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Quantum-classical computation of Schwinger model dynamics using quantum computers
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We present a quantum-classical algorithm to study the dynamics of the two-spatial-site Schwinger model on
IBM’s quantum computers. Using rotational symmetries, total charge, and parity, the number of qubits needed
to perform computation is reduced by a factor of ∼5, removing exponentially large unphysical sectors from the
Hilbert space. Our work opens an avenue for exploration of other lattice quantum field theories, such as quantum
chromodynamics, where classical computation is used to find symmetry sectors in which the quantum computer
evaluates the dynamics of quantum fluctuations.
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I. INTRODUCTION

Quantum field theories (QFTs), and in particular gauge
field theories, provide the mathematical framework to de-
scribe three of the four fundamental forces of nature. In quan-
tum chromodynamics (QCD), the gauge theory describing
the strong interactions [1–3], the invariance of the laws of
nature under SU(3)c transformations necessitate the existence
of eight gluon fields that transmit the forces between the
quarks. When calculating QCD phenomena in the high energy
(short distance) limit, perturbative techniques, such as Feyn-
man diagram expansions, is efficacious. However, difficulties
arise in applying such approaches to low-energy processes,
in which color confinement and the spontaneous breaking of
approximate chiral symmetries dominate structure and dy-
namics. This regime requires the use of low-energy effective
field theories, such as chiral perturbation theory (χPT) [4],
and numerical solutions using lattice QCD (LQCD) [5]. Exas-
cale classical computing will address Grand Challenge prob-
lems [6] in nuclear and high-energy physics by enabling high-
precision LQCD calculations of many properties of hadrons
and light nuclei as well as low-energy scattering processes.
However, these resources are likely insufficient to address
other questions and problems of importance, such as the struc-
ture, properties and dynamics of finite-density systems (due
to the presence of sign problems in the algorithms used on
conventional computers) or the fragmentation of high-energy
quarks and gluons into hadrons. Quantum computers may
offer potential solutions in these systems that are inaccessible
with conventional computing [7–23].
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Existing and near-term quantum hardware is imperfect,
with a small number of qubits, sparse qubit connectivity, and
noisy quantum gates—all hallmarks of quantum computers
in the NISQ (noisy intermediate-scale quantum) era [24].
These technical imperfections constrain the circuit depth and
dimensionality of problems that can be solved on available
quantum computers. Nonetheless, recent advances in develop-
ing [11,17,20,23,25–28] and implementing [13–16,19,21,29]
quantum algorithms for QFT calculations have improved our
understanding of the algorithmic complexity of the problem.
On the other hand, rapid progress in quantum simulations
of many-body systems, such as molecules and spin chains
[30–33], has mapped out potential ways to reduce complexity
through combinations of classical and quantum computation
methods, with variational approaches [34,35] at the forefront
of new developments.

In this work, we develop a hybrid quantum-classical com-
putation strategy for a prototypical lattice gauge QFT—the
Schwinger (1+1)-dimensional model [36,37] on the lattice.
Using this strategy, we study the ground-state properties as
well as the real-time dynamics of particle and electric field en-
ergy density. In contrast to previous works [29,38], we employ
periodic boundary conditions (PBCs) endowing the lattice
with discrete rotational symmetries and reflection symmetries.
Projections into symmetry sectors lead to a refined classi-
fication of states in the Hilbert space by their momentum,
charge, and parity (projections used in LQCD calculations).
This leads to a significant reduction of the Hilbert space of the
system, confining calculations to physically allowed states.
The task of determining the physical sectors of the Hilbert
space is outsourced to classical computers. The dynamics of
the model within each symmetry sector are evaluated using a
digital quantum computer by applying unitary operators and
implementing them as a sequence of one-qubit and two-qubit
gates. As an exploration of what is currently practical on state-
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FIG. 1. Schematic of the qubit and electric flux link structure
of the two-spatial-site lattice Schwinger model. Even sites (marked
0 and 2) represent the electron content with spin up denoting the
presence of an electron. Odd sites (marked 1 and 3) represent the
positron content with spin down denoting the presence of a positron.
The strong-coupling vacuum (unoccupied) state is antiferromagnetic.

of-the-art quantum computers, we solve for the dynamics of
the Schwinger model with one and two spatial lattice sites
using IBM’s quantum computer.

II. SCHWINGER MODEL

The Schwinger model describes quantum electrodynamics
in one space and one time dimension. It enjoyed popularity
in the 1960s and 1970s as a “prototype” for the strong in-
teractions as it shares with QCD a number of features, such
as confinement and spontaneous breaking of chiral symmetry.
After gauge fixing, there is only one dynamical component
of the photon field, which acquires a mass through quantum
fluctuations. Charge is screened, the lightest excitation in the
spectrum has the quantum numbers of the photon, and the
vacuum of the theory enjoys a nonzero condensate, 〈ψψ〉.
The Lagrange density that defines the continuum Schwinger
model,

L = ψ
(
i /D − m

)
ψ − 1

4FμνF
μν, (1)

can be spatially discretized with the Kogut-Susskind (stag-
gered) action [39–41], mapped onto a (rescaled) Hamiltonian
density using the Jordan-Wigner transformation, and gauge
fixed by setting the temporal component of the gauge field to
zero (A0 = 0) on Nf s/2 spatial sites,

Ĥ = x

Nf s−1∑
n=0

(σ+
n L−

n σ−
n+1 + σ+

n+1L
+
n σ−

n )

+
Nf s−1∑
n=0

(
l2
n + μ

2
(−)nσ z

n

)
. (2)

This Kogut-Susskind action distributes the two components of
the one-dimensional fermion field across neighboring even-
odd sites and results in two fermion sites per spatial site
(see Fig. 1 for a two-spatial-site example). The first term
in Ĥ corresponds to the kinetic energy of the fermion field
(a hopping term), the second term is the total energy in
the electric field, and the third term is the mass term. The
couplings in Eq. (2) are related to the value of the gauge

coupling g, the lattice spacing a, and the fermion mass m, x =
1/(ag)2 and μ = 2m/(ag2). The ln’s are integers, ranging
between −∞ and +∞, describing the quantized electric flux
in the link between the site n and n + 1, while the L±

n are
link lowering and raising operators acting as L±|l〉 = |l ± 1〉.
Two qubits are sufficient to describe the fermion occupation
of a single spatial lattice site, one for the e− and one the e+.
As low-energy observables become insensitive to high-energy
modes, the impact of the necessary ultraviolet cutoff on each
ln can be quantified and removed [42–47]. While following
naturally in Lagrangian dynamics as a Lagrange multiplier,
Gauss’s law constraint relating the electric flux entering and
leaving a closed surface to the electric charge contained in
that surface must be imposed “by hand” in the initial state of
a Hamiltonian formulation. Approaching the strong-coupling
limit, in which x, μ → 0 with their ratio finite or simply
x → 0 for the massless case [40], the vacuum of the theory
is perturbatively close to an antiferromagnetic phase with the
e− and e+ qubits antialigned (see Fig. 1, without energy in the
electric field).

Recent studies of the dynamic properties, such as charge
fluctuations, entanglement entropy evolution, string breaking,
and meson scattering in the Schwinger model have been
performed in trapped ion systems [29,38] or with classical
tensor networks [27,48–50]. In the former, open boundary
conditions with vanishing background field are used to trun-
cate the gauge-field Hilbert space. Constraining the remaining
nondynamical links to satisfy Gauss’s law results in long-
range, two-body interactions that are feasible with trapped-
ion-specific Mølmer-Sørensen gates, but are more severely
burdensome in superconducting-circuit quantum computers.
Our work enriches the current literature by retaining local
interactions while removing from the calculation not only
the exponentially large, unphysical subspace but also the
symmetry-sector-distinct regions of Hilbert space. As a result,
inevitable errors occurring in today’s noisy quantum systems
are incapable of populating states outside of the correct,
dynamical Hilbert space.

Considering first the theory with one spatial site, denoted
as 0 + 1, the dynamical degrees of freedom are two fermion
sites (Nf s = 2), the electron and positron occupations, and
two flux links. This system can be visualized as half of
the 1 + 1 system with two spatial sites shown schematically
in Fig. 1. Though there are many options in regulating the
formally infinite energy of the electric field, we choose to
impose a cutoff on the energy in each electric flux link,
|ln| � 1 [this structure is reminiscent of U(1) quantum link
models as discussed in [17]]. Increasing this cutoff increases
the physical Hilbert space dimension linearly and thus loga-
rithmically increases qubit requirements. With two quantum
states per fermion site and three per flux link, this system
contains a total of 36 quantum states that naturally embed
in the larger space of six qubits, one for each fermion and
two for each link. These 36 states describe all sectors with
charge Q = 0,±1, with only a subset satisfying Gauss’s law.
Working in the Q = 0 sector, which can be connected to the
strong-coupling ground state, reduces the number of states
from 36 down to five (see Appendix A). Taking note of
the utility of discrete space-time symmetries in nuclear and
particle physics, we consider the transformation of these five
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states under the operation of P̂ , parity as defined by the
symmetries of the staggered circle. The parity transformations
reflect the system about axes that pass through either two
electron or two positron sites. The five physical states are
further classified into three P = +1 states and two P = −1
states. The quantum evolution of the P = +1 sector can be
calculated using two qubits while that of the P = −1 sector
using one qubit, thereby reducing the required number of
qubits from six to two. In these sectors, the Hamiltonians take
the form

H+ =

⎛
⎜⎜⎝

−μ
√

2x 0
√

2x 1 + μ x

0 x 2 − μ

⎞
⎟⎟⎠,

H− =
(

1 + μ x

x 2 − μ

)
. (3)

With two spatial sites, the state reduction procedure par-
allels that of the one-site theory. With an energy cutoff of
|ln| � 1 for each link, the four fermion sites and four flux
links support a total number of 1296 quantum states contained
in 12 qubits—a lattice-inspired implementation on a quantum
computer with nearly 99.7% of the Hilbert space unphysical.
Imposing Gauss’s law constraint isolates the 13 physical states
with Q = 0 (see Appendix A). These states can be projected
against momentum. This corresponds to rotating the system
by two (of the four) fermion sites and multiplying by a
complex phase, e−ik·x, where k corresponds to an allowed
momentum. The 13 states decompose into sectors defined
by momentum, k = 0,±1 with nine states residing in the
k = 0 sector, which contains the vacuum. The states in the
k = 0 sector can be further classified with respect to P̂ ,
providing a five-state P = +1 sector and a four-state P =
−1 sector. For nonzero momentum, P̂ transforms between
states of opposite momentum, creating energy degeneracies
between the momentum sectors. The Hamiltonians in these
sectors are

Hk=0,+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2μ 2x 0 0 0

2x 1
√

2x 0 0

0
√

2x 2 + 2μ
√

2x 0

0 0
√

2x 3
√

2x

0 0 0
√

2x 4 − 2μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Hk=0,− =

⎛
⎜⎜⎜⎜⎜⎝

1
√

2x 0 0
√

2x 2 + 2μ −√
2x 0

0 −√
2x 3

√
2x

0 0
√

2x 4 − 2μ

⎞
⎟⎟⎟⎟⎟⎠, (4)

and Hk=±1 = diag(1, 3), for which the nearest-neighbor in-
teractions give rise to the band diagonal structure. The naïve
requirement of 12 qubits to describe this field theory has
been reduced to three. The matrices in Eq. (4) are organized
in ascending total energy in the electric field. As the low-
energy properties and dynamics of this system will become
increasingly insensitive to contributions from high-energy

states, a further truncation can be made in which the total
energy in the electric field is less than a second cutoff, �̃.
To contain the k = 0 P = +1 sector in two qubits, a cutoff
of

∑
n l2

n � 3 = �̃ is imposed, which introduces a systematic
error at the ∼1% level in the low-lying energies for x = 0.6
and μ = 0.1 (see Appendixes B and F). It is important to note
that these state reductions were accomplished with classical
computing resources. The states comprising symmetry sub-
spaces and Hamiltonian matrix elements over those subspaces
were calculated using a classical computer. As can be seen in
Table III of Appendix G, these symmetry-projected Hamilto-
nian matrix elements require evaluations in an exponentially
growing Hilbert space. To explore systems larger than those
that can be stored on a classical computer, it will be necessary
to develop quantum algorithms to accomplish such reductions
in situ.

III. GROUND-STATE CALCULATIONS

A reliable extraction of the ground-state energy level in the
P = +1 sector has been implemented using the variational
quantum eigensolver (VQE) method [31] supplemented by
classical Bayesian global optimization with Gaussian pro-
cesses allowing for a minimal number of function calls
to the quantum computer (for other implementations, see
Refs. [34,35]). The structure of the P = +1 Hamiltonian in
Eq. (4) is that of a one-dimensional chain of N = �̃ + 1
sites with local chemical potentials Vi and hopping amplitudes
tij = √

2x for |i − j | = 1 and t01 = t10 = 2x. The chemical
potential varies from one site to the next site by 1 ± 2μ.
From this perspective, it is known that a series of local
and controlled rotations can construct the resulting N site,
real eigenfunction. VQE finds, with linear error extrapola-
tion in the noise parameter r , the groundstate energies of
the k = 0 and �̃ = 1, 2, 3 spaces as 〈H 〉 = −0.91(1) MeV,
−1.01(4) MeV, and −1.01(2) MeV, respectively (see Ap-
pendixes E, H, and I).1 To manage inherent noise on the
chip, we have performed computations with a large number
of measurement shots (8192 shots for ibmqx2 [52] and ib-
mqx5 [53]). For these variational calculations, the systematic
measurement errors have been corrected via the readout-error
mitigation strategy [33,54]. Further, a zero-noise extrapola-
tion error mitigation technique inspired by Refs. [55,56] has
been implemented. Examples of this zero-noise extrapolation
technique are shown in Fig. 2, where the noise parameter r

controls the accrual of systematic errors by inserting r − 1
additional two-qubit gates controlled-NOT (CNOT2) at every
instance of a CNOT gate. In the limit of zero noise, this
modifies CNOT simply by an identity.

For the results obtained on IBM quantum hardware, an esti-
mate of the length of time the quantum processing unit (QPU)
spent executing instructions based upon IBM benchmarking is
provided [52,53,57]. This VQE calculation required 6.4 QPU
s and 2.4 CPU s with a total run time of 4 h. Clearly, a majority
of the time was spent in communications.

