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Coherence measures and their operational interpretations lay the cornerstone of coherence theory. In this
paper, we introduce a class of coherence measures with α affinity, say α affinity of coherence for α ∈ (0, 1).
Furthermore, we obtain the analytic formulas for these coherence measures and study their corresponding convex
roof extension. We provide an operational interpretation for 1/2 affinity of coherence by showing that it is equal
to the error probability to discrimination a set of pure states with the least-square measurement. By employing
this relationship we regain the optimal measurement for equiprobable quantum state discrimination. Moreover,
we compare these coherence quantifiers and establish a complementarity relation between the 1/2 affinity of
coherence and path distinguishability for some special cases.
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I. INTRODUCTION

Quantum coherence [1] is one of the fundamental fea-
tures in quantum mechanics and characterizes the wave-like
property for all objects. It is also a necessary condition for
entanglement and other quantum correlations which manifests
its core position in quantum information theory [2,3]. As a
key quantum resource, coherence may lead to an operational
advantage over classical physics, and its important role in
quantum algorithms has been investigated [4–7]. Hence, for
a given quantum state, it is important to ask the amount of
coherence it has and if the quantifier of coherence has any
operational meaning. In Ref. [1], the authors have established
a resource theory of coherence which is a rigorous framework
to quantify coherence. In this theory, coherence characterizes
the superposition of a quantum state relative to a fixed orthog-
onal basis and thereafter a lot of work has been done to enrich
this theory [8–12]. This framework places certain important
constraints on the measures of coherence, and different coher-
ence measures may reflect different physical aspects of the
quantum system [13–16]. Like other resource theories, the
resource theory of coherence is composed of “free states” and
“free operations.”

Let H be a finite-dimensional Hilbert space with an or-
thogonal basis {|i〉}di=1. Density matrices that are diagonal in
this basis are free states and we call them incoherent states
because they do not possess any coherence. We label this set
of incoherent quantum states by I. That is,

I =
{

σ |σ =
d∑

i=1

λi |i〉〈i|
}

. (1)
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Free operations in coherence theory are the completely
positive and trace-preserving (CPTP) maps which admit an
incoherent Kraus representation. That is, there always exists a
set of Kraus operators {Ki} such that

KiσK
†
i

TrKiσK
†
i

∈ I, (2)

for each i and any incoherent state σ . These operations are
also called incoherent operations and we label these opera-
tions by �.

Analogous to the quantification of entanglement [17–20],
any measure of coherence C should satisfy the following
axioms [1]:

(C1) Faithfulness. C(ρ) � 0 with equality if and only if ρ

is incoherent.
(C2) Monotonicity. C does not increase under the action

of an incoherent operation, i.e., C(�(ρ)) � C(ρ) for any
incoherent operation �.

(C3) Strong monotonicity. C does not increase on aver-
age under selective incoherent operations, i.e.,

∑
i piC(σi ) �

C(ρ) with probabilities pi = TrKiρK
†
i , postmeasurement

states σi = p−1
i KiρK

†
i , and incoherent operators Ki .

(C4) Convexity. Nonincreasing under mixing of quantum
states, i.e.,

∑
i piC(ρi ) � C(

∑
i piρi ) for any set of states {ρi}

and pi � 0 with
∑

i pi = 1.
Conditions (C1) and (C2) highlight the role of free states

and free operations in the coherence theory, i.e., the free states
have zero coherence and the free operations cannot increase
the coherence of any state. (C3) and (C4) are two constraints
imposed on coherence measures. Like in entanglement the-
ory, a coherence quantifier which satisfies non-negativity and
(strong) monotonicity is called a (strong) coherence mono-
tone. Furthermore, if it also satisfies convexity, we call it a
convex (strong) coherence monotone.
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The authors of Ref. [21] provided a simple and interesting
condition to replace (C3) and (C4) with the additivity of
coherence for block-diagonal states,

C(pρ ⊕ (1 − p)σ ) = pC(ρ) + (1 − p)C(σ ), (3)

for any p ∈ [0, 1], ρ ∈ E (H1), σ ∈ E (H2), and pρ ⊕ (1 −
p)σ ∈ E (H1 ⊕ H2), where E (H) denotes the set of density
matrices on H.

They proved that conditions (C1) and (C2) and Eq. (3) are
equivalent to conditions (C1) through (C4). This is surprising
because Eq. (3) