaters to generate a Bell pair between
the end nodes. One can then use the Bell pair to teleport the
weakly squeezed two-mode squeezed (EPR) state followed by
Gaussification to make it more entangled and Gaussian-like.
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TABLE I. Gauss parameters λ∞ and τ∞ at the different stages
of the QR protocol as well as the success probability psucc of the
operations. The total distance is 1500 km and the values of the first
three columns correspond to the strategy without purification, while
the right three columns show the one with applying the purifying
distillation. The initial state refers to the EPR state after distribution.
We see that the first strategy needs only three swapping operations
(seven repeater stations), while the optimal strategy with purification
requires four swapping operations (15 repeater stations). We note
that only a slightly lower key rate is obtained for the protocol with
purification and only three swapping operations such that it might
be favorable from a practical point of view. In the last swapping
operation it is beneficial to decrease λ∞, which is favorable to a high
normalized key rate r (σ ) if only two iterations of the Gaussification
protocol are applied. The key rate rQR(σ ) and the normalized key
rate r (σ ) without (with) purification are 0.14 (0.27) and 2.3×10−14

(2.2×10−15), respectively.

λ∞ τ∞ psucc λ∞ τ∞ psucc

Initial state 0.013 0.013 0.04 0.11
PR dist. 0.95 0.99 6.5 × 10−8 0.98 0.96 4.5 × 10−5

First swap 0.95 0.97 0.027 0.98 0.93 0.028
Purification 0.98 0.995 2.5 × 10−3

Second swap 0.9 0.94 0.028 0.98 0.99 0.028
Third swap 0.65 0.83 0.035 0.98 0.98 0.038
Fourth swap 0.55 0.91 0.038
Gaussification 0.65 0.83 0.093 0.55 0.91 0.11

To begin the comparison we need to think about the
elements of our repeater’s resources. In the CV regime we
require a source of both two-mode squeezed states and ideal
detectors (both CV and single photon based). The single
photons required within the local nodes can be generated in
a heralded fashion from the EPR states. Our resource count in
this situation will be the number of EPR states sent through the
channel. Now the important question is what are our DV com-
ponents. We can use the EPR state as a probabilistic source of
Bell pairs to be sent through the channel (the EPR state is
weakly squeezed to minimize the two photon components).

Consider now a five node (Alice, Bob, and three immediate
nodes)–four segment repeater network with each adjacent re-
peater node separated by 87.5 km (the total distance between
Alice and Bob is 350 km). The probability of an ideal single
photon to be transmitted over 87.5 km of telecom fiber is
∼0.03. Remembering the single photon comes from a weak
EPR state (mean photon number of 0.03 say), the probability
for generating a single link between adjacent nodes would be
∼0.001. Once these Bell pairs are stored within the repeater
nodes we will perform one round of probabilistic but heralded
purification (with success probability of 1/4) followed by a
round of entanglement swapping (success probability of 1/2).
We then purify the resulting swapped Bell pairs followed by
a final round of entanglement swapping. The key question is
how many Bell pairs do we need to generate our entangled
link between Alice and Bob. To generate an average of one
Bell pair, it is straightforward to show that on average 1024
Bell states are needed (256 between each set of nodes). This
means we get a normalized rate per pulse ∼10−6. The rate
will drop further by more than an order of magnitude as we

probabilistically teleport one-half of the |00〉 + q|11〉 and then
perform Gaussification. Finally, when one examines the CV
situation as shown in Fig. 4(a), we observe that the 350 km
total distance corresponds to the point where the Gaussian
based entanglement swapping quantum repeater begins to
outperform direct transmission. At this crossover point, the
normalized rate per pulse is approximately 10−6 for the CV
QR and is better than the equivalent DV QR mentioned above.
However, we need to be very careful before making a definite
conclusion as it is very hard to make a fair comparison.

IX. DISCUSSION AND CONCLUSION

In this work we have presented a CV QR scheme whose
EPR generation rate and resources consumed scale polynomi-
ally with the total communications distance. The distributed
entangled EPR states (with arbitrary squeezing and fidelity)
can then be used for many CV communication applications
such as quantum teleportation or CV QKD. Alternatively they
can also be used for communicating DV quantum information
used in a qubit based quantum computer [49]. We analyzed
the performance of our protocol by examining its use in CV
QKD (see Fig. 4) and found the crossing point, where the key
rates with the CV QR are larger than with direct transmission,
is near 350–550 km depending on the entanglement swapping
scheme. By analyzing the key rate for larger distances, we
observe the strong positive effect of the polynomial scaling.
This is due to the fact that the purification protocol has a low
success probability. Indeed the lower plot in Fig. 4 shows that
the range where an application of the purifying distillation
protocol is beneficial is beyond 10 000 km. This illustrates
one of the current problems of the CV QR, which is the low
efficiency of the purifying entanglement distillation protocol.
Compared to the entanglement increasing symmetric PR dis-
tillation, it has a success probability of about two to three
magnitudes lower. Hence an important step in improving the
proposed CV QR protocol is to find entanglement distillation
protocols that increase the purity, but have a practical success
probability. It is known that purification is not possible with
simple heralded operations on only one mode [29]. But we
still expect that under moderate increase of the experimental
difficulty an improved purification scheme is possible.

