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Adaptive measurements have recently been shown to significantly improve the performance of quantum
state and process tomography. Adaptive tomography is especially useful in complicated experiments with low
outcome generation rate, since it allows one to extract maximal information from a limited amount of data.
However, the existing methods either cannot be simply applied to high-dimensional systems or are prohibitively
computationally expensive. Here we propose and experimentally implement a tomographic protocol specially
designed for the reconstruction of high-dimensional quantum states. The protocol shows qualitative improvement
in infidelity scaling with the number of measurements and is fast enough to allow for complete state tomography
of states with dimensionality up to 36.
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I. INTRODUCTION

Quantum state tomography is a procedure which allows
one to reconstruct the full density matrix of a quantum
state from the outcomes of measurements on an ensemble
of systems prepared in that state [1]. Similarly, quantum
process tomography reconstructs the χ matrix, describing a
transformation of a quantum system in a most general form
[2]. In the era of rapidly developing quantum technologies,
quantum tomography becomes one of the critical primitives,
allowing for experimental analysis and debugging of quantum
devices under development. It is therefore crucial to develop
tomographic protocols capable of reconstruction of complex
high-dimensional states and processes. Although full state
tomography of a system living in a D-dimensional Hilbert
space requires at least D2 different measurement outcomes
and is, therefore, not a scalable procedure, one still needs
protocols which are tractable for at least few-qubit states.

There are two main goals in protocol development for
quantum tomography. The first one is to find protocols which
use a minimal number of measurement operators (e.g., mini-
mal qubit tomography based on tetrahedron geometry [3] or
reconstruction of any pure quantum state with five bases [4]).
The second objective is to construct protocols that achieve a
certain level of accuracy faster (compared by the number of
registered events) than others or equivalently provide a more
accurate estimation for the same number of registered events.
The present work considers the latter case.

The precision of the tomographic estimate significantly
depends on the choice of the protocol, i.e., the specific set of
measurements performed. The quality of reconstruction may
be significantly improved if these measurements are chosen
adaptively, relying on the previous data to tune the following
measurements to increase the statistical significance of the
observed outcomes. Although first ideas and implementations
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following this line of thought appeared quite early [5,6],
adaptive methods in quantum tomography have recently seen
significant advances (see Ref. [7] for a review). One approach
is to use Bayesian methods of optimal experimental design
[8], which was experimentally realized for single-qubit [9]
and two-qubit states [10], as well as single-qubit quantum
processes [11]. This method is completely general and the-
oretically attractive and demonstrates a quadratic increase in
reconstruction precision compared to nonadaptive protocols;
however, the involved computational resources are so high
that it becomes impractical for high dimensions.

Another approach was suggested in Ref. [5] and later
in Ref. [3], and realized experimentally for qubits in
Refs. [12,13]. It essentially suggests to perform state esti-
mation as a two-step process, first obtaining an estimate by
measurements in an arbitrary basis and then changing the
measurement basis to the eigenbasis of the estimated density
matrix. This approach also demonstrates a quadratic improve-
ment in reconstruction precision and was recently general-
ized to a high-dimensional case [14]. There is, however, a
problem with a direct application of this approach to a high-
dimensional case in practice. The eigenstates of the estimate
will almost certainly be entangled high-dimensional states,
and realization of the corresponding projective measurements
experimentally is usually extremely challenging. There are
other ideas and approaches to designing optimal adaptive
strategies for quantum tomography [15–17]; however, none
of them has experimentally gone beyond two qubits [18–20].

A rare exception among adaptive protocols is the recently
suggested self-guided tomography [21], which was shown to
be tractable for at least seven qubits in numerical simulations.
This protocol is, however, directly applicable only for the
reconstruction of pure states and should be extended with
Bayesian data processing to allow for mixed-states recon-
struction [22]. In this case it shares the same computational
difficulties with other Bayesian protocols. Here again, ex-
perimental implementations were only limited to two-qubit
states [23].
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In this article we present an adaptive protocol which is
specially tailored for high-dimensional bipartite states. Such
states are ubiquitous in many experimental settings, for ex-
ample, in experiments with orbital-angular momentum and
entangled spatial states of photons [24]. Our protocol utilizes
only factorized measurements performed separately on the
subsystems, which makes it practical for implementation,
while it still shows the improvement in reconstruction pre-
cision over nonadaptive protocols. It is also independent of
the choice of a statistical estimation procedure. We provide
intuitive arguments explaining the reasons for the increased
estimation accuracy and confirm them by numerical simu-
lations and real experiments. The experimental testbed for
the protocol is the reconstruction of high-dimensional (up to
D = 36) entangled spatial states of photon pairs.

II. ALGORITHM

A. Protocol accuracy

An estimator ρ̂ is a map from random outcomes of mea-
surements to the system Hilbert space HD of dimension D.
Therefore, an estimator itself and all quantities involving
it are random variables. Our protocol was inspired by the
existing theory of universal statistical distribution for fidelity
F (ρ, ρ̂ ) = Tr2

√
ρ1/2ρ̂ρ1/2 between the true state ρ and the

estimator ρ̂ [25]. Let us outline the main results of this theory
for convenience.

The theory is valid for a maximum-likelihood estimator
and provides an asymptotic distribution of fidelity F (ρ, ρ̂ )
in the limit of infinitely large number of detected events, N ,
whenever a measurement protocol is given. Measurements are
characterized by positive operator-valued measures (POVMs)
{Mα}. POVM elements Mαγ ∈ Mα satisfy the normalization
constraint

∑
γ Mαγ = 1D , where 1D is a D-dimensional iden-

tity matrix. We are interested in projective measurements in
some basis; i.e., each POVM consists of D rank-1 projec-
tors: Mα = {|ϕαγ 〉〈ϕαγ |}Dγ=1. The probability of obtaining an
outcome γ in a measurement α with the system being in the
state ρ is given by Born’s rule:

pαγ = Tr(Mαγ ρ). (1)

Suppose ρ is a rank-R state with only R nonzero eigen-
values λk . It can be purified in the extended Hilbert space
HRD = HR ⊗ HD of dimension R × D: ρ = TrR |�〉〈�|.
The purification |�〉 is arbitrary up to unitary transformations
on the auxiliary system HR; one possible choice is

|�〉 =
R∑

k=1

√
λk|k〉 ⊗ |ψk〉, (2)

where |ψk〉 are the eigenvectors of ρ corresponding to nonzero
eigenvalues λk (henceforward, λk are assumed to be sorted
in decreasing order). Let M ′

αγ = 1R ⊗ Mαγ be an “extended”
measurement operator acting on HRD space, then the prob-
ability in Eq. (1) is invariant under the replacement ρ →
|�〉〈�| and Mαγ → M ′

αγ .
As a final preparatory step let us switch from complex

to real-valued vectors and matrices. Indeed, every complex
matrix A and column vector v can be viewed as a real-valued

matrix Are and a vector vre of doubled dimension:

Are =
[

Re A − Im A

Im A Re A

]
, vre =

[
Re v

Im v

]
. (3)

Linear algebraic expressions, e.g., w = Av, maintain their
form under this isomorphism: wre = Arevre. The Hermitian
conjugation operation is replaced by transposition alone:
A† → AT

re. Using the purification (2) and isomorphism (3),
Born’s rule (1) can be rewritten as

pαγ = cT Oαγ c, (4)

where c = |�〉re and Oαγ = (M ′
αγ )re.

The uncertainty of an asymptotically efficient estimator
is characterized by the Fisher information matrix H (via its
inverse):

Hij =
〈
∂ lnL(c; {nαγ })

∂ci

∂ lnL(c; {nαγ })

∂cj

〉
, (5)

where L(c; {nαγ }) is a likelihood function, nαγ is the number
of times an outcome γ was observed for a POVM α, and
the expectation is carried out over different possible realisa-
tions {nαγ }. The Fisher information matrix H is a symmetric
real-valued matrix of size 2RD × 2RD. If a tomographic pro-
tocol is informationally complete, H has 2RD − R2 strictly
positive singular values σi , while other R2 ones are exactly
zero. Henceforth, we assume that σi are sorted in decreasing
order.

