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Non-Markovian dephasing and depolarizing channels
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We introduce a method to construct non-Markovian variants of completely positive (CP) dynamical maps,
particularly, qubit Pauli channels. We identify non-Markovianity with the breakdown in CP divisibility of the
map, i.e., appearance of a not-completely positive intermediate map. In particular, we consider the case of
non-Markovian dephasing in detail. The eigenvalues of the Choi matrix of the intermediate map crossover
at a point which corresponds to a singularity in the canonical decoherence rate of the corresponding master
equation and thus to a momentary noninvertibility of the map. Thereafter, the rate becomes negative, indicating
non-Markovianity. We quantify the non-Markovianity by two methods, one based on CP divisibility [Hall et al.,
Phys. Rev. A 89, 042120 (2014)], which does not require optimization but requires normalization to handle the
singularity, and another method, based on distinguishability [Breuer et al. Phys. Rev. Lett. 103, 210401 (2009)],
which requires optimization but is insensitive to the singularity.
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I. INTRODUCTION

Quantum technologies have now advanced to a stage where
the effects of memory and its manipulation are expected to
play a crucial role in the theoretical as well as experimental
developments of the field. This necessitates a proper under-
standing of non-Markovian phenomena [1–7] in the context
of open quantum systems [8–11].

A classical (discrete) stochastic process Xt (t ∈ I ) is
Markovian if the conditional probability for the nth outcome
xn satisfies: P (xn|xn−1; . . . ; x0) = P (xn|xn−1), i.e., there is no
memory of the history of the values of X. If an experiment
can access only one-point probability vectors P (x), then the
stochastic evolution can be represented in terms of transi-
tion matrices connecting initial and final probability vectors:
P (x1) = ∑

j T (x1|x0)P (x0), where T has suitable normal-
ization and positive properties. For a Markovian process,
such “stochastic matrices” compose according to T (xk|xi ) =∑

j T (xk|xj )T (xj |xi ) for any j intermediate map between k

and i < k. In this sense, a Markovian process is divisible.
A non-Markovian process is not necessarily divisible [be-

cause matrices T (xk|xj ) may not be well defined unless j =
0], instead requiring the full hierarchy of conditional proba-
bilities. Nevertheless, for k > j > 0, assuming invertibility of
T (xj |x0), we can define T (xk|xj ) = ∑

j T (xk|x0)T (x0|xj ) =∑
j T (xk|x0)T −1(xj |x0), although this matrix may not be

positive.
The vector w(x) ≡ qP1(x) − (1 − q )P2(x) for two distri-

butions P1 and P2 has the physical significance that the min-
imum failure probability to distinguish P1 and P2 in a single
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measurement pfail
min = 1−‖w‖1

2 , where ‖v(x)‖1 ≡ ∑
x |v(x)| is

the L1 norm. A fundamental result here is that a classical
stochastic process is divisible (read: Markovian) iff the dis-
tinguishability of two distributions is nonincreasing under the
process.

It is not straighforward to define quantum non-
Markovianity because a quantum realization of the
conditional probabilities P (xn|xn−1, . . . , x0) would seem to
require conditioning on measurement interventions, bringing
to the fore issues of noncommutativity and measurement
disturbance. Perhaps, there is no unique context-independent
definition of quantum Markovianity [3]. Here, we use a
definition of Markovianity based on divisibility (specifically,
CP divisibility) or distinguishability, which need not refer to
measurements [12,13]. In general, these definitions are not
equivalent in the quantum domain: Markovian à la divisibility
implies Markovian à la distinguishability but not vice versa
[14–16], although they are shown to be equivalent for all
bijective maps [17].

CP divisibity is the requirement that the time evolution be
characterized by linear trace-preserving CP maps Etk ,tj (tk �
tj � t0) such that Etk ,ti = Etk ,tjEtj ,ti for any intermediate time
tj . Under quantum non-Markovian evolution, an intermediate
map Etk ,tj may be not-completely positive (NCP) [18], indica-
tive of correlations between the system and the environment
[19].

The lower bound on the probability of discriminating two
states ρ1 and ρ2 in one shot with an optimal positive operator-
valued measure {T , I − T } is known to be pfail

min = 1−‖�‖1

2 ,
where � ≡ qρ1 − (1 − q )ρ2 is the Helstrom matrix. Under a
CP-divisible (identified here with Markovian) process pfail

min is
nondecreasing [20,21]. Thus, the decrease in pfail

min (or, equiv-
alently, increase in distinguishability) for some time indicates
non-Markovianity, suggestive of an underlying memory in
the process about the system’s initial state or information
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backflow from the environment. The differential CP-divisible
map is characterized by a time-local generalization of the
Lindblad equation [22,23] with a positive decoherence rate
[16].