1Example code snippets for calculation on IBM hardware and
tables of data appearing in figures can be found in the Supplemental
Material [51].
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FIG. 2. H �̃=3
k=0,+ ground-state energy and chiral condensate (pur-

ple, blue extrapolated to −1.000(65) and −0.296(13), respectively)
expectation values as a function of r , the noise parameter. r − 1 is
the number of additional CNOT gates inserted at each location of a
CNOT gate in the original VQE circuit. (1200 IBM allocation units
and ∼6.4 QPU s.)

IV. DYNAMICAL PROPERTIES

Time-evolving quantum systems is a key capability of
quantum computers. Working with the k = 0 P = +1 sector,
we evolve the unoccupied state |χ1〉k=0,+ (see Fig. 1 and
Appendix A) forward in time with two techniques. The first is
through SU(4) parametrization of the evolution operator and
the second is using a Trotter discretization of time. The former
uses a classical computer to determine the nine angles describ-
ing the time evolution over an arbitrary time interval, which
is induced by the symmetric SU(4) matrix U (θi (t )) = e−iHt ,
leading to the state |χ〉k=0,+(t ) = U (θi ; t )|χ1〉k=0,+ (see Ap-
pendix C). The most general form of the symmetric SU(4)
matrix through its Cartan decomposition is U = KT CK ,
where C = e−iσx⊗σxθ7/2e−iσy⊗σyθ8/2e−iσz⊗σzθ9/2 is generated by
the Cartan subalgebra and K is a SU(2) ⊗ SU(2) transforma-
tion defined by the six angles, θ1,...,6 [58,59]. Figure 3 shows
the “zero-noise” extrapolated pair probability and expectation
value of the energy in the electric field as a function of time
calculated on ibmqx2 with the Cartan subalgebra circuit of
Ref. [60].

The time evolution of this system has also been studied
using a Trotterized operator (see Appendix D). It is discretized
such that e−iHt → UT (t, δt ) = limN→∞ (

∏
j e−iHj δt )

N
,

where δt = t
N

and the Hamiltonian decomposition
H = ∑

j Hj (for the k = 0 P = +1 �̃ = 3 sector) is given by

H = x√
2
σx ⊗ σx + x√

2
σy ⊗ σy − μσz ⊗ σz

+ x

(
1 + 1√

2

)
I ⊗ σx − 1

2
I ⊗ σz

− (1 + μ)σz ⊗ I + x

(
1 − 1√

2

)
σz ⊗ σx. (5)

We have optimized the sequence of operations in a first-order
Trotterization. While Trotterization bypasses the classical re-
sources needed in the previous time evolution implementation

FIG. 3. Probability of finding an e+e− pair (blue, lower line)
and the expectation value of the energy of the electric field (purple,
upper line) in the two-spatial-site Schwinger model following time
evolution with U (θi (t )) from the initial empty state. The solid curves
are exact results while the data points are quadratic extrapolations
obtained with the ibmqx2 quantum computer using a circuit in-
volving three CNOT gates [60]. (1000 IBM allocation units and
∼12.3 QPU s.)

to solve for the nine angles of a symmetric SU(4) matrix,
its demand for long coherence times is not satisfied with
the T2 times available on current quantum hardware. Using
the reported gate specifications of ibmqx2 in terms of pulse
sequences and their temporal extent, the T2 coherence time of
the device is reached after ∼10 time steps. This can be seen in
Fig. 4 where the Trotterized evolution with δt = 0.1 saturates
to the classical probability of 0.5 after a small number of
steps—quantum coherence has been lost. This limitation in
the number of coherent time steps encourages the use of larger
values of δt (top data in shaded region), trading accuracy
of the Trotterization for coherence maintained further into
the time evolution. Even with this trade off, this method is

FIG. 4. Probability of finding an e+e− pair in the two-spatial-
site Schwinger model from the initial empty state following time
evolution with UT (t, δt ). In the unshaded region, the blue points
(triangle markers with visible error bars) are quadratic extrapola-
tions to zero noise using the data above each point at increasing
values of the noise parameter, r . (260 IBM allocation units and
∼3.6 QPU s.)
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currently unable to explore the low-energy structure of the
dynamic fluctuations.

V. DISCUSSION AND OUTLOOK

Our work has identified key areas of future development
needed to robustly explore quantum field theories with (im-
perfect) universal quantum computers. In order to explore
more complex dynamics such as the scattering of hadrons
or the time evolution of charge screening, a balance between
the short-depth circuits of exact SU(2n) propagator evolution
and the manageable classical resources required to Trotterize
must be developed. Regardless of the chosen method of time
evolution, classical pre- and postprocessing will continue
to be invaluable for scientifically relevant calculations on
near-term quantum computers. By enforcing Gauss’s law,
momentum projecting states, and imposing the discrete sym-
metry of parity, the exponential growth of the Schwinger
model Hilbert space has been softened sufficiently to achieve
calculations on IBM’s superconducting quantum hardware.
This reduction has made possible the exploration of static
and dynamic observables within the current and foreseeable
experimental quantum computing landscape lacking quantum
error correction and limited by coherence times and gate
fidelities. Requiring such a classical reduction in the process
of building the physical, projected basis admittedly does
not allow for advantage in the Hilbert space dimensionality
accessible to the quantum vs classical computation. However,
the space of advantage is multidimensional. By combining
the strengths of the classical and quantum computers to
respectively tame the Hilbert space and evolve it, the pro-
posed heterogeneous framework profits in the exploration of
time-dependent, nonequilibrium, and finite density systems
inaccessible to classical computations alone.

Our work represents one step toward solving QCD with
NISQ era quantum computers to address Grand Challenge
problems in nuclear and high-energy physics.
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APPENDIX A: MOMENTUM, PARITY, AND CHARGE
CONJUGATION

In addition to the local U(1) gauge symmetry associ-
ated with the electromagnetic interaction, the Schwinger
model [36,37] respects a number of discrete symmetries. Of
particular interest and importance in this work are lattice
representations of parity and charge conjugation, denoted
by operators P̂a and Ĉi , respectively (we will discuss the
subscripts subsequently). These operators commute with the
Hamiltonian, and as such the eigenstates of systems can
be classified with respect to their transformations under Ĉi

and P̂a , and (trivially) the combined operation of Ĉi P̂a . In
the staggered (Kogut-Susskind) discretization [39–41], the
transformation properties of the fermion field operators and
the electromagnetic field are well known under Ĉ and P̂

[61–63], and we do not repeat them here. However, we will
discuss their implications for the systems we are examining in
a little more detail. The operation of Ĉ transforms particles
into antiparticles and vice versa, and the direction of the
electric field reverses as a result. In order to maintain a
physical representation in the Jordan-Wigner formulation [64]
of staggered fermions [40], an additional directional shift
by one lattice site (1/2 a spatial site) is necessary, with the
direction being convention dependent. The P̂a transformation
corresponds to reflecting the system through axes, “a”, that
preserves the structure of the Wigner-Jordan representation of
the fermion fields.