Fidelity F (ρ, ρ̂ ) between the true state ρ and an asymp-
totically efficient, e.g., a maximum-likelihood, estimator ρ̂ =
argmaxρ ′ L(ρ ′; {nαγ }) is closely related to the singular val-
ues σi of H . An asymptotic distribution of F (ρ, ρ̂ ) in the limit
of infinitely many observations can be represented as follows
[25,26]:

1 − F =
ν+1∑
i=2

1

σi

ξ 2
i , (6)

where ν = 2RD − R2 − 1, and ξi ∼ N (0, 1) are identically
and independently distributed normal random variables with
zero mean and unit variance. The sum (6) contains ν terms,
which is equal to the number of degrees of freedom for the
rank-R quantum state, for example, ν = 2D − 2 for pure
states and ν = D2 − 1 for full rank states. The right-hand
side of Eq. (6) is a sort of generalized χ -squared distribution;
useful series representations of its distribution function can be
found in Refs. [27,28]. The expectation 〈1 − F 〉 and standard
deviation �(1 − F ) of 1 − F are obtained straightforwardly:

〈1 − F 〉 =
ν+1∑
i=2

1

σi

, �(1 − F ) =
√√√√ν+1∑

i=2

2

σ 2
i

. (7)

In the following we are interested in the likelihood func-
tion L(c), expressed as a product of Poissonian probabilities,
since it is usually the case in experiments with photon count-
ing:

L(c) =
∏
αγ

[pαγ (c)bαγ ]nαγ

nαγ !
e−pαγ (c)bαγ , (8)

032330-2



ADAPTIVE QUANTUM TOMOGRAPHY OF HIGH- … PHYSICAL REVIEW A 98, 032330 (2018)

where bαγ are constants proportional to exposition time, nαγ

are the numbers of detected counts, and
∑

αγ nαγ = N . Note
that Eq. (8) actually covers the canonical for the quantum to-
mography case of multinomial likelihood, Lmult ∝ ∏

αγ p
nαγ

αγ ,
when bαγ does not vary with index γ : bαγ = bα . In this
case,

∑
αγ pαγ bαγ = ∑

α bα does not depend on ρ, and the
exponent can be absorbed by the proportionality sign.

Fisher information H for the Poissonian likelihood (8) is

H =
∑
αγ

4bαγ

pαγ

Oαγ ccT Oαγ . (9)

Given that total number of counts, N , is fixed, the equality
cT Hc = 4N holds, since pαγ bαγ is equal to the expectation
〈nαγ 〉. The largest singular value, σ1 = 4N , corresponds to the
vector c. Other nonzero singular values also grow as fast as N

in the asymptotic limit: σi ∝ N . Thus both the expectation
and the standard deviation (7) are inversely proportional to
the total number of counts detected, N : 〈1 − F 〉 ∝ 1/N and
�(1 − F ) ∝ 1/N .

It is implicitly assumed in the derivation of Eq. (6) that
the rank Rs of the true state ρ matches the rank Re of the
estimator ρ̂ (i.e., the likelihood is optimized over the set
of states of rank Re): Rs = Re = R. Now we explore an
estimation of a rank-deficient state ρ of rank Rs < Re. It is
well known that fidelity scaling in this case can degrade up
to 〈1 − F 〉 ∝ 1/

√
N [29]. The reason asymptotic 1/N does

not hold anymore is that some of the singular values σi in
the sum (6) become zero. The number of terms in Eq. (6)
is equal to νe + 1 ≡ 2ReD − R2

e and is determined by the
estimator rank Re. On the other hand, the number of nonzero
singular values or the rank of the Fisher information matrix H

is related to the true state rank Rs : rank H = νs + 1 ≡ 2Rs

D − R2
s .

Let us consider an example: suppose a rank-3 state with
its nonzero eigenvalues being λ1, λ2, λ3 is measured using
some protocol {Mαγ }. One can calculate the Fisher infor-
mation H3(λ1, λ2, λ3), assuming the estimator rank is Re =
3. Obviously, rank H3(λ1, λ2, λ3) = ν(R = 3) + 1. Now we
take the limit λ3 → 0, obtaining H3(λ1, λ2, 0), which cor-
responds to the case Rs = 2 and Re = 3. Our goal is to
find rank H3(λ1, λ2, 0). To make things more transparent we
consider the term Oαγ c in Eq. (9) or, equivalently, M ′

αγ |�〉
due to the isomorphism (3). M ′

αγ |�〉 has the following block
structure:⎡

⎣Mαγ 0 0
0 Mαγ 0
0 0 Mαγ

⎤
⎦

⎡
⎣

√
λ1|ψ1〉√
λ2|ψ2〉

0

⎤
⎦ =

⎡
⎣

√
λ1Mαγ |ψ1〉√
λ2Mαγ |ψ2〉

0

⎤
⎦.

(10)

Now, if one calculates the matrices Oαγ ccT Oαγ to obtain
the Fisher information H3(λ1, λ2, 0), then the specific rows
and columns are exactly zero. This is valid if pαγ �= 0 for
all operators Mαγ , which usually happens for static mea-
surement protocols. H3(λ1, λ2, 0) has the form of a Fisher
information matrix H2(λ1, λ2), computed for Re = Rs = 2,
with some zero-valued rows and columns inserted. Obvi-
ously, rank H3(λ1, λ2, 0) = rank H2(λ1, λ2) = ν(R = 2) + 1.
Therefore, σi = 0 for i = ν(R = 2) + 2, . . . , ν(R = 3) + 1
in Eq. (6).

Due to instrumental imperfections in real tomographic
experiments, nominally, the true state always has a full rank,
Rs = D. However, some of the eigenvalues may be rela-
tively small. Estimation of the state mixedness compels an
experimenter to reconstruct the state as a full-rank one, Re =
D. Formally, there is no problem at all, because Rs = Re,
but the presence of tiny eigenvalues reduces the estimation
accuracy 1 − F (ρ, ρ̂ ) dramatically—the true state behaves ef-
fectively as a rank-deficient one. Our experience in numerical
simulations suggests that the true state ρ can be effectively
treated as a rank-deficient one, until the uncertainty of the
estimator ρ̂, i.e., infidelity 〈1 − F (ρ, ρ̂ )〉, is greater or ap-
proximately equal to infidelity 1 − Fr-d between the true state
and the closest rank-deficient state: 〈1 − F (ρ, ρ̂ )〉 � 1 − Fr-d,
where 1 − Fr-d = minσ :rank σ<Re

[1 − F (ρ, σ )]. If σ and ρ

commute then it can be shown that 1 − Fr-d = ∑D
i=Re

λi ,
where λi are the eigenvalues of ρ.

B. Estimator-orthogonal measurements

Measurements for which pαγ ≈ 0 are of special interest.
Even though Oαγ ccT Oαγ contains rows and columns with
nearly vanishing elements, when λ3 ≈ 0, they can be mag-
nified by the factor 1/pαγ � 1. If a sufficient number of
measurements obey pαγ ≈ 0, then the matrix H3 has no tiny
singular values σi for i = 2, . . . νe + 1, required in Eq. (6),
and the accuracy of tomography is high. In the limit λ3 → 0
the measurement operators Mαγ should be chosen in such
a way that a strict equality pαγ = 0 holds, to preserve a
convergence rate 1/N .