Here, we will consider the problem of constructing non-
Markovian versions of familiar Markovian maps, specifically,
qubit Pauli channels. An example is the dephasing channel
wherein a state ρ evolves according to the evolution,

ρ → (1 − κ )IρI + κZρZ. (1)

Here, κ , the “channel mixing parameter,” increases mono-
tonically from 0 (noiseless case) to 1

2 (maximal dephas-
ing). The operator-sum representation of map Eq. (1) ρ →∑

j=I,Z KjρK
†
j corresponds to the Kraus operators,

KI ≡ √
1 − κI, KZ ≡ √

κZ. (2)

Our paper is motivated to extend this to the most general
dephasing channel described by the form

KI (p) =
√

[1 + �I (p)](1 − p)I,
(3)

KZ (p) =
√

[1 + �Z (p)]pZ,

and to study the conditions on �j under which the chan-
nel is non-Markovian. This has its roots in the open sys-
tem dynamics modeling random telegraph noise [24]. Here,
�j (p) (j = I, Z) are real functions, and p is a timelike
parameter running monotonically from 0 to 1

2 . By timelike is
meant that p increases monotonically with time (according to
a functional dependence whose details are not important here).
We recover Eq. (2) by setting �I = �Z = 0 with p effectively
becoming κ .

This paper is arranged as follows. In Sec. II, the general
dephasing channel in the form of Eq. (3) is derived, and
some salient features are noted, among them a singularity
that occurs in the intermediate map at the crossover between
its two eigenvalues. In Sec. III, the non-Markovianity is
quantified using a negative canonical decoherence rate, which
essentially measures how far the instantaneous intermediate
map deviates from CPness. A singularity is encountered at
the crossover point, which is dealt with using a normalization
procedure. In Sec. IV we point out that the singularity rep-
resents a momentary failure of invertibility of the map but is
nevertheless harmless. In Sec. V, we obtain the trace-distance-
(TD-) based distinguishability measure of non-Markovianity.
This measure does not require normalization and is shown to
be qualitatively in agreement with the negative decoherence-
based measure. After a brief discussion of extending this
method to non-Markovian depolarizing in Sec. VI, we con-
clude in Sec. VII with a discussion of some general features
of the non-Markovian dephasing channel introduced here.

II. NON-MARKOVIAN DEPHASING

The completeness condition imposed on Eq. (1) requires
that

(1 − p)�I (p) + p�Z (p) = 0, 0 � p � 1
2 , (4)

implying �I (p) = −αp and �Z (p) = α(1 − p), where α is
real number. Then, from Eq. (3), we have as follows:

KI (t ) =
√

[1 − αp](1 − p), I ≡
√

(1 − κ )I,

KZ (t ) =
√

[1 + α(1 − p)]p, Z ≡ √
κZ, (5)

which reduces to conventional dephasing Eq. (1) for α →
0. Here we choose 0 � α � 1, ensuring that the modified
dephasing is CP.

Given a quantum map evolving a system from time 0
to time t through s, defined by the composition E (t, 0) =
E (t, s)E (s, 0), we can define the intermediate map,

E (t, s) ≡ E (t, 0)E (s, 0)−1 (6)

provided E (s, 0) is invertible. This may be computed directly
using matrix inversion [25,26] of the dynamical map [27].

Here we derive it by “vectorizing” the density operator and
representing the superoperator E as a corresponding matrix
operation using the identity ̂ABC = (CT ⊗ A)B̂ [19]. The
intermediate map is derived by matrix inversion and applied to
the vectorized version of (|00〉 + |11〉). “Devectorizing” this
gives the Choi matrix of the intermediate map,

χ = [E (t, s) ⊗ I ](|00〉 + |11〉). (7)

By Choi-Jamiolkowski isomorphism, matrix χ is positive iff
E (t, s) is CP [28]. If E (t, s) is NCP, then the map E (t, 0) is
non-Markovian.