We begin by considering the 1 + 1 system with two spatial
sites. There are 13 physical states that satisfy Gauss’s law in
the charge Q = 0 sector:

|φ1〉 = | · · · ·〉|0000〉,
|φ2〉 = | · · · ·〉|1111〉,
|φ3〉 = | · · · ·〉| − 1 − 1 − 1 − 1〉,
|φ4〉 = |e−e+ · ·〉| − 1000〉,
|φ5〉 = | · ·e−e+〉|00 − 10〉,
|φ6〉 = |e−e+ · ·〉|0111〉,
|φ7〉 = | · ·e−e+〉|1101〉,

|φ8〉 = |e−e+e−e+〉| − 10 − 10〉,
|φ9〉 = |e−e+e−e+〉|0101〉,

|φ10〉 = |e− · ·e+〉| − 1 − 1 − 10〉,
|φ11〉 = |e− · ·e+〉|0001〉,
|φ12〉 = | · e+e−·〉|0100〉,
|φ13〉 = | · e+e−·〉| − 10 − 1 − 1〉,

(A1)

032331-5



N. KLCO et al. PHYSICAL REVIEW A 98, 032331 (2018)

FIG. 5. Examples of the action of the parity operators defined
by the “electron” axes (blue lines, horizontal arrows, and site 0-2
symmetry axis) and “positron” axes (green lines, diagonal arrows,
and site 1-3 symmetry axis). An e− or an e+ in one of the squares
at a site indicates that the particle is present. An arrow indicates
an electric flux link aligned with the arrow, while a dashed link
corresponds to the absence of an electric flux link. In the 0 + 1
example (upper panel) the only symmetry axis passes through both
an electron and positron. In the 1 + 1 example (lower panel) there are
two symmetry axes: one through the electron sites and one through
the positron sites.

where a “·” denotes an unoccupied site. With periodic bound-
ary conditions (PBCs), this system should be considered as a
square with the fermion sites at each corner. For this system,
there are two reflection axes that preserve the structure of
the discretization, a reflection in the diagonal line defined
by the electrons, and a reflection in the diagonal line defined
by the positrons. These parity transformations are shown in
the lower panel of Fig. 5.

It is informative to consider the action of the charge
conjugation operators Ĉ±. Along with the interchange of
e+ ↔ e−, there is a shift by half a spatial lattice site in either
direction that is required to preserve the qubit structure. For
example,

Ĉ+|e−e+ · ·〉| − 1000〉 = | · e+e−·〉|0100〉,
Ĉ−|e−e+ · ·〉| − 1000〉 = |e− · ·e+〉|0001〉. (A2)

As the eigenstates of the Hamiltonian naturally arrange
themselves into sectors of definite momentum, k, constrained
to satisfy k = πn with n = 0,±1 for the two spatial site sys-
tem, it is convenient to first define states of good momentum.
To construct the states with k = 0, each state in Eq. (A1) is
rotated by two fermion sites (one spatial site) and added to the
original state, with the sum appropriately renormalized. This

leads to a system involving nine states:

|ψ1〉k=0 = |φ1〉,
|ψ2〉k=0 = |φ2〉,
|ψ3〉k=0 = |φ3〉,

|ψ4〉k=0 = 1√
2

[|φ4〉 + |φ5〉],

|ψ5〉k=0 = 1√
2

[|φ6〉 + |φ7〉],

|ψ6〉k=0 = |φ8〉,
|ψ7〉k=0 = |φ9〉,

|ψ8〉k=0 = 1√
2

[|φ10〉 + |φ13〉],

|ψ9〉k=0 = 1√
2

[|φ11〉 + |φ12〉].

(A3)

Applying the two distinct parity operators to the momentum
projected states results in the same states and, therefore,
only one of the parity operators need be considered. In the
zero-momentum sector, the parity operator maps the states
back into the same sector and has the same action as the
charge conjugation operator, and therefore ĈP̂ = +1 for all
states in this sector. Forming states of good parity, by forming
combinations of these nine states with their parity transformed
partner with a relative sign of ±1, leads to two sectors: a
five-dimensional even-parity sector and a four-dimensional
odd-parity sector:

|χ1〉k=0,+ = |ψ1〉,

|χ2〉k=0,+ = 1√
2

[|ψ4〉+|ψ9〉],

|χ3〉k=0,+ = 1√
2

[|ψ6〉+|ψ7〉],

|χ4〉k=0,+ = 1√
2

[|ψ5〉+|ψ8〉],

|χ5〉k=0,+ = 1√
2

[|ψ2〉+|ψ3〉]

(A4)

and

|χ1〉k=0,−= 1√
2

[|ψ4〉−|ψ9〉],

|χ2〉k=0,−= 1√
2

[|ψ6〉−|ψ7〉],

|χ3〉k=0,−= 1√
2

[|ψ5〉−|ψ8〉],

|χ4〉k=0,−= 1√
2

[|ψ2〉−|ψ3〉].
(A5)

For the k = ±1 states, the process is analogous to the zero-
momentum sector, except that the translated state is multiplied
by −1 before being added to the original state,

|ψ1〉|k|=1= 1√
2

[|φ4〉−|φ5〉],

|ψ2〉|k|=1= 1√
2

[|φ6〉−|φ7〉],

|ψ3〉|k|=1= 1√
2

[|φ10〉−|φ13〉],

|ψ4〉|k|=1= 1√
2

[|φ11〉−|φ12〉].
(A6)

In the case of the 0 + 1 system, with only one spatial
site, the only symmetry axis about which reflections can be
performed that leave the qubit structure intact is through the
axis defined by the qubits themselves. This leads to reflections
between the electric flux links only. The five states in this
system that satisfy Gauss’s law are

|φ1〉 = | · ·〉|−1−1〉,
|φ2〉 = | · ·〉|00〉,
|φ3〉 = | · ·〉|11〉,

|φ4〉 = |e−e+〉|01〉,
|φ5〉 = |e−e+〉| − 10〉, (A7)
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which, without the possibility of momentum projection, de-
compose into the two parity sectors. The even-parity sector

is composed of three states, while the odd-parity sector is
composed of two states:

|ψ1〉+ = | · ·〉|00〉,

|ψ2〉+ = |e−e+〉 1√
2

[|01〉 + | − 10〉],

|ψ3〉+ = | · ·〉 1√
2

[|11〉 + | − 1 − 1〉],

|ψ1〉− = |e−e+〉 1√
2

[|01〉 − | − 10〉],

|ψ2〉− = | · ·〉 1√
2

[|11〉 − | − 1 − 1〉].
(A8)

It is interesting to note that the parity transformations we
have discussed in this section extend to systems with more
spatial sites, subject to the constraint that the number of spatial
sites is a multiple of two. This makes it natural to extend our
studies to systems with Nsites = 4, 6, 8, . . ..

APPENDIX B: EXACT TWO-SITE SCHWINGER
MODEL SPECTRA

The spectrum of the Schwinger model is rich. As our
calculations are performed at a single lattice spacing without
a continuum extrapolation, and with one and two spatial
sites without an infinite volume extrapolation, it is helpful
to discuss what is to be expected from them. The spectrum
of the Schwinger model discretized onto a lattice with two
spatial sites with couplings μ = 0.1, x = 0.6 and cut off
�̃ = 10 is shown in Fig. 6. The ground-state energy has
been defined (shifted) to be zero, but on an absolute scale is
E0 = −1.011 810, corresponding to an energy density of ε0 =
−0.505 905. Further, there is a chiral condensate, 〈ψψ〉 =
−0.322 324. The first excited state is odd parity, defined to
be the lightest vector meson, V − (the massive photon), and
the second excited state is even parity, defined to be the
scalar meson, S+. The next even-parity excited state in the
spectrum is just above the V −V − threshold and corresponds
to two vector mesons with a repulsive interaction between
them. The splitting from the threshold is a finite volume effect

FIG. 6. Low-lying spectrum of the 1 + 1 Schwinger model dis-
cretized onto a lattice with two spatial sites with couplings μ =
0.1, x = 0.6, and projected to zero momentum. The shown shifted
P = +1 energy eigenvalues are 0, 2.089, and 3.108 and the P = −1
energy eigenvalues are 1.497 and 2.927.

and vanishes as the volume of space tends to infinity. It is
analogous of this energy splitting that are used successfully in
lattice QCD calculations in Euclidean space, in conjunction
with quantum field theory quantization conditions [65,66],
to determine scattering phase shifts and mixing parameters
between the strongly interacting hadrons of QCD (for recent
examples of such calculations, see Refs. [67,68]). In addition,
higher in the spectrum of larger systems, there is a state that
corresponds to a very loosely bound three-body system.