More precisely, in the presence of small eigenvalues λi

(in our example λ3 � 1), loss of estimation accuracy occurs
when blocks

√
λiMαγ |ψi〉 in the vector (10) are “imbal-

anced”; i.e., norms gi ≡ ‖√λiMαγ |ψi〉‖2 of the blocks signif-
icantly differ. By appropriate selection of a measurement Mαγ

the norms can be equalized, g1 = · · · = gRe
, which improves

the estimation accuracy. Equalization of the norm necessar-
ily results in a small outcome probability pαγ . The upper
bound can be provided in the following way. Notice that the
outcome probability pαγ is expressed as pαγ = ∑Re

i=1 g2
i =∑Re

i=1 λisi , where si ≡ ‖Mαγ |ψi〉‖2
2. The quantities si depend

on measurement choice, but they always obey the inequality∑Re

i=1 si � 1. Therefore, the maximum of the sum
∑Re

i=1 λisi ,
subject to

∑Re

i=1 si � 1 and g2
i = λisi = const, is the upper

bound for the outcome probability. The solution is pαγ �
Re∑Re

i=1 1/λi

. Leaving only the smallest eigenvalue λRe
in the

obtained expression, we arrive at pαγ � ReλRe
� 1.

One may hope that the protocol, which maintains 1/N

convergence in the extreme situation Rs < Re, will also have
superior accuracy in the situation of small (but nonzero)
eigenvalues λi of the true state. Therefore, the case Rs < Re

is considered further. We call a measurement Mαγ orthogonal
to a projector |ψ〉〈ψ | if Tr(Mαγ |ψ〉〈ψ |) = 0. This implies
Mαγ |ψ〉 = 0 and vice versa due to the positivity of Mαγ .
Clearly, the aforementioned example can be transferred in full
analogy to different combinations of Rs < Re � D. Now we
are ready to formulate the necessary condition for a protocol
to maintain convergence 1/N in the presence of discrepancy
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between the true state rank Rs and the estimator rank Re,
Rs < Re:

Condition 1 (necessary). The protocol must contain a
measurement Mαγ which is orthogonal to the projectors on the
eigenvectors |ψk〉 corresponding to the nonzero eigenvalues of
the true state: Mαγ |ψk〉 = 0, k = 1, . . . , Rs .

This condition means that the measurement Mαγ has zero
outcome probability: pαγ = 0. Of course, if an information-
ally complete protocol contains only one orthogonal opera-
tor Mαγ then it is not sufficient to improve convergence. The
rank of the Fisher information matrix H is limited by νs + 1
if there are no orthogonal measurements. Each independent
orthogonal measurement increments the rank by one above
this value, until the maximum rank νe + 1 is not reached.
Therefore, the following sufficient condition holds:

Condition 2 (sufficient). The protocol should contain
νe − νs = (Re − Rs )(2D − Re − Rs ) independent measure-
ments Mαγ , satisfying Condition 1.

It seems that orthogonal measurements demand exact
knowledge of the true state ρ, but, as in other adaptive proto-
cols with measurement basis alignment [3,12], the estimator-
orthogonal protocol aligns the measurements according to the
current estimator ρ̂. The true state eigenvectors are replaced
by the estimator eigenvectors. The rank Rs of the true state is
usually also unknown in advance (otherwise one can equate
the estimator rank Re with the state rank Rs) and, hence,
in general we suggest to tune the protocol for all ranks of
the input state—one should find the measurements orthog-
onal to K = 1, . . . , Re − 1 eigenvectors subsequently. First,
let K = 1 and measurements are found to be orthogonal to
the eigenvector with the largest eigenvalue (tune for rank-1
states); then set K = 2 and subsequent measurements are
orthogonalized with respect to the first two eigenvectors (tune
for rank-2 states), etc. The protocol, obtained in such a way,
has an optimal convergence 1/N regardless of the true state
rank. However, the possible values of K may be specified by
some a priori knowledge if available.

C. Factorized measurements

A high-dimensional quantum system usually has a natural
separation into subsystems (tensor product structure), and
measurements performed on its parts separately, which we
call factorized measurements, are much easier to implement in
experiment than general measurements on the whole system.
According to Condition 1, measurements should be orthog-
onal to the eigenvectors |ψk〉 of the true state ρ (or the cur-
rent estimator ρ̂), which are almost certainly entangled. But
the restriction to factorized measurements poses additional
constraints, and a natural question arises: do factorized and
estimator-orthogonal measurements exist? A short answer is
that they do exist if the number K of vectors to orthogonalize
to does not exceed a certain limit Kmax. This means that the
accuracy of the estimator-orthogonal protocol with factorized
measurements will degrade for the states with rank Rs >

Kmax.
In a simplest case of a bipartite system and a pure true

state, a Schmidt decomposition can be used to find estimator-
orthogonal measurements. Indeed, there is only one eigen-
vector |ψ1〉 with a nonzero eigenvalue (K = 1). Its Schmidt

decomposition is |ψ1〉 = ∑
i

√
μi |i〉 ⊗ |i〉, where μi are the

eigenvalues of the reduced density operator. Obviously, fac-
torized vectors |i〉 ⊗ |j 〉, i �= j , are orthogonal to |ψ1〉 [30].
The desired measurements Mαγ are the projectors onto these
vectors: Mαγ = |i〉〈i| ⊗ |j 〉〈j |.

In general, the existence of measurements M (K ), which
are factorized and orthogonal to K entangled vectors, is
closely related to the maximal dimension of a completely
entangled subspace [31]. Suppose a Hilbert space HD of a D-
dimensional system consists of l components: HD = Hd1 ⊗
Hd2 ⊗ · · · ⊗ Hdl

, where dimensions di of components Hdi

obey d1d2 · · · dl = D. A subspace SE ⊂ HD is said to be
completely entangled if it contains no factorized vectors.
The maximal possible dimension of a completely entangled
subspace is

DE ≡ max
SE∈E

dim SE = D − (d1 + · · · + dl ) + l − 1, (11)

where E is the set of all completely entangled subspaces.
Let Sψ ⊂ HD be a subspace spanned by K vectors |ψk〉

(dim Sψ = K) and S⊥
ψ be its orthogonal complement in HD

(dim S⊥
ψ = D − K). The required measurement M (K ) exists

if S⊥
ψ is not a completely entangled subspace. This is true

for sure if dim S⊥
ψ > DE . Taking into account Eq. (11), after

elementary transformations we obtain

K � Kmax = d1 + · · · + dl − l. (12)

Therefore, if K � Kmax, the factorized estimator-orthogonal
measurement M (K ) exists whatever vectors |ψk〉 are; other-
wise it may not (which will occur almost certainly in practice).

In numerical simulations and experiments reported here
we investigate a bipartite system (l = 2) with two identical
components, d1 = d2 = √

D, and Kmax = 2
√

D − 2. Another
notable system is an l-qubit register. In this case Kmax = l,
which is exponentially small in comparison with a maximum
possible rank 2l of a register state.

D. Estimator-orthogonal protocol

There are different ways to incorporate estimator-
orthogonal measurements into a particular adaptive protocol,
mainly depending on the system of interest. In the sections
below we focus on a bipartite system with two identical
parts. The whole system has a Hilbert space HD = HA ⊗ HB ,
where HA and HB are Hilbert spaces of the subsystems and
dim HA = dim HB = √

D. The following adaptive protocol,
which we call an estimator-orthogonal protocol, was used
in the present work to perform numerical simulations and
experiments. It consists of several steps:

(1) Evaluate the current estimator ρ̂ of the true state.
(2) Calculate the estimator eigenvectors |ψk〉 and sort

them by their corresponding eigenvalues in decreasing order.
(3) Choose index K randomly from the interval [1,Kmax]

with a uniform distribution (Kmax = 2
√

D − 2).
(4) Find a factorized vector |ϕA〉 ⊗ |ϕB〉, which is simul-

taneously orthogonal to K eigenvectors: 〈ϕAϕB |ψk〉 = 0, k =
1, . . . , K .