Consider an intermediate interval bounded between p∗ and
p∗ with 0 < p∗ < p∗ � 1

2 . The Choi matrix for intermediate
map E (α, p∗, p∗) is found to be

MChoi ≡

⎛
⎜⎜⎝

1 0 0 (p∗−α− )(p∗−α+ )
(p∗−α− )(p∗−α+ )

0 0 0 0
0 0 0 0

(p∗−α− )(p∗−α+ )
(p∗−α− )(p∗−α+ ) 0 0 1

⎞
⎟⎟⎠, (8)

where

α± = ±√
α2 + 1 + α + 1

2α
. (9)

The nonvanishing eigenvalues λI and λZ of MChoi in Eq. (8)
are

λI (α, p∗, p∗) = 1 + (α− − p∗)(α+ − p∗)

(α− − p∗)(α+ − p∗)
,

(10)
λZ (α, p∗, p∗) = 1 − (α− − p∗)(α+ − p∗)

(α− − p∗)(α+ − p∗)
.

This leads, according to the Choi prescription [29,30], to the
Kraus operators for the intermediate map,

K int
I (α, p∗, p∗) =

√
εIλI (α, p∗, p∗)I,

(11)
K int

Z (α, p∗, p∗) =
√

εZλZ (α, p∗, p∗)Z,

where εI (respectively, εZ) is +1 if λI (respectively, λZ)
is positive and −1 otherwise. The corresponding operator
sum-difference representation [31] of intermediate evolution
is given by ρ → ∑

j=I,Z εjK
int
j ρK

int †
j . and the completeness

relation is
∑

j εjK
int †
j K int

j = I. Note that the intermediate
map Kraus operators also preserve the dephasing form Eq. (6).
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FIG. 1. Eigenvalue λI (dashed, red line) and λZ (bold, blue line)
for the intermediate map Choi matrix of the non-Markovian dephas-
ing channel characterized by Eq. (6). The intermediate p range lies
between p := p∗ and p := p∗, where p∗ < α− and p∗ is varied over
the interval [p∗, 1

2 ]. At p∗ := p∗, λI = 2 and λZ = 0. At p∗ = α−,
the eigenvalues crossover, i.e., λI = λZ = 1, and furthermore the
channel becomes maximally dephasing, i.e., κ = 1

2 in Eq. (6). Here,
α := 0.3 and p∗ := α− − 0.2 ≈ 0.23.

From Eq. (11), one observes the following behavior: If
p∗ < α− and p∗ is varied from p∗ to 1

2 , then the two eigenval-
ues crossover at α− (see Fig. 1). The crossover point is also
the place where κ = 1

2 in Eq. (6), i.e., the noise is maximally
dephasing. If p∗ > α− and p∗ is varied from p∗ to 1

2 , then λZ

is negative in the entire range of p∗ ∈ (p∗, 1
2 ] (see Fig. 2) and

thus demonstrates non-Markovianity. Letting p∗ − p∗ → 0 so
that λZ → 0− we see that the instantaneous intermediate map
is NCP here. This implies that ‖MChoi‖1 > 1, and therefore the
deviation of this norm from 1, integrated over the time of evo-
lution, would provide a quantification of non-Markovianity,
which in fact is the Rivas-Huelga-Plenio (RHP) measure
[19]. But a NCP intermediate map corresponds to negative
decoherence, which suggests a conceptually equivalent but
quantitatively different and perhaps computationally simpler
method to quantify non-Markovianity, based on the integral
of the decoherence rate in the master equation for the nega-
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FIG. 2. Eigenvalue λI (dashed, red line) and λZ (bold, blue
line) for the intermediate map Choi matrix of the non-Markovian
dephasing channel characterized by Eq. (6). The intermediate p

range lies between p := p∗ and p := p∗, where 1
2 > p∗ > α− and

p∗ is varied over the interval [p∗, 1
2 ]. For p∗ > p∗, one finds λZ < 0.

Thus, the whole range of p∗ ∈ (p∗, 1
2 ] corresponds to a NCP map,

demonstrating the non-Markovianity of the channel characterized by
Eq. (6). Here α := 0.3 and p∗ := α− + 0.03 ≈ 0.46.
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FIG. 3. Plot of the decoherence rate γ as a function of p for α =
0.7. Note the singularity at α− (≈0.34) just after which γ becomes
negative, indicating that the evolution is non-Markovian.

tive rate period(s). This yields the Hall-Cresser-Li-Andersson
(HCLA) measure, used later below.

The point p∗ = α− represents a singularity since both
eigenvalues diverge for any p∗ ∈ (p∗, 1

2 ]. We discuss this
matter later below. The other potential singularity p∗ = α+
is not relevant as the dephasing parameter p is assumed to be
restricted to the range of [0, 1

2 ], whereas α+ ∈ [1,∞].