The volume scaling of vacuum properties demonstrate
their expected exponential convergence, as can be seen from
Table I. While the vacuum energy is an extensive quantity, the
energy density rapidly converges to a constant value, and is
within ∼1% of its infinite volume value with two spatial sites
for the parameters we have chosen.

APPENDIX C: SU(4) TRANSFORMATIONS
FOR TWO-QUBITS

Elements of the SU(N ) Lie group can be obtained by
exponentiating its N2 − 1 generators, each multiplied by a
real angle. With four states in the fundamental representation,
the unitary rotations of two qubits are described by SU(4),
requiring 15 angles to be specified. A succinct parametriza-
tion of these transformations is given in the Pauli basis, as
presented by Khaneja and Glaser [58], and compactly written
as

U = K2e
−i(α1σx⊗σx+α2σy⊗σy+α3σz⊗σz )K1 = K2CK1, (C1)

with K1,2 ∈ SU(2) ⊗ SU(2), where the SU(2)s act on the
individual qubits and C denotes transformations associated
with the Cartan subalgebra. For time evolution, the symmetric
forms of the Hamiltonian matrices we are working with lead

TABLE I. Ground-state properties of the 1 + 1 Schwinger
model. The vacuum energy, vacuum energy density, chiral conden-
sate, and total energy in the electric field, for μ = 0.1, x = 0.6, and
a cutoff of �̃ = 10 in the electric field, for a selection of the number
of spatial sites.

No. of
spatial sites 2 4 6 8

Evac −1.011 810 −2.019 632 −3.029 438 −4.039 251
εvac −0.505 905 −0.504 908 −0.504 906 −0.504 906
〈ψψ〉 −0.322 324 −0.324 713 −0.324 722 −0.324 722
〈E2〉 0.089 457 0.088 044 0.088 039 0.088 039
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to only symmetric SU(4) transformations, while for varia-
tional state preparation, relative phases between states in the
eigenbasis may be removed. Enforcing symmetry on an SU(4)
transformation matrix reduces the number of angles from
15 to nine (through the six constraints), and eliminating the
relative phases between the states further reduces the number
of angles from nine to six.

The symmetric SU(4) transformations may be
parametrized by relating the angles of K2 to those of
K1,

UT = (K2CK1)T = KT
1 CKT

2 ⇒ K2 = KT
1 .

Using the standard ZYZ (Euler angles) parametrization for
each SU(2),

K1 = e−i
θ6
2 I⊗σze−i

θ5
2 I⊗σy e−i

θ4
2 I⊗σze−i

θ3
2 σz⊗Ie−i

θ2
2 σy⊗Ie−i

θ1
2 σz⊗I

(C2)

(C3)

K2 = KT
1 = e−i

θ4
2 I⊗σzei

θ5
2 I⊗σy e−i

θ6
2 I⊗σze−i

θ1
2 σz⊗I

× ei
θ2
2 σy⊗Ie−i

θ3
2 σz⊗I (C4)

(C5)

and an arbitrary symmetric two-qubit transformation, defined
by nine angles, may be parametrized as

Up = e−i
θ4
2 I⊗σzei

θ5
2 I⊗σy e−i

θ6
2 I⊗σze−i

θ1
2 σz⊗Iei

θ2
2 σy⊗Ie−i

θ3
2 σz⊗I

× e−i
θ9
2 σz⊗σze−i

θ8
2 σy⊗σy e−i

θ7
2 σx⊗σx e−i

θ6
2 I⊗σze−i

θ5
2 I⊗σy

× e−i
θ4
2 I⊗σze−i

θ3
2 σz⊗Ie−i

θ2
2 σy⊗Ie−i

θ1
2 σz⊗I. (C6)

If a system is initially prepared in a state in the computational,
z-axis basis, the first σz rotation on each qubit simply induces
an overall phase in the wave function, and hence can be
dropped:

Up = e−i
θ4
2 I⊗σzei

θ5
2 I⊗σy e−i

θ6
2 I⊗σze−i

θ1
2 σz⊗Iei

θ2
2 σy⊗I

× e−i
θ3
2 σz⊗Ie−i

θ9
2 σz⊗σze−i

θ8
2 σy⊗σy e−i

θ7
2 σx⊗σx

× e−i
θ6
2 I⊗σze−i

θ5
2 I⊗σy e−i

θ3
2 σz⊗Ie−i

θ2
2 σy⊗I. (C7)

In order to implement the rotations of the Cartan subalgebra,
two options were explored: six CNOTs with the textbook
implementation of rotations [69] for each generator or three
CNOTs as implemented in Vidal and Dawson [60] and by
Coffey et al. [70],

(C8)

(C9)

Though technically equivalent and returning consistent results
in simulations, the above two circuits have different signatures
of systematic errors when executed on quantum computing
hardware. The difference can be seen in Fig. 7, where the
systematic errors at high probabilities are exacerbated when
using the six-CNOT circuit (which also includes a number of
additional operations).

APPENDIX D: TROTTERIZATION

In the previous section, we determined the exact propaga-
tor (in terms of nine angles) that evolves an arbitrary two-
qubit state forward over a macroscopic time interval. While
the theoretical accuracy and gate requirements of simulat-
ing dynamical quantum systems defined on n qubits, with
exact propagators as symmetric matrices in SU(2n), can be
determined, the associated dimensionality of the parameter

space of the angles is 2n−1(2n + 1) − 1. This growth in the
number of angles that need to be determined with classical
computing resources appears to be unsustainable for clas-
sical optimization when looking forward to large quantum
computers. For this well-known reason, Trotterizing the time
evolution operator appears to be a necessary technique for
exploring quantum systems.

In first-order Trotterization, the time evolution operator is
approximated by breaking apart the exponential and suppress-
ing the resulting commutators in powers of Hδt = H t

NTrot
,

where t is the total time propagated and NTrot is the number of
time steps into which the propagator is divided,

e−iH t = e−i
∑

j Hj t = lim
NTrot→∞

⎛
⎝∏

j

e−iHj δt

⎞
⎠

NTrot

. (D1)

032331-8



QUANTUM-CLASSICAL COMPUTATION OF SCHWINGER … PHYSICAL REVIEW A 98, 032331 (2018)

FIG. 7. Probability of having one e+e− pair in the 1 + 1, odd-
parity system at some time after starting in the lowest-energy basis
state containing one e+e− pair. The state is evolved forward by a
single application of the exact propagator described in this section.
These probabilities were determined on both the IBM simulator(s)
and quantum hardware, ibmqx2. Two different circuits were used to
implement the transformations from the Cartan subalgebra, one with
three CNOT gates (blue squares) and one with six CNOT gates (green
triangles). (504 IBM allocation units were used for the ∼0.7 QPU s
needed to generate this data set.)

While large resources and long coherence times would allow
structure from terms subleading in Hδt to be made inconse-
quential, the results of Trotterization on the (0+1)- and (1+1)-

dimensional Schwinger model indicate that we are not yet able
to accomplish this with IBM quantum computing hardware.
In near-term quantum computations, care must be given to
balance the theoretical errors built into the Trotterization of
the evolution operator with the gate fidelities and with the
coherence times of the hardware. In a recent publication [71],
an idea for multistep Trotterization to focus resources on
physically dominant terms in the Hamiltonian has been pro-
posed and analyzed for its improved scaling properties of
quantum simulation. Such strategies to optimally utilize sim-
ulation resources will be important for optimizing scientific
output from any quantum hardware. By classical simulation,
we performed a rudimentary Trotterization optimization by
sampling over orderings of the component contributions to the
Trotterized propagator in Eq. (D1) for the 4 × 4 Hamiltonian
matrix describing the k = 0 and P = +1 sector of the 1 + 1
Schwinger model. The results of these calculations are shown
in Fig. 8.

APPENDIX E: VARIATIONAL CALCULATIONS
OF ENERGY EIGENVALUES

To provide an example of our variational calculations of
the energy eigenvalues, we use the 1 + 1 Schwinger model
restricted to the P = +1, k = 0 sector. By eliminating the
state with the largest energy in the electric field, the 5 × 5
Hamiltonian matrix is truncated to a 4 × 4 matrix, which can
be studied with two qubits. The Hamiltonian in this truncated
space is

H �̃2=3
k=0,+ =

⎛
⎜⎜⎜⎜⎝

−2μ 2x 0 0

2x 1
√

2x 0

0
√

2x 2 + 2μ
√

2x

0 0
√

2x 3

⎞
⎟⎟⎟⎟⎠ = 3

2
I4 +

⎛
⎜⎜⎜⎜⎜⎝

− 3
2 − 2μ 2x 0 0

2x − 1
2

√
2x 0

0
√

2x 1
2 + 2μ

√
2x

0 0
√

2x 3
2

⎞
⎟⎟⎟⎟⎟⎠ = 3

2
I4 + H/T , (E1)

which has been split into a term proportional to the identity matrix and a traceless term. The term proportional to the
identity matrix is dropped until the end of the calculation, as it contributes only an overall phase, and we focus on the
traceless matrix H/T . With example values of Hamiltonian parameters, μ = 0.1 and x = 0.6, this matrix has eigenvalues
E/T i = −2.51164, −0.397399, 0.768049, and 2.14099. H/T can be projected onto the generators of SU(4) transformations

FIG. 8. Left panel shows the normed difference between the exact propagator and the Trotterized propagator with a step size of δt = 0.2
for different permutation orders of the Hamiltonian terms in Eq. (D1). The right panel shows the e+e− pair probability as a function of time
for a selection of orderings of the Trotterized propagator.
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in the preferred basis

H/T =
∑

i

ciOi , (E2)

where the operator basis is defined to be

O1 = σx ⊗ σx =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, O2 = σx ⊗ σy =

⎛
⎜⎝

0 0 0 −i

0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎠,

O3 = σx ⊗ σz =

⎛
⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎠, O4 = σy ⊗ σx =

⎛
⎜⎝

0 0 0 −i

0 0 −i 0
0 i 0 0
i 0 0 0

⎞
⎟⎠,

O5 = σy ⊗ σy =

⎛
⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠, O6 = σy ⊗ σz =

⎛
⎜⎝

0 0 −i 0
0 0 0 i

i 0 0 0
0 −i 0 0

⎞
⎟⎠,

O7 = σz ⊗ σx =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎠, O8 = σz ⊗ σy =

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 i

0 0 −i 0

⎞
⎟⎠,

O9 = σz ⊗ σz =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠ (E3)

and

O10 = I ⊗ σx =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, O11 = I ⊗ σy =

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 −i

0 0 i 0

⎞
⎟⎠,

O12 = I ⊗ σz =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠, O13 = σx ⊗ I =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠,

O14 = σy ⊗ I =

⎛
⎜⎝

0 0 −i 0
0 0 0 −i

i 0 0 0
0 i 0 0

⎞
⎟⎠, O15 = σz ⊗ I =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠. (E4)

The operators are normalized such that Tr[ O†
iOj ] = 4δij . Performing traces gives

c1 = c5 = x√
2

= 0.424264, c7 = x

(
1 − 1√

2

)
= 0.1757359, c9 = −μ = −0.1,

c10 = x

(
1 + 1√

2

)
= 1.024264, c12 = −1

2
, c15 = −(1 + μ) = −1.100. (E5)

As phase redefinitions of the four eigenstates can be performed, the symmetry group relevant to the variational cal-
culations involving the 4 × 4 Hamiltonian is SO(4) (with six generators). Starting from the orthonormal basis of states
{(1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T , (0, 0, 0, 1)T }, values of the six angles that diagonalize the Hamiltonian matrix H/T are
required. Given the nearest-neighbor structure of H/T , the ground states are of the form

S(θ1, θ2, θ3)gs = R34(θ3)R23(θ2)R12(θ1)(1, 0, 0, 0)T , (E6)
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where

R12(θ ) =

⎛
⎜⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠, R23(θ ) =

⎛
⎜⎝

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎞
⎟⎠, R34(θ ) =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 cos θ − sin θ

0 0 sin θ cos θ

⎞
⎟⎠.

(E7)

An exact minimization (Mathematica) gives θ1 = −0.6130, θ2 = −0.2785, and θ3 = −0.20844. Applying this transformation
to the other vectors produces three orthonormal vectors that are orthogonal to the ground state and form a basis for the
excited states. The resulting Hamiltonian in that sector is also traceless and contains only nearest-neighbor interactions,
making the variational determination of excited states significantly less costly than methods recently proposed for the
determination of eigenstates without this simple structure [35]. A similar form of the variational wave function to Eq. (E6)
involving only two angles can be used to construct the first excited state. The same procedure can be repeated to obtain all
eigenstates.

The expectation value of the energy in any given state defined by the angles θi is

〈H/T 〉θi
= (1, 0, 0, 0)R12(θ1)T R23(θ2)T R34(θ3)T H/T R34(θ3)R23(θ2)R12(θ1)(1, 0, 0, 0)T

=
∑

i

ci (1, 0, 0, 0)R12(θ1)T R23(θ2)T R34(θ3)TOiR34(θ3)R23(θ2)R12(θ1)(1, 0, 0, 0)T , (E8)

and therefore the expectation values 〈Oi〉θi
need to be calculated to form 〈H/T 〉θi

, which is then extremized to determine the
angles in the wave function. The operators O9,12,15 are diagonal from the circuit used to determine the time-dependence of
the pair production, while the other operators require additional gates to transform into a diagonal basis in preparation for
measurement:

O1 : H ⊗ I I ⊗ H|q0q1〉, O1(diag) = diag(1,−1,−1, 1),

O5 : H ⊗ I S† ⊗ I I ⊗ H I ⊗ S†|q0q1〉, O5(diag) = diag(1,−1,−1, 1),

O7 : I ⊗ H|q0q1〉, O7(diag) = diag(1,−1,−1, 1),

O10 : I ⊗ H|q0q1〉, O10(diag) = diag(1,−1, 1,−1). (E9)

An initial grid-based sampling of approximately 10 sets of
angles for the low-depth circuit of Eq. (E10) is used with a set
of uniform Bayesian priors to establish a posterior distribution
for the three angles. A second iteration of the process yields a
sufficiently precise determination of the ground-state energy:

(E10)

TABLE II. Classically determined energy spectra of the low-energy k = 0 Hilbert space further truncated by the total energy in the electric
field, �̃, the largest value of

∑
i 

2
i retained in the space. Reducing this cutoff sequentially removes the highest-energy state from the basis,

as shown by the rows in each table. In the P = +1 sector with �̃ = 3 (the reduced two-qubit form), the systematic error in the ground-state
energy introduced by this truncation is less than 1%.