(5) Supplement the vector |ϕA〉 with
√

D − 1 random mu-
tually orthogonal vectors to form a basis BA in HA. Repeat the
analogous procedure for the vector |ϕB〉 to obtain a basis BB .
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(6) Tensorially multiply the basis elements |αi〉 ∈ BA by
|βj 〉 ∈ BB to obtain a basis BD in HD with elements |δk〉 =
|αi〉 ⊗ |βj 〉 for all i, j = 1, . . . ,

√
D.

(7) Perform projective measurements in the basis BD .
(8) Return to step 1, if the total number of registered

events, N , is less than desired; otherwise, stop tomography.
Let us explain some steps in more detail. The estimator at

step 1 is the maximum-likelihood estimator. The optimization
itself is carried out by means of an accelerated projective
gradient (APG) algorithm with adaptive restart [32]. We im-
plemented a particular variant of this algorithm (presented in
Ref. [33], p. 3). Actually, the authors of Ref. [33] propose a
combination of APG with a conjugate gradient (CG) method
for faster convergence; however, they claim that APG alone
has a comparable performance, when the initial guess is close
to the maximum of the likelihood being sought. This is the
case in our tomographic procedure, because the estimator,
found on the previous iteration of the protocol, is supplied
to the APG routine as an initial guess (on the first iteration a
completely mixed state is substituted). This is the reason we
use APG alone without the proposed CG part.

The initial step size parameter t1 is selected to be t1 = 0.1,
and the step size multiplier is β = 0.5. The optimization algo-
rithm terminates at iteration i, when an absolute difference of
the log-likelihood values is less than 10−8 for 20 successive
iterations: | lnL(ρ̂i−k+1)− lnL(ρ̂i−k )|<10−8, k = 1, . . . , 20.

An essential part of the APG method is a projection op-
eration, ρ = proj(σ )—a map of an arbitrary matrix σ to a
space of physical density matrices ρ with a given rank Re.
A common choice is to use a projection which affects only
the eigenvalues of an estimator, leaving the eigenvectors un-
changed. Let μ = (μ1, . . . , μD )T be a vector of eigenvalues
for a matrix σ . During the calculations of the APG routine
some of these eigenvalues may happen to be negative or
have a sum not equal to unity. On the contrary, a vector
λ = (λ1, . . . , λD )T of eigenvalues of any physical density
matrix lies in the canonical simplex �D = {(λ1, . . . , λD )T |
λi > 0 ∧ ∑D

i=1 λi = 1}. Therefore, for a full-rank estimate,
Re = D, it is sufficient to project μ onto a canonical simplex
�D: λ = proj�D

(μ) [34].
In the case Re < D the projection operation is slightly

modified. First, a truncated vector μ̃ = (μ1, . . . , μRe
)T is

constructed. Second, it is projected onto a simplex �Re
:

λ̃ = (λ1, . . . , λRe
)T = proj�Re

(μ̃). And, finally, λ̃ is extended
to λ by appending D − Re zero elements to the end: λ =
(λ1, . . . , λRe

, 0, . . . , 0)T . The vector λ thus obtained corre-
sponds to a physical density matrix of rank Re.

An orthogonal factorized vector at step 4 is found by
minimization of the function

f (|ϕA〉, |ϕB〉) =
K∑

k=1

|〈ϕAϕB |ψk〉|2 + 〈ϕA|ϕA〉 + 1

〈ϕA|ϕA〉

+ 〈ϕB |ϕB〉 + 1

〈ϕB |ϕB〉 − 4. (13)

This non-negative function is equal to zero if and only if, first,
the vector |ϕA〉 ⊗ |ϕB〉 is orthogonal to all eigenvectors |ψk〉
for k = 1, . . . , K , and, second, |ϕA〉, |ϕB〉 are normalized
to unit magnitude. Therefore, the global minimum f = 0 is

delivered by the vector being sought. It is guaranteed to exist,
because K � Kmax. Note that the function f is constructed
to keep the normalization condition (by means of the last
five terms in it) and, consequently, the optimization can be
accomplished by any unconstrained minimization routine.
In particular, we use a Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [35]. The algorithm starts from random
seed vectors |ϕA〉 and |ϕB〉 having a Haar-uniform distribution
[36]. If the algorithm sticks in some local minimum f �= 0,
then the minimum is neglected, and optimization is restarted.
The global optimum f = 0 may be attained for a number
of different vectors, and the random seed ensures that the
algorithm can converge to any of them. This random seed
and the overcomplete nature of the protocol provides that
the number of various estimator-orthogonal measurements is
sufficient.

A random orthonormal basis B containing a given vec-
tor |ϕ〉, required at step 5, can be obtained as follows. For a
start, note that any unitary matrix corresponds to some basis
and vice versa. A natural measure on a unitary matrix group
is a Haar measure, which induces a “uniform” distribution
on bases. A simple algorithm for the generation of Haar-
distributed unitary matrices is known in the literature [37].
In the beginning, the matrix G, pertaining to the Ginibre
ensemble, is taken. By definition, real and imaginary parts
of the matrix elements of G are independent and identically
distributed Gaussian random quantities with zero mean and
unit variance [38]. Then a QR decomposition is applied to the
matrix G, G = QR, where Q is a unitary matrix and R has a
right-triangular form with positive elements on its diagonal.
The obtained Q is distributed according to the Haar measure.
The vector |ϕ〉 can be complemented to form a basis B
by simply replacing the first column of G by |ϕ〉 in the
aforementioned procedure. The first column of Q is also equal
to |ϕ〉 due to the special form of R. Therefore, the matrix Q

corresponds to the basis B being sought.
The basis BD at step 7 corresponds to some POVM Mα

consisting of rank-1 projectors Mαγ onto the basis elements,
where an index α enumerates the bases and γ is an index
of an element in the basis. In our experiments the data are
collected for a fixed time tα for each operator Mαγ within
the same POVM. Moreover, tα remains constant for D + 1
successive bases—the minimal number of bases to provide
informational completeness for a full-rank estimate. After
that tα is allowed to change. The change of measurement
time tα is chosen such that the data block size follows some
schedule. By the block size we mean an average number of
counts 〈∑γ nαγ 〉 accumulated for a single POVM element.
The block size is equal to the likelihood parameter bαγ ≡
bα [see Eq. (8)]. Previously it was shown that the schedule
bα ∝ N , where N is the total number of counts observed
so far, is a reasonable trade-off between the benefit from
adaptivity and the computational and measurement realigning
overhead [10]. In particular, we use bα = max(100, �N/30�)
throughout the present work (with the only exception in
Appendix C). In the simulations the outcomes are generated
using a multinomial likelihood (unlike a Poissonian likelihood
in real experiments), so there is no notion of measurement
time. The block size is a parameter to be set directly, rather
than a quantity depending on measurement time.
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III. SIMULATIONS

A. Averaged performance

We compare the factorized estimator-orthogonal (FO) pro-
tocol, described in Sec. II D, with four other measurement
strategies. All protocols constitute of projective measurements
in some informationally overcomplete set of bases. Measure-
ment time and the block size schedule are the same as that of
the FO protocol. Protocol abbreviations, used throughout the
present work, together with their description are given in the
following list:

(1) Factorized random (FR) measurements are performed
in random bases consisting of factorized vectors only. The
resulting basis is obtained by an element-wise tensor product
of two subsystem bases, distributed with respect to Haar
measure, for every possible pair of their elements.

(2) General random (GR) measurements are performed in
random bases of general form drawn from a Haar-uniform
distribution.

(3) Eigen is an adaptive protocol, which includes mea-
surements in the eigenbasis of the current estimator. The first
basis coincides with the eigenbasis; the successive D bases
are the GR ones, and they are added to provide informational
completeness. When this set of D + 1 bases is measured, the
procedure is repeated: the estimator is updated and a refined
eigenbasis is available.

(4) Aligned mutually unbiased basis (AMUB) mea-
surements are performed in mutually unbiased bases
(MUBs) [39,40], rotated in such a way that one of the MUBs
coincides with the estimator eigenbasis. Similarly to the Eigen
protocol, the procedure is repeated for the successive D + 1
bases. This protocol is a straightforward extension of an
adaptive algorithm proposed in Ref. [12] to high-dimensional
systems (the only difference is that MUBs are realigned many
times, not only once).

FR and FO protocols utilize only factorized measurements,
while others include projectors onto entangled states almost
certainly.

We note that a maximal set of D + 1 MUBs is known to
exist if the dimensionality D of the system Hilbert space is a
power of a prime: D = pm, where p is prime and m is a posi-
tive integer. For other dimensions its existence is still an open
question. Therefore, the AMUB protocol is not accessible for
certain dimensions, and that is why the Eigen protocol is in-
troduced. Actually, these protocols are quite similar, because
the “most important”—estimator-orthogonal—part, providing
the improvement in accuracy, namely, measurements in the
eigenbasis, is the same for both of them.

The quantitative criterion for the protocol comparison is
the Bures distance between the true state ρ and the estima-
tor ρ̂:

d2
B (ρ, ρ̂ ) = 2 − 2

√
F (ρ, ρ̂ ) ≈ 1 − F (ρ, ρ̂ ). (14)

The last approximate equality holds in the asymptotic limit
1 − F � 1; therefore, the theory set forth in Sec. II A is also
applicable for the squared Bures distance.

Dependencies of the Bures distance d2
B (N ) from the true

state ρ to the current estimator ρ̂(N ) on the number of counts
detected, N , are depicted in Fig. 1 for a D = 9 dimensional
system. Unless otherwise is specified, a full-rank estimate
with Re = D is used. The dependencies are averaged over
50 full runs of tomography for different protocols. Two
cases are studied: averaged performance among pure Haar-
uniformly distributed true states [Fig. 1(a)] and true states, dis-
tributed with respect to measure induced by the Bures metric
[Fig. 1(b)] [42]. In each run a newly generated random state is
used. All dependencies are well fitted by a power law model
cNa . In what follows c is referred to as a prefactor and a is
called a convergence rate. Results of this approximation are
summarized in Table I.
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(a) Pure states.
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(b) Bures-distributed states.

FIG. 1. The results of numerical simulations for nine-dimensional states. The dependence of the squared Bures distance between the
current estimator and the true state on the total number of detected counts, N , is shown. Each curve represents performance averaged over
(a) Haar-randomly selected pure states, and (b) mixed states distributed with respect to the Bures distance-induced measure. Here and in
subsequent plots FR denotes factorized random measurements; FO, factorized estimator-orthogonal protocol; GR, random measurements of
general form; Eigen, measurements in the eigenbasis of the current estimator; and AMUB, aligned mutually unbiased bases. Dot-dashed lines
are Gill-Massar bounds d2

B = 8/N and d2
B = 200/N for pure and mixed state estimation, respectively [5,41].
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TABLE I. Approximation of the dependence of the distance to
the true state d2

B (ρ, ρ̂) on the number of counts detected, N , obtained
in the simulations, with a cNa model.

D State Protocol c �c a �a

9 Pure FR 1.73 0.07 −0.519 0.003
average FO 52 4 −0.967 0.006

GR 1.53 0.06 −0.516 0.003
Eigen 33.8 2.2 −1.019 0.005

AMUB 44 3 −1.038 0.006
9 Bures FR 37.9 1.4 −0.728 0.003

average FO 51.6 1.9 −0.757 0.003
GR 41.4 1.6 −0.765 0.003

Eigen 90.7 2.9 −0.8642 0.0028
AMUB 100 3 −0.8669 0.0027

36 Pure FR 4.23 0.13 −0.5082 0.0020
average FO 396 30 −0.874 0.005

GR 4.88 0.15 −0.5159 0.0019
Eigen 131 12 −0.993 0.005

For pure states the adaptive strategies are advantageous
as they demonstrate 1/N convergence, compared to 1/

√
N

scaling for the random ones. However, the FO protocol yields
to Eigen and AMUB by a prefactor being about three times
larger. There is no difference between the FR and GR pro-
tocols. As expected, the Eigen and AMUB protocols behave
almost similarly (with a slight preponderance of the Eigen
protocol for moderate values of N ). A characteristic sawtooth
form of d2

B (N ) dependencies for these protocols is explained
by the fact that it is the measurement in the eigenbasis which
significantly refines the current estimator, and the distance
to the true state suddenly drops after this measurement is
performed.

The dependencies d2
B (N ) are tighter for different protocols

when averaged over Bures-distributed mixed states in contrast
to the pure state case. One can still isolate three groups of
protocols according to the accuracy they achieve. Strategies
including solely factorized measurements have a convergence
rate of a ≈ −3/4 regardless of adaptivity (FR and FO).
The GR protocol is better by a prefactor. The most precise
protocols with improved convergence rates utilize general
type measurements and benefit from adaptivity (Eigen and
AMUB).

Previously, nearly the same influence of measurement fac-
torization and adaptivity on tomographic accuracy for pure
(mixed) state tomography was observed for a completely
different Bayesian approach to state estimation and protocol
design [10].

We also tested the performance of the aforementioned pro-
tocols in pure-state tomography of a 36-dimensional system
(with the exception of the AMUB one, which is unavailable
for this dimensionality). Again, the dependencies d2

B (N ) for
each protocol are averaged over 50 full tomography runs,
and every run uses its own Haar-uniformly distributed true
state (see Fig. 2). Generally, the results conform to the nine-
dimensional case. However, in the case of increased dimen-
sionality the asymptotically optimal convergence rate of the
FO protocol is reached for a significantly higher N . The
transient region of reduced performance seems to increase

1

2

3

4

1,3

4

2

FIG. 2. The averaged results of numerical simulations for 36-
dimensional random pure true states. Solid curves show the depen-
dence of the squared Bures distance to the true state on the number
of registered events, N , for different protocols. Dashed lines depict
the best fit with the power-law model cNa . The dot-dashed line is the
Gill-Massar bound d2

B = 35/N for pure state estimation.

with growing dimensionality. The parameters of power-law
fits are presented in Table I.

B. Full versus adequate-rank estimation

The convergence of infidelity 1 − F ∝ 1/
√

N with the
number of counts detected, N , occurs only in the situation
of rank mismatch, when the true state has lower rank than
the estimator, Rs < Re. If the ranks are equal, Rs = Re, then
eventually in the asymptotic limit N → ∞ the 1/N conver-
gence appears. Therefore, it is important to select an adequate
rank, which by definition provides 1/N convergence whatever
the protocol is. The author of the original paper [25] suggests
to infer the model rank Re from the observed data using some
kind of a χ2 consistency test.

Formally, all states have full rank in real experiments (but
some eigenvalues may be relatively small), and it looks like
the full-rank estimation should always be used. But the esti-
mator with the adequate (and partial) rank captures nonzero
eigenvalues, which are statistically significant, treating possi-
bly small eigenvalues as essentially zero ones, without any
influence on accuracy. Accordingly, an adequate rank can
be selected on the fly, while tomography proceeds and new
eigenvalues become significant, and in principle this scenario
ensures 1/N convergence. It seems that adaptive tomography
(and the estimator-orthogonal protocol in particular) can offer
nothing more than the adequate rank selection does. However,
it appears that rank selection and adaptivity do not exclude
each other—one can benefit from both of them.

We have carried out numerical simulations for the true
states with different ranks to reveal the relation between rank
selection and adaptivity. Two cases were studied: a full-rank
estimate (Re = D) and an optimal-rank inference (Re = Rs).
The plots in Fig. 3 depict the values of N required to reach
a certain value of accuracy d2

B (N ) = 10−3 versus the true
state rank for different protocols. The underlying dependen-
cies d2

B (N ) have been averaged over 50 runs of tomography,
and the utilized true states are inspired by our experimental
implementation and are listed in Appendix A.
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(a) Full rank. (b) Adequate rank.

FIG. 3. Change in the total number of detected counts, N , required to reach the certain distance d2
B (N ) = 10−3 to the true state, with the

rank of the true state. Simulated results of (a) full-rank and (b) adequate-rank estimation are shown for different protocols. Dashed lines are
guides to the eye.

When state and estimator ranks disagree [Fig. 3(a)], ran-
dom measurements demonstrate evenly poor performance, as
expected, while adaptive protocols are beneficial, especially
for low-rank states. The FO protocol requires about three
times less amount of statistics N than FR to achieve the given
level of accuracy for ranks Rs � 4. This advantage increases
up to ≈30 times towards low-rank states. Remarkably, AMUB
is slightly less accurate than FO for these particular true states
in contrast to the averaged performance (see Fig. 1), even
though it uses measurements of general type.

Performance of random measurements changes qualita-
tively in the situation Re = Rs [Fig. 3(b)]. Asymptotically all
protocols have 1/N convergence and differ only by prefactors.
When this asymptotic becomes valid, random measurements
are almost as good as adaptive protocols. It happens for low-
rank states, in our case for Rs � 4. However, optimal rank
selection has little impact on tomographic accuracy for higher-
rank states, and adaptivity provides much more advantage. It
is worth mentioning that the particular crossover point Rs = 4
depends on the given level of accuracy d2

B = 10−3 and the true
states being simulated.

IV. EXPERIMENT

The experiment is implemented using spatial degrees of
freedom of biphotons generated in spontaneous parametric
down-conversion (SPDC). We use a conventional measure-
ment scheme consisting of a Hanbury-Brown–Twiss interfer-
ometer equipped with spatial light modulators (SLMs) in each
arm. A simplified scheme of the setup is shown in Fig. 4
(see Ref. [43] for a detailed discussion of the experimental
setup). Radiation of a 407-nm diode laser, spatially filtered
by a single-mode fiber (not shown), is directed onto SLM1
to form the desired transverse profile of the beam, diffracted
into the first order. This beam serves as a pump for a 25-
mm-thick periodically poled KTP (PPKTP) crystal, designed
for a collinear degenerate type-II phase matching. A lens L1
provides an optimal focusing of the pump into the crystal
to achieve a single-mode SPDC regime [43], while a lens
L2 collimates the down-converted radiation. A photon pair

is separated into two arms by a polarization beam splitter
(PBS). SLM2 and SLM3 (actually these are two halves of the
same SLM) realize a given transformation of photon spatial
states in the first order of diffraction. The diffracted light is
collected into single-mode fibers (SMFs), which perform a
projection onto a fundamental (Gaussian) spatial mode. The
fibers are connected to single-photon counting modules D1
and D2 followed by a home-made coincidence circuit (CC)
with a 4-ns time window.

A digital hologram displayed on the SLM1 controls the
spatial mode of the produced photon pairs, while SLM2-
SLM3 holograms together with the SMFs determine a pro-
jective measurement. The utilized SLMs are of phase-only
nature, but there exists a method to perform amplitude mod-
ulation with phase-only holograms as well (that is one of
the reasons why the first diffraction order is used) [44]. The
experimental setup permits only factorized measurements,
because each photon from the pair is directed onto its own
SLM and propagates separately.

There are two canonical choices of basis modes: Laguerre-
Gaussian (LG) and Hermite-Gaussian (HG) ones. The priv-
ileged role of these modes is based on the fact that they
are eigensolutions of a paraxial wave equation; therefore,

40
7 

nm

CC

PPKTP PBS
SLM1 SLM3

SLM2

SMF
SMF

L1 L2

D1 D2

FIG. 4. A simplified scheme of the experimental setup. A spatial
state of photon pairs, produced in spontaneous parametric down-
conversion, is controlled by a spatial light modulator SLM1. SLM2
and SLM3 together with single-mode fibers (SMFs) define a projec-
tive factorized measurement in the basis of orthogonal spatial modes,
performed on a photon pair.
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TABLE II. Parameters of the states obtained in the experiment
averaged over several tomography runs. See text for parameter
definitions.

D State Purity Negativity Spread

9 Gaussian 0.942 ± 0.015 0.003 ± 0.001 0.0052 ± 0.0004
36 Gaussian 0.915 ± 0.007 0.022 ± 0.002 0.062 ± 0.013
9 Bell 0.740 ± 0.003 0.376 ± 0.005 0.0168 ± 0.0013

their shape is preserved during propagation. Moreover, they
form full infinite-dimensional orthogonal bases in the space
transversal modes. We have chosen HG modes to deal with in
our experiments. The field amplitude of the HG mode at the
beam waist is given by

HGnm(x, y) ∝ Hn

( x

w

)
Hm

( y

w

)
exp

(
−x2 + y2

2w2

)
, (15)

where n,m are non-negative mode indexes, x, y are transver-
sal coordinates, w is a waist parameter, and Hn is an nth-order
Hermite polynomial. The order of a mode is defined as a sum
n + m.

We have experimentally prepared two states, a factor-
ized and an entangled one, which approximately correspond
to |HG00〉 ⊗ |HG00〉 (Gaussian) and (|HG10〉 ⊗ |HG00〉 +
|HG00〉 ⊗ |HG10〉)/

√
2 (Bell). They can be produced by

pumping the crystal with, respectively, HG00 and HG10 modes
with a waist conforming to crystal parameters (a waist of de-
tection modes is also uniquely determined) [45]. Additionally,
the Gaussian state was spatially filtered with a single-mode

fiber, installed between the crystal and the PBS (not shown in
Fig. 4), to increase its purity.

Since we are interested only in finite-dimensional to-
mography, we should limit the dimensionality D by se-
lecting a certain subspace. The first one we used is the
nine-dimensional subspace, spanned by all possible pair-
wise tensor products of |HG00〉, |HG01〉, |HG10〉 modes, e.g.,
|HG00〉 ⊗ |HG01〉, etc. By appending second-order modes,
namely, |HG11〉, |HG20〉, |HG02〉, another subspace with in-
creased dimensionality D = 36 is constructed. We, therefore,
consider Hilbert spaces which have a natural bipartition into
two three-dimensional and two six-dimensional subsystems,
respectively.

The prepared states can be reconstructed in either sub-
space. This gives us four combinations; however, in prelimi-
nary experiments we found that FO and FR protocols perform
equally for the Bell state, reconstructed in a 36-dimensional
subspace, and therefore this case is excluded from further
comparison. We attribute this behavior to the low purity of the
experimentally prepared state. The parameters of the states for
the remaining three series of experiments are listed in Table II.
They include purity Tr ρ2, negativity [46], and spread d2

spr,
averaged over several tomography runs (30 runs for D = 9
and 10 runs for D = 36). The total number of photon pairs
detected in each run is N = 3 × 105. The spread d2

spr is
defined as the averaged Bures distance from each state ρi

in the ensemble to the mean state ρ̄ = 1
m

∑m
i=1 ρi : d2

spr =
1
m

∑m
i=1 d2

B (ρi, ρ̄ ). It captures both the statistical uncertainty
of the estimator and the systematic drift of the true state from
run to run. Our analysis shows that the contribution from the
latter prevails. Fluctuations of the true state mainly account

(a) (b) (c)

(d) (e) (f)
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FIG. 5. Experimental dependencies of the squared Bures distance to the final estimator on the number of detected photon pairs, N , for
the Gaussian state, reconstructed in the subspace with dimensionality (a) D = 9 and (b) D = 36, and for the Bell state, reconstructed in the
subspace with dimensionality (c) D = 9. The shaded area corresponds to one standard deviation of mean. Dashed lines are power-law fits to
the data. (d–f) Density matrix plots of the final estimators are shown under the respective convergence plots. An absolute value of a matrix
element corresponds to a bin height, while its phase is encoded by color.
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TABLE III. Approximation of the dependence of the distance
to the final estimator d2

B (ρ̂, ρ̂(N0 )) on the number of counts de-
tected, N , obtained in experiments with cNa model.

D State Protocol c �c a �a

9 Gaussian FR 1.54 0.19 −0.502 0.014
FO 5.8 0.9 −0.703 0.016

36 Gaussian FR 5.1 0.7 −0.496 0.016
FO 4.9 0.4 −0.526 0.010

9 Bell FR 4.6 0.4 −0.507 0.010
FO 3.2 0.4 −0.495 0.012

for slow variation of the environment temperature and, besides
that, not all runs were contiguous; they were split into several
days with some interruption for setup adjustment.

Previously in Sec. III we quantified the accuracy of es-
timation by the Bures distance d2

B (ρ̂(N ), ρ) between the
current estimator ρ̂(N ) and the true state ρ. In the experiment
the exact true state is unknown and tomography provides
the best estimation at hand. Thus, we resort to the Bures
distance d2

final(N ) ≡ d2
B (ρ̂(N ), ρ̂(N0)) to the final estimate

ρ̂(N0), calculated after all the data N0 are gathered. These
dependencies are shown in Figs. 5(a)–5(c) for a full-rank
tomography of the Gaussian state and the Bell one. The results
are averaged over several tomography runs (from 5 to 20), and
the total number of observed counts in each run is N0 = 3 ×
105. Obviously, d2

final(N ) tends to be exactly zero—when N

approaches N0, d2
final(N0) = 0; therefore, the plots are trun-

cated at N = 5 × 104 to remove the spurious region. Another
reason to truncate plots at N = 5 × 104 is that, actually, for
larger N the accuracy of reconstruction does not increase due
to instrumental errors (see Appendix B for further discussion).
Again, we approximate the dependencies with a power-law
model cNa and present the best fit parameters in Table III.
The corresponding density matrix plots of the final estimators
are shown in Figs. 5(d)–5(f).

One can see that the FO protocol demonstrates an advan-
tage over random measurements in all considered situations.
However, the relative benefit varies, depending on the purity
and dimensionality of the true state. The maximal gain occurs
for nearly pure state with lower dimensionality (Gaussian,
D = 9). The FR protocol converges as 1/

√
N , while the FO

one has an improved convergence rate a = −0.70 [Fig. 5(a)].
This difference results in ≈2.2 times more accurate estimation
for N = 5 × 104 (the ratio can be even larger if one would
collect larger total statistics N0). When the Gaussian state
is reconstructed in a subspace with higher dimensionality,
D = 36, the convergence rate of the FO protocol becomes
nearly the same as for the FR strategy [Fig. 5(b)]. However,
a steady accuracy improvement of ≈1.4 times is observed.
The Bell state with relatively low purity is the “hardest” one
to estimate. The averaged gap between the Bures-distance
dependencies is ≈1.25 times [Fig. 5(c)].

V. CONCLUSION

We have proposed and experimentally demonstrated an
adaptive quantum state tomography protocol, which is tailored
for high-dimensional bipartite systems. It is particularly useful

in the case when an experimentalist is only able to perform
measurement on the subsystems separately, as is usual in
experiments with photon pairs. We demonstrate the utility of
our method by performing an experimental reconstruction of
high-dimensional spatial states of photon pairs. The dimen-
sionality of the Hilbert space in our experiments was as high
as D = 36. The protocol is completely agnostic to the origin
of the estimation procedure; i.e., it requires only a point esti-
mate of the state density matrix. So this adaptive optimization
may supplement any tomographic procedure, both Bayesian
and frequentist in nature. A particularly attractive feature of
the protocol is a very fast optimization routine involved in the
search of optimal measurements. In this respect it may be con-
sidered as a generalization of a simple two-step strategy used
in Ref. [12] to high-dimensional systems. This generalization,
however, explicitly avoids entangled projectors, thus making
it experimentally feasible.

Since there is almost no additional overhead for adaptive
optimization, the protocol may be used and provide advantage
whenever the state estimation itself is feasible. This boundary
is unfortunately not that far from the dimensionality of the
system used in this work. To the best of our knowledge, the
current record for full tomography is a 14-qubit simulation
performed in Ref. [47] which took 4 h of computational time.
It is hardly possible to extend the full reconstruction much
further. Therefore, methods are developed to trade the com-
pleteness of reconstruction for efficiency. For example, one
may utilize some properties of the state known a priori, like
sparseness (low rank) of the density matrix [48], its tensor-
product structure [49,50], or permutation invariance [51,52].
Whether such scalable protocols providing partial information
about the state may enjoy the advantage from adaptivity is an
interesting open question. Anyway, we believe that adaptive
methods of state reconstruction will become a valuable tool,
especially in the cases of low data acquisition rate, when every
detector click counts, and extracting as much information
as possible from limited data is essential. This is indeed
the case, for example, in modern multiphoton experiments
[53,54]. This work is a step towards developing adaptive
measurement techniques for such complicated multipartite
and high-dimensional scenarios.

Another option for further work is the generalization of
the protocol to process tomography. Although the Choi-
Jamiołkowski isomorphism formally reduces process tomog-
raphy to state tomography, additional restrictions on which
probe states and measurements may be realized in exper-
iment pose additional constraints, which should be care-
fully treated. For example, a standard prepare-and-measure
scenario in process tomography corresponds to factorized
measurements on the Choi-Jamiołkowski state, making the
estimator-orthogonal protocol discussed here a natural choice.
These questions will be addressed elsewhere.
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TABLE IV. Eigenvalues λ1, . . . , λ9 of the true states having different rank Rs , utilized in simulations for plotting Fig. 3.

Rs λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

2 9.472×10−1 5.279×10−2 0 0 0 0 0 0 0
3 9.479×10−1 3.288×10−2 1.920×10−2 0 0 0 0 0 0
4 9.480×10−1 3.140×10−2 1.833×10−2 2.287×10−3 0 0 0 0 0
5 9.480×10−1 3.121×10−2 1.822×10−2 2.273×10−3 3.042×10−4 0 0 0 0
6 9.480×10−1 3.109×10−2 1.815×10−2 2.265×10−3 3.031×10−4 1.868×10−4 0 0 0
7 9.480×10−1 3.106×10−2 1.813×10−2 2.262×10−3 3.028×10−4 1.866×10−4 5.392×10−5 0 0
8 9.480×10−1 3.105×10−2 1.813×10−2 2.261×10−3 3.027×10−4 1.866×10−4 5.390×10−5 1.866×10−5 0
9 9.480×10−1 3.105×10−2 1.813×10−2 2.261×10−3 3.026×10−4 1.865×10−4 5.389×10−5 1.865×10−5 7.462×10−6

APPENDIX A: LIST OF TRUE STATES
USED IN SIMULATIONS

In this Appendix we present a list of the true states of
different rank Rs , utilized to obtain the data for Fig. 3. As a
fiducial state we have taken one of the Bell states recovered
in the experiment. This state possesses a full rank and has
purity of ≈0.74. Its smallest eigenvalues are zeroed to derive
the states with smaller ranks. After normalization to unit

trace, the purity of the states is artificially set to be equal to
0.90 by increasing the weight of the first eigenvector |ψ1〉:
a state ρ is replaced by (1 − μ)ρ + μ|ψ1〉〈ψ1| with an ap-
propriately chosen coefficient μ. This procedure leads to
states of the form ρRs