III. NEGATIVE DECOHERENCE RATE
IN THE MASTER EQUATION

The Kraus representation Eq. (6) is a solution to the master
equation describing dephasing in the canonical form

dρ

dp
= γ (p)[−ρ(p) + Zρ(p)Z]. (12)

We now show that the decoherence rate corresponding to 1
2 �

p > α− is negative, indicative of non-Markovianity [16]. By
direct substitution and letting G ≡ 1 − 2κ (p), one finds

γ (p) = − 1

2G

dG

dp
=

1
2 (α+ + α−) − p

(p − α−)(p − α+)
, (13)

from which one sees that the evolution for p < α− is Marko-
vian (γ � 0) but becomes non-Markovian (γ < 0) for p >

α−. The point α− itself represents a singularity (see Fig. 3).
Following Ref. [16], we want to quantify the amount of

non-Markovianity by NHCLA ≡ − ∫ 1/2
α−

γ (p)dp, which, how-
ever, would diverge because of the singularity at α−. One
remedy, following an idea proposed in Ref. [2], is to replace
−γ (p) by its normalized version,

γ ′ ≡ −γ

1 − γ
= α − 2αp + 1

α − 2αp2 + 2p
, (14)

from which we can define a normalized HCLA measure,

N ′
HCLA ≡

∫ 1/2

α−
γ ′(p)dp =

[
1

2
log2(α + 2p − 2αp2)

−
α tan−1

( 2αp−1√−2α2−1

)
√−2α2 − 1

]1/2

α−

. (15)

A plot of N ′
HCLA (bold line) is given in Fig. 4. The monotonic

increase in this measure with α justifies its being regarded as a
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FIG. 4. Plot of the normalized HCLA coefficient N ′
HCLA [bold,

blue line, Eq. (15)] and the Breuer-Laine-Piilo (BLP) [33] coefficient
NBLP [dashed, red line, Eq. (19)] as a function of the non-Markovian
parameter α.

non-Markovianity parameter. These results are directly related
to the RHP measure NRHP of non-Markovianity [19] since
NHCLA = d

2 NRHP, where d is system dimension [16], which
here is 2.

IV. THE SINGULARITY IS NOT PATHOLOGICAL

The possible noninvertibility of the time evolution is dis-
cussed in Refs. [2,32], in particular, the issue of general con-
sistency conditions on such a map to derive a master equation
and the problem of quantification of non-Markovianity. In
the present case, the singularity at p = α− corresponds to a
time where the trajectories of all initial states cos ( θ

2 ) |0〉 +
eiφ sin ( θ

2 ) |1〉, differing only by the azimuthal angle φ, mo-
mentarily intersect. This is because the point p = α− corre-
sponds to maximal dephasing, under which any initial qubit
state ρ1 ≡ ( a b

b∗ 1 − a) is transformed to ρ2 ≡ (a 0
0 1 − a). In

other words, all off-diagonal terms in the computational basis
are killed off, making the map momentarily noninvertible.
Nevertheless, the singularity is not pathological in the sense
that the density operator and, consequently, the full map are
well defined, and invertibility is subsequently recovered.

At time α−, the intermediate dynamical map Eq. (12)
advancing the state by a small time-interval ε, is acting on
a density operator of the type ρ2 and induces the intermediate
evolution,

ρ2 → (1 + Y )

2
ρ2 + (1 − Y )

2
Zρ2Z

= (1 + Y )

2
ρ2 + (1 − Y )

2
ρ2

= ρ2, (16)

where Y ≡ (α−−p∗ )(α+−p∗ )
(α−−p∗ )(α+−p∗ ) is the divergent summand in the

expression for K int
I in Eq. (12) and we set p∗ := α−. Since

the singularity in the intermediate map occurs at the point
of maximal dephasing, the infinite term Y has no effect as
it would only multiply with off-diagonal terms in the density
operator, which vanish.

Similarly, in the master equation (12) for the rate dρ

dp
, we

note that the divergence of γ (p) at the singularity is rendered
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FIG. 5. Logarithmic plot of TD between ρ0 ≡ E (|ψ0〉 〈ψ0|) and
ρ1 ≡ E (|ψ1〉 〈ψ1|) as a function of p with θ := π

2 under the consid-
ered non-Markovian dephasing noise. The bold (blue) curve repre-
sents Markovian dephasing and shows no recurrence. The dashed
(red, α = 0.5) and dot-dashed (green, α = 0.9) curves show en-
hanced distinguishability beyond their respective crossover points
α−, indicative of non-Markovianity. Note that larger α shows a
larger enhancement region, suggesting larger non-Markovianity in
the sense of BLP [33].

harmless by virtue of the fact that the term ρ(α−) − Zρ(α−)Z,
which it multiplies, vanishes for the above reason.

V. QUANTIFYING NON-MARKOVIANITY
VIA TRACE DISTANCE

There are a host of measures to witness or quantify non-
Markovianity, such as trace distance, fidelity, quantum relative
entropy, quantum Fisher information, capacitance measures,
as well as correlation measures, such as mutual information,
entanglement, and discord, all of which are nonincreasing
under CP-divisible maps and can thus be used to witness
non-Markovianity [19].

Here, we consider evolution of the TD [33], applied to the
pair of initial states: |ψ0〉 = cos(θ/2) |0〉 + eiφ sin(θ/2) |1〉
and |ψ1〉 = − sin(θ/2) |0〉 + eiφ cos(θ/2) |1〉. For this pair,

TD(θ, φ, α, p) ≡ 1

2
tr
√

(ρ0 − ρ1)2

= [1 − 4α2(1 − p)p(α+ + α− − p)

× (2α+α− − p) sin2(θ )]1/2, (17)

where ρj = E (|ψj 〉 〈ψj |) and E represents the time evolu-
tion under our non-Markovian dephasing. The expression is
independent of φ, reflecting the azimuthal symmetry of the
dephasing action [34,35]. For θ where 0 < θ < 2π , it may
be seen that TD attains a minimum of cos(θ ) at α−. The
subsequent (p > α−) rise in TD signals non-Markovianity.

This pattern is manifest in the case of θ = π
2 for which

Eq. (17) reduces to the particularly simple form

TDπ/2(p) = 2α(p − α−)(p − α+). (18)

This is depicted in Fig. 5 for various non-Markovian parame-
ters α. We note in this figure that the recurrence region (α−, 1

2 ]
is larger for larger α, suggestive of greater non-Markovianity
for larger α.
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The BLP measure [33] of non-Markovianity, denoted
NBLP, is given by

NBLP = max
(ψ0,ψ1 )

∫ 1/2

α−

d TD

dp
dp

= max
θ

[√
1 +

(
−1 + α2

4

)
sin2(θ ) − cos(θ )

]

= α

2
. (19)

The result is depicted by the dashed (red) line in Fig. 4 and
shows that there is general agreement with the quantification
of non-Markovianity according to the normalized HCLA mea-
sure N ′

HCLA.
Here, following Ref. [33], we have assumed that the

pair of states parametrized by (θ, φ) is orthogonal. This is
appropriate to enhance the contrast that demonstrates non-
Markovianity. Specifically, note that the TD in Fig. 5 varies
in the range between 1 (initial) and 0 (maximal dephasing).
If, on the other hand, the two initial states were (say) |0〉 and

1√
2
(|0〉 + |1〉), then TD varies in the smaller range between

1√
2

(initial) and 1
2 (maximal dephasing).

VI. NON-MARKOVIAN DEPOLARIZING

The depolarizing channel of a qubit transforms state ρ to
a mixture of itself and the maximally mixed state. The non-
Markovian version of the depolarizing channel can also be
found in a manner analogous to the dephasing channel, which
is now discussed briefly.

A Kraus representation for the depolarizing channel
would be ρ → ∑

j KjρK
†
j , where KI = √

1 − pI, KX =√
p

3 X, KY =
√

p

3 Y , and KZ =
√

p

3 Z. A potential non-

Markovian extension for them would be

KI =
√

(1 + �1)(1 − p), KX =
√

(1 + �2)
p

3
X,

KY =
√

(1 + �2)
p

3
Y, KZ =

√
(1 + �2)

p

3
Z, (20)

where �k (k ∈ {1, 2}) is a real function and p is a timelike
parameter that rises monotonically from 0 to 1

2 . The variables
�j satisfy the following condition:

(1 − p)�1 + p, �2 = 0, (21)

as a consequence of the completeness requirement.
In agreement with Eq. (21), we make the following

choices: �1 = −3αp and �2 = 3α(1 − p), where α is real.
Then, the non-Markovian Kraus operators take the form

KI (p) =
√

[1 − 3αp](1 − p)I,

KX(p) =
√

[1 + 3α(1 − p)]
p

3
X,

(22)

KY (p) =
√

[1 + 3α(1 − p)]
p

3
Y,

KZ (p) =
√

[1 + 3α(1 − p)]
p

3
Z.
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FIG. 6. Plot of κ (p) in Eq. (25) as a function of p with η = 1
2

and ω = 50 (bold, blue line). This dephasing channel corresponds to
the first case of Eq. (24), and non-Markovianity arises from regions
of the negative slope in the plot. The dashed (red) line corresponds to
the non-Markovian dephasing Eq. (6) with α = 0.7. The mixing rate
dκ/dp is never negative, and non-Markovianity pertains to the first
case in Eq. (24).

As before, parameter α may be seen to represent the non-
Markovian behavior of the channel such that setting α :=
0 reduces the Kraus operators in Eq. (23) to those in the
conventional Markovian depolarization channel.

VII. CONCLUSIONS AND DISCUSSION

We introduced a method to construct non-Markovian vari-
ants of CP dynamical maps, particularly, qubit Pauli channels
with non-Markovianity defined by the departure from CP
divisibility. Specifically, a one-parameter non-Markovian de-
phasing channel was studied in detail, which is characterized
by a singularity in the canonical decoherence rate γ , which oc-
curs at the crossover point α− associated with the eigenvalues
of the intermediate map and where phase noise is maximal.
The decoherence rate γ is negative for p ∈ (α−, 1

2 ], indicating
non-Markovianity. Intuitively, this can be understood as due to
κ in Eq. (1) exceeding 1

2 thereby enhancing distinguishability.
More precisely, substituting the form Eq. (1) into Eq. (12),

one finds that

γ = dκ/dp

1 − 2κ
, (23)

which relates the “channel mixing rate” dκ
dp

to the decoherence
rate γ . From Eq. (23), it follows that

γ < 0 iff

{
dκ
dp

< 0, in case of κ < 1
2 ,

dκ
dp

> 0, in case of κ > 1
2 ,

(24)

with κ = 1
2 representing a singularity. In the form of noise

we consider, the second case in Eq. (24) explains the origin
of non-Markovianity. The reason is that the derivative of the
channel mixing parameter κ is always positive, i.e., dκ

dp
> 0.

Thus, κ (p) must exceed 1
2 for non-Markovianity to occur.

In view of Eq. (23), this entails that a singularity must
be encountered when κ = 1

2 , which happens in our case at
p = α−.
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This is illustrated by the dashed (red) plot in Fig. 6, which
represents our non-Markovian dephasing with α = 0.7 for
which dκ

dp
> 0 throughout the range of [0, 1

2 ]. The point α−
where this intercepts the horizontal line of κ = 1

2 is the singu-
larity. Non-Markovianity comes from the positive mixing rate
( dκ

dp
> 0) region p > α−.

On the other hand, non-Markovian dephasing noise where
κ remains within [0, 1

2 ] as p increases monotonically from 0
to 1

2 corresponds to the first case in Eq. (24). Here, the channel
mixing parameter cannot monotonically rise, i.e., there must
be regions where dκ

dp
< 0. As a simple instance, consider

κ (p) = p
[1 + η sin(ωp)(1 − 2p)]

[1 + η(1 − 2p)]
, (25)

with 0 � p � 1
2 , where η and ω are positive constants char-

acterizing the strength and frequency of the channel. Such
a noisy channel encounters no singularity, and the non-
Markovian contributions come from the regions of negative
mixing rate dκ

dp
, which arises because of the sine function. A

plot of κ (p) for η = 1
2 and ω = 50 is the bold (blue) plot in

Fig. 6.
We discussed two methods of quantifying the non-

Markovianity, one based on CP divisibility and another on

distinguishability. The former is derived from the HCLA
measure [16], based on negative decoherence rates in the
canonical master equation. This does not require optimization
but is marked by a singularity, which we have handled by
using a suitable normalization. The other measure is the BLP
measure [33], which requires optimization but is unaffected
by the singularity.

Our method to construct a non-Markovian variant of the
dephasing channel can be straightforwardly extended to other
Pauli channels, e.g., bit flip or depolarizing channels. Details,
such as the level-crossing feature of the eigenvalues of the
Choi matrix of the intermediate map and the occurrence of
singularities, may vary from case to case, presenting useful
insights.
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