This is not the only challenge that remains for CV QR; in
fact, there are many of them. One of the most important is
given in the situation where the final state has to be very close
to a Gaussian EPR state. Since the Gaussification protocol is
based on a noncommutative central limit theorem, we expect
that the approximation error ε goes as 1/

√
N , where N is

the number of iterations. Hence, given the iterative scheme
of the Gaussification protocol, the success probability scales
exponentially in 1/ε2. This problem could have been greatly
avoided in our application to CV QKD, where a Gaussian
state is not essential. But it is not clear how a NG or
(badly) approximate Gaussian state performs in a Gaussian
teleportation or Gaussian entanglement swapping protocol.
This is also the reason why we only obtained a quantitative
estimation if using the NG entanglement swapping protocol,
and could only approximate the scaling of the CV QR with
the Gaussian entanglement swapping protocol (see Fig. 4).
However, since Gaussian entanglement swapping has the big
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advantage of being deterministic, it is important to determine
the approximation errors after a finite number of iterations of
the Gaussification protocol and how such errors affect the out-
put fidelity of the state after Gaussian entanglement swapping.

Even if all these issues are overcome, the performance
of these CV QRs will be quite slow due to the long-range
classical communication that is needed in the entanglement
distillation steps. What we have designed here is analogous to
the first generation DV QRs, which were also extremely slow
[12,15,41]. Improvement in DV repeater design to second
[50,51] and third [19,52,53] generations offered the potential
for huge speed improvements. The second generation DV
schemes replaced the traditional purification algorithms with
full deterministic local node error corrections [50,51] and so
their operational speed was limited by the communication
times between adjacent nodes rather than the communication
between the end nodes. Orders of magnitude increase in per-
formance have been predicted [50,51]. The third generation
DV QR went further and replaced the heralded entanglement
distribution with a deterministic (or near deterministic) ap-
proach using photon loss coding [54,55]. The performance of
such schemes were thus only limited by the gate times within
the repeater nodes, and so GHz rates have been predicted
[19,52,53]. If we can move the second and third generation
DV QR concepts across to the CV QR, then we would expect
large gains in our performance. This, however, requires the
development of new CV error correction codes (both for gate
errors and channel loss).

The main application we have discussed in this CV QR
work is CV QKD and we have found in principle that the
CV QR are an advantage in terms of communication rate
once our users are more than 350 km apart. We must point
out explicitly at this stage that our analysis assumed the only
error arose from channel losses and further ignored finite-size
effects. Further it is useful to emphasize, however, that our
CV QR protocol should also be useful for CV QKD for lower
distances. In practical implementations the distance of CV
QKD is limited to less than 150 km due to finite-size effects
and excess noise [14,21]. However, in our scheme with a CV
QR one can distribute a sufficiently entangled state so that in
spite of finite-size effects and noise at the detectors a key can
be distilled. Thus the generated key rates from our scheme are
practical and robust to such effects. Further an extension to an
asymmetric entanglement distribution scheme for our CV QR
protocol may further improve the distance.

Now to conclude, our CV QR scheme allows us to dis-
tribute entangled EPR states with an arbitrary fidelity over
long distances that have a success probability scaling polyno-
mial with distance. Further we have shown how the distributed
states can be used for CV QKD with rates that exceed the
ones by direct transmission. Our approach here has shown
that CV QR are in principle possible and so we have assumed
perfect single photon sources and detectors and not included
the effect of realistic errors or noise (apart from channel loss).
While we expect that our CV QR scheme is robust under
small deviation of these assumptions, it is important to make
this more precise in future work. In particular, the question
whether single photon sources can be replaced by weak
coherent states is crucial to allow for high-frequency CV QR
implementations. This would provide a clear advantage over

DV QR approaches which often rely on true single photon
sources.
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APPENDIX: PURIFYING DISTILLATION DETAILS

Due to the importance of the purifying distillation, let us
examine this scheme in more detail by characterizing the
effect of the operation on the matrix elements in the number
basis. These are computed by
ρ̃kl,αβ = 〈k, l|D(q ) ⊗ D(q )(ρ ⊗ ρ)D(q )∗ ⊗ D(q )∗|α, β〉.

(A1)
A straightforward calculation using (15) shows

D(q )∗|k〉 =
k∑

l=−1

|k − l〉 ⊗ (qdk|l|l〉 + d̃k|l|l + 1〉), (A2)

where

dk|l = γk (q )
k∑

t=0

(k − t − 1)(t − 1)αk0|tα(k−1)t |(l−t ), (A3)

d̃k|l = γk (q )
k∑

t=−1

√
1

2
t (k − t − 1)αk1|tα(k−t )(t+1)|(l−t ), (A4)

with γk (q ) = (1/2)(k+1)/2/
√

1 + q2 and where we use the
convention dk|−1 = 0. Let us now assume that F1(ρ) has the
form in (6). This allows us to explicitly compute ρ̃kl,αβ and
determine the coefficients of F1(ρ̃) as

ρ00,00 = 1

22

q4

(1 + q2)2
ρ2

00,00, (A5)

ρ10,10 = 1

24

q2

(1 + q2)2
ρ2

10,10, (A6)

ρ01,01 = 1

24

q2

(1 + q2)2
ρ2

01,01, (A7)

ρ11,00 = 1

24

q2

(1 + q2)2
ρ2

11,00, (A8)

ρ11,11 = 1

210

1

(1 + q2)2
ρ2

11,11, (A9)

with all the others being zero. Hence the structure of F1 is
conserved by the purifying distillation.

Numerical calculations further suggest that the condition
(5) is conserved in general by the purifying distillation. Unfor-
tunately, we were not able to prove this explicitly. However,
for our CV QR it is sufficient that the structure of F1 (6)
is conserved, in order for the Gauss parameter to remain
meaningful. This is because for all subprotocols F1(ρ̃ ) is only
a function of F1(ρ). Using the above formulas, we see that for
the purifying distillation [29]

ε(ρ̃) = ε(ρ)2. (A10)

Since for meaningful states ε � 1, we find that ε reduces with
purifying distillation leading to a state with increased purity.
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