= U�Rs
U † with the same matrix of

eigenvectors U and different diagonal matrices of eigenvalues
�Rs

= diag(λ1, . . . , λ9). The corresponding eigenvalues are
listed in Table IV, and the matrix U reads

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.18499 0.33521 0.39189 0.11521 0.70821 0.16251 0.16181 0.10863 0.34728
0.28549 0.04306 −0.12139 −0.09399 −0.02245 −0.07123 0.10103 0.04967 −0.00898
0.08197 0.13167 0.07218 −0.02060 0.05490 −0.12759 −0.20933 −0.41788 −0.06937

−0.36676 0.23376 −0.10614 −0.01045 0.00661 −0.12757 −0.04444 0.04407 0.14611
−0.14044 0.34180 0.61698 0.02377 −0.34047 −0.29427 0.17399 0.10504 −0.24112

0.02838 0.02135 0.26563 0.26694 −0.14372 −0.40065 −0.18730 0.10913 0.10968
0.06681 0.04542 0.09029 −0.02554 −0.28469 0.41781 −0.34626 0.19022 0.31406

−0.12165 −0.24829 0.10246 0.04349 −0.32817 0.00200 0.33902 −0.01463 0.68935
−0.02202 0.05324 −0.21750 0.45973 0.01965 −0.22045 0.21995 −0.57611 0.19407

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
−0.63903 −0.50160 0.28092 −0.03901 0.32871 0.01572 −0.10512 −0.09365 −0.07893

0.00234 0.21111 0.10821 −0.49839 0.00305 −0.08849 −0.38590 −0.47498 0.20179
0.52400 −0.56738 0.35821 −0.00782 0.01201 −0.09150 −0.05189 −0.14004 −0.04678

−0.09085 0.03645 0.05253 −0.03338 −0.04537 0.30683 0.18784 −0.13416 −0.13161
−0.01911 −0.06071 −0.19854 0.22619 0.16048 −0.35704 −0.48028 0.32552 0.17954
−0.05090 0.06307 0.19114 0.31363 −0.17868 0.37403 −0.35105 −0.18574 0.05752
−0.07944 −0.00239 −0.01302 −0.39594 −0.01530 −0.04769 0.12546 0.03970 0.17332
−0.04804 0.05369 0.01458 0.36643 −0.03133 0.29230 −0.04073 −0.06245 −0.19862

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A1)

APPENDIX B: ACCURACY LIMIT DUE TO
INSTRUMENTAL ERRORS

Previously, in Fig. 5 we presented the dependencies
d2

final(N ) ≡ d2
B (ρ̂(N ), ρ̂(N0)) of the Bures distance to the

final estimator ρ̂(N0) rather than the distance d2
true(N ) ≡

d2
B (ρ̂(N ), ρ) to the true state ρ, because the exact true state is

actually unknown in the experiment. Nevertheless, d2
final(N ) is

a proper approximation of d2
true(N ) until the certain limit, N <

Nlim, which occurs as a result of unavoidable instrumental
errors. For N > Nlim the dependence d2

true(N ) begins to sat-
urate to its asymptotic value d2

asympt = d2
true(N → ∞), while

d2
final(N ) approaches exact zero. Therefore, for N > Nlim,

d2
final(N ) does not approximate d2

true(N ), and convergence of
d2

final(N ) has no sense. Obviously, d2
asympt ≈ d2

final(Nlim).
The key point is to estimate Nlim or, equivalently, d2

asympt,
which shows the ultimate accuracy of state reconstruction
allowed by an experimental setup. We note that both Nlim and
d2

asympt may be different for a particular setup depending on
true states and selected tomographic protocols [11], which
reflects different robustness to the same instrumental errors.
To estimate Nlim, we have calculated a p-value for a chi-
squared test statistics χ2:

χ2 =
∑
αγ

(nαγ − pαγ bαγ )2

pαγ bαγ

, (B1)
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FIG. 6. The dependencies of the p-value on the number of
detected counts, N , for the Gaussian and Bell states (D = 9) and
for different protocols. The experimental data used are the same as
for Fig. 5. The dependencies are averaged over several tomography
runs. The shaded area near each curve corresponds to one standard
deviation of mean. Gray rectangles depict regions where at least one
of the curves lies below the threshold p-value = 0.01 shown with a
dashed line.

where, as usual, nαγ is the number of detected counts in the
measurement Mαγ , pαγ is the outcome probability according
to the Born rule, and bαγ is a constant absorbing the exposure
time and the overall intensity [see Eq. (8)]. The quantity
pαγ bαγ is equal to the expectation of nαγ : pαγ bαγ = 〈nαγ 〉.
A p-value is defined as follows:

p-value = 1 −
∫ χ2

0
fk−νe

(y) dy, (B2)

where fk−νe
(y) is a probability density function (PDF) of a

χ -squared distribution with k − νe degrees of freedom, where
k is the number of summands in Eq. (B1). If a p-value is lower
than some threshold (typically thresholds 0.05, 0.01, or 0.005
are chosen) then it indicates that the estimator ρ̂ is inconsistent
with the measured data {nαγ } with high probability.

The dependence of the p-value on the number of counts
detected, N , is presented in Fig. 6 for experimental data on
the reconstruction of a nine-dimensional system (we used
exactly the same experimental data as for Fig. 5). There are
two regions of low p-values (depicted by gray rectangles):
for small and large N . We attribute the first region to the
lack of measured data. The second region may be attributed
to instrumental errors (i.e., the current estimator cannot pre-
dict the actually measured counts, because the measurements
performed differ from the ideal ones). As one can see, the
p-value is larger than the 0.01 threshold for all curves in the
interval 3 × 103 < N < 5 × 104. Therefore, we conclude that
minimal Nlim = 5 × 104. Given Nlim one can find d2

asympt ≈
d2

final(Nlim) using the plots in Fig. 5. For example, d2
asympt ≈

0.02 for the nine-dimensional Bell state.

3
1

2

3

1

2

FIG. 7. The effect of different numbers of measurements on
tomography accuracy for the FO protocol. Dashed lines are power-
law fits to the data. The dot-dashed line is the Gill-Massar bound
d2

B = 8/N . M in legends stands for the number of projectors used at
N = 2 × 105.

APPENDIX C: INFLUENCE OF THE BLOCK
SIZE ON ACCURACY

It is common practice for adaptive, self-learning measure-
ment procedures to use a large number of different projectors
(see Refs. [6,8,16] or [21,23]). It is hard to make adap-
tive schemes, which both require a minimal number Mmin

of measurements and demonstrate improved reconstruction
accuracy compared to nonadaptive ones (here we do not
take into account incomplete tomography, e.g., compressive
sensing techniques). Usually, at least twice the minimal num-
ber is required, M = 2Mmin, as demonstrated, for example,
in Refs. [12,13]. It can be understood as a process with
one adaptation step: preliminary reconstruction is performed
using the first Mmin measurements, then Mmin other optimized
projectors are calculated based on the preliminary estimator.
We believe that development of minimal adaptive schemes is
a good idea for a future research.

In general, the more measurements that are used, the better
the results that are obtained. In our framework the numbers
of measurements and adaptation steps are governed by a
block size schedule (one adaptation step per one measurement
basis {Mαγ }Dγ=1). We performed numerical simulations for a
larger block size bα = max(100, �N/2�) than we have used
previously (see the last paragraph of Sec. II D) and, therefore,
for a fewer number M of different projectors. The results
are presented in Fig. 7. Two curves are exactly those from
Fig. 1(a) (“FR” and “FO, M = 1593”) and the curve “FO,
M = 369” uses about four times fewer measurements than
“FO, M = 1593” (the values of M are specified for N =
2 × 105). The power-law fit of the curve “FO, M = 369” is
d2

B = 23 × N−0.82. As expected, the benefit from adaptivity
is lower, when fewer measurements and adaptation steps are
utilized.
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