Even parity GS E1 E2 E3 E4 Odd parity GS E1 E2 E3

Exact −1.0118 1.0771 2.0966 3.1037 4.3044 Exact 0.4857 1.9149 3.0670 4.3025

�̃ = 4 −1.0118 1.0784 2.1120 3.1666 4.4549 �̃ = 4 0.4859 1.9281 3.1323 4.4536
�̃ = 3 −1.0116 1.1026 2.2681 3.6410 �̃ = 3 0.4929 2.0816 3.6254
�̃ = 2 −1.0076 1.2440 2.7635 �̃ = 2 0.5608 2.6392
�̃ = 1 −0.9416 1.7416

APPENDIX F: CONVERGENCE WITH THE CUTOFF
IN THE GAUGE-FIELD ENERGY

While the implementation of the constraints imposed by
Gauss’s law, momentum projections, and parity projections
reduce the size of the Hilbert space of the 1+1 system
sufficiently to permit calculations on three-qubit and two-
qubit quantum computers, a further truncation of the total
energy in the electric field �̃ = ∑

i 
2
i allows approximate

calculations on even smaller numbers of qubits. Table II shows
the classically calculated (Mathematica) convergence of the
energy spectrum as a function of the cutoff �̃. By removing
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FIG. 9. Upper six panels show the convergence of the dynamical pair fluctuations with increasing energy truncation in the electric field,
�̃, with the cutoff in the energy in each electric flux link � = 1. With so few states present, significant modifications are seen with each value
of �̃. The second row of panels show the residuals of the upper row from the untruncated value of �̃ = 4. The lower six panels show early
convergence in �. The dynamics are found to be stable to the introduction of high-energy states beyond � = 2.

the highest-energy state, the system retains the value of the
ground state at a precision of better than 1%. It is then
pertinent to also ask about the convergence of dynamical
properties with the cutoff �̃. Figure 9 shows the results of
classical (Mathematica) calculations of the probabilities of
finding e+e− pairs at some time after initializing the sys-
tem. Rapid convergence is found in raising the energy cutoff
associated with each electric flux link, and convergence is
also found in raising the total allowed energy in the electric
field only once � has been chosen large enough. The upper
row of plots has been constructed with a per-link cutoff of
� = 1 and further reductions in the total energy, �̃, resulting
in significant modifications with each value of �̃. As this
value of � was chosen for its ∼1% errors on the ground-state
energy, it may have been tempting to think that also the
dynamics are converged at this level of truncation. However,
because a well-reproduced ground-state energy is a relatively
weak constraint on the exact form of the wave function, a
truncation leading to a precise calculation of the energy may
be insufficient to accurately capture dynamics. It can be seen
from the next row of Fig. 9 that, even without a �̃ cutoff, this
system with � = 1 does not yet have converged dynamics.
This convergence of ground-state properties before dynamics

has practical implications for the preparation of quantum
states using ground-state explorations such as VQE.

In addition to giving confidence in the accuracy and preci-
sion of the calculations performed on the quantum hardware,
it also suggests a means to improve the variational methods
applied to these particular calculations. The number of angles
required to specify the ground state is smaller for a lower-
energy cutoff. As such, the Bayesian priors associated with
the angles in the variational ansatz provide a perturbatively
close set of priors for a subset of angles in systems with larger
energy cutoffs. This hierarchy has been explicitly verified.

APPENDIX G: SCALING TO LARGER LATTICES

By determining the physical subspace and projecting onto
states of zero momentum and definite parity, the dimension-
ality of the Hilbert space is exponentially reduced. In its
original latticized form with one qubit for every site and two
qubits for every link (� = 1), the Hilbert space grows with
Ns, the number of spatial sites, as elog(64)Ns . By enforcing the
local constraint of Gauss’s law, this exponent is significantly
reduced to 1.02(1)e1.1772(2)Ns . With further projection to k = 0
and even parity, the scaling of the relevant Hilbert space
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TABLE III. Scaling of the Hilbert space with different levels of reduction and projection. Moving from left to right, the qubit mapping
begins with the lattice through which the Schwinger model is naturally defined, constrained by Gauss’ law to allow only physical states,
projected to zero-momentum configurations, and finally projected onto states of definite parity. The number of required qubits grows linearly
in the size of the system both before and after the reduction; however, this reduction decreases the coefficient of this linear scaling from 6 to
1.27(5).

Physical sites Nq lattice Dlattice Dphysical Dk=0 Deven Dodd Nqk=0
even Nqk=0

odd

1 6 64 5 3 2 2 1
2 12 4.1 × 103 13 9 5 4 3 2
4 24 1.7 × 107 117 35 19 16 5 4
6 36 6.9 × 1010 1186 210 110 100 7 7
8 48 2.8 × 1014 12 389 1569 801 768 10 10
10 60 1.2 × 1018 130 338 13 078 6593 6485 13 13
12 72 4.7 × 1021 1 373 466 114 584 57 468 57 116 16 16

becomes 0.29(5)e1.006(23)Ns . The coefficients and exponents
have been determined by fitting the numerically calculated
dimensions given in Table III on the scaling of Dphysical.
This is achievable through combinatoric calculations of a
nontrivial binary tree at and beyond 80 spatial sites. Similar
combinatoric methods remain to be devised for Dk=0 and
Deven-odd due to the additional complexity of global symmetry
constraints identified between entire branches of the tree
structure. With each reduction, an exponentially large un-
physical or symmetry-disconnected contribution to the Hilbert
space is removed, eliminating the possibility of introducing
errors associated with propagating states into these undesir-
able regions.

APPENDIX H: QUANTIFYING THE CNOT
SYSTEMATIC ERRORS

The most significant systematic uncertainties we encoun-
tered in executing quantum circuits on the IBM quantum com-
puting hardware (ibmqx2 and ibmqx5) were introduced by
CNOT gates, as is well known; see, for example, Refs. [33,54].
In order to quantify and remove this systematics from the
dynamics of calculated observables, a series of additional cal-
culations were performed in which each single CNOT gate in a
circuit was replaced by an odd-number of CNOT gates, ranging
from r = 1, 3, 5, 7 gates at each insertion (and up to 25 CNOT

gates in some exploratory cases). These measurement results
were then used to perform an extrapolation to r = 0. To model
the process, we assumed that each ideal CNOT operation is
followed by a depolarizing two-qubit channel (white-noise
model) resulting in a fractional CNOT error εg associated
with each CNOT gate. Applying the CNOT gate r times results
in the output density matrix ρout = (1 − rεg )CNOTρinCNOT +
rεgI + O(ε2

g ), where we used the fact that CNOT2 = I and that
it commutes with the white-noise channel. Therefore, the ex-
pectation value of any Pauli operator O measured after r noisy
CNOT application will relate to its “noiseless” (r = 0) value
through a linear equation 〈O〉(r ) = 〈O〉(0) − r〈O〉(0)εg for
small values of εg [55]. Next, linear and quadratic fits in
εg were performed on each temporal ensemble of data. The
results obtained through such extrapolations for the time
dependence of the e+e− pair density in the vacuum of the
1 + 1, two-spatial-site Schwinger model are shown in Fig. 10.

In this figure, quadratic extrapolation in r is seen to be crucial
in calculating the true dynamic evolution of pair production.

Applying this method of CNOT error extrapolation to the
variational calculations of the operator expectation values,
ground-state energy, and chiral condensate demands more
care. This can be seen in Fig. 11 where a Bayesian optimiza-
tion has been performed to find the three angles in Eq. (E10)
that minimize the calculated energy using the original circuit
(r = 1). These three angles are then used to implement 10
samples of the operator expectation values (ibmqx5, 8192
shots) at increased values of the bias (increased r). The results
of this procedure are then fit to a quadratic form in r with
confidence intervals representing 68% on the mean value
under the assumption of only Gaussian fluctuations.

The reason additional care is needed when applying this
CNOT extrapolation to ground-state searches as opposed to the
dynamic evolution of Fig. 10 is due to the inherent bias when
optimizing with the original circuit (r = 1). Removing this

FIG. 10. Single e+e− pair density in the ground state of the
1 + 1, two-spatial site Schwinger model as a function of time starting
from the empty vacuum, calculated with different numbers of CNOT

gates. A quadratic extrapolation in the CNOT-gate systematic error
has been performed—shown by the red points (those with visible
error bars). The results shown here were determined with 8 K
measurements per point. The exact result is given by the solid gray
curve. (500 IBM allocation units were used for the ∼6.1 QPU s
needed to generate this data set.)
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FIG. 11. Left panel shows the expectation values of operators contributing to the Hamiltonian and the chiral condensate, as described in
the text, at angles [see Eq. (E10)] describing the variational energy minimum of the r = 1 system. The number of CNOT gates (the “noise
parameter” r) is swept through r = 1, 3, 5, 7 wherever one appears in the circuit [Eq. (E10)]. The right panel shows the ground-state energy
and chiral condensate at the variational ground state (purple and blue extrapolated to −1.000(65) and −0.296(13), respectively). Points at
r = 0 have been quadratically extrapolated to remove this systematic bias, while the horizontal dashed lines indicate the exact values. (1200
IBM allocation units were used for the ∼6.35 QPU s needed to generate this data set.)

bias and optimizing the angles used to implement the circuit
evolving to the ground state are not commuting actions. This
can be intuitively understood by regarding the introduction of
additional CNOTs (and their associated systematics) as nonuni-
tary contributions to the evolution. As such, the energy hy-
persurface that the angles minimize has itself been modified.
Performing the extrapolation in r as has been done in Fig. 11
steps us into the correct energy landscape (r = 0) but does
not send the calculation to the r = 0 ground state. This can be
seen numerically in the deviation of many operator terms from
r = 1 to r = 0 away from the true values. However, calculated
values of the energy and the chiral condensate on the r = 0
hypersurface with angles optimized at r = 1 are consistent
with expected values, supporting the expectation of low-order-
polynomial extrapolation between hypersurfaces. This further
indicates that the assumed white-noise model is valid only
approximately and better experimental characterization of the
noise processes is needed.

In order to extrapolate to the r = 0 ground state, the
minimization and extrapolation procedures must be inter-
changed so that the Bayesian optimization is performed on
the r = 0 hypersurface of interest. Inverting the extrapolation
and optimization in this way would increase the cost of the
variational method by roughly a factor of 4 (the number of
r values needed for a meaningful extrapolation to r = 0) but
will allow the ground-state wave function to be determined
with the CNOT bias removed. In this way, extrapolations of the
systematic error associated with CNOT gates will be essential
in obtaining physical results of scientific accuracy.

The linear and quadratic analyses we have performed are
appropriate when the systematic errors from the CNOT gates
remain small. However, for a sufficiently large value of r , and
beyond, significant nonlinearities will become important, and
in particular the transition to the classical regime will render
values of observables independent of r . Figure 12 shows the
probability of finding zero pairs in the ground state at t = 2.4
and t = 6.4 as a function of the CNOT-gate depth per insertion
point. A linear form for an extrapolation to zero error is valid
only for small gate depth at t = 2.4, but for a much larger gate
depth at t = 6.4. For large CNOT gate counts, an oscillatory

behavior in r is observed at t = 2.4, while at other times the
situation is less severe. Note that the time scale for the system
to approach this classical limit (where the density matrix tends
to the identity) is much greater than that explored in Fig. 11
and explains the observation that three of the seven operators
have not yet been driven to zero by r = 7.

APPENDIX I: CHIRAL CONDENSATE 〈ψψ〉
In nature, the QCD chiral condensate of the vacuum plays a

critical role in determining the nature of low-energy strong in-
teractions. Its nonzero value spontaneously breaks the approx-
imate chiral symmetries of the QCD Lagrange density, leading
to three light pseudo-Goldstone bosons, the pions, which are
responsible for the long-range component of the nuclear force.
In the 0 + 1 and 1 + 1 Schwinger model, the ground state also
has a nonzero value for the chiral condensate 〈ψψ〉 for the

FIG. 12. Behavior of the CNOT-gate systematic errors in the
probability of finding zero e−e+ pairs as a function of the number
of CNOT gates for times t = 2.4 and t = 6.4 (lower and upper points,
respectively) in the evolution of the 1 + 1, two spatial site Schwinger
model. The red dashed line corresponds to the classical value of 0.25.
(130 IBM allocation units were used for the ∼4.6 QPU s needed to
generate this data set.)
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values of parameters we have chosen to analyze. The chiral
condensate provides a different probe of the structure of the
ground states, beyond what is revealed by its absolute energy
density.

At the level of fermion sites, the chiral condensate operator
is given by

χ̂0 = 1

N

⎛
⎝ NQ∑

i=odd

Ŝ (i)
z −

NQ∑
i=even

Ŝ (i)
z

⎞
⎠, (I1)

where N is the number of fermion sites in the system.
In the antiferromagnetic state (the strong-coupling ground
state), 〈χ̂0〉 = − 1

2 . In the two-qubit bases we have been
working with to describe the dynamics of the 1 + 1, two-
spatial-site even-parity sector, this operator has a matrix

representation,

χ̂0 → 1

2

⎛
⎜⎝

−1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠ = −1

4
(σz ⊗ σz + σz ⊗ I2).

(I2)

Including this operator in the variational calculation of the
ground-state energy, which can be done easily as the operators
contribute to both quantities, produces a value of 〈ψψ〉 =
−0.296(13) that is consistent with the exact known result, as
shown in Table I. It is interesting to observe that the value
of the condensate varies more strongly near the ground-state
energy minimum than the energy does. This is not a surprise
given that it is sensitive to different attributes of the ground
state than the energy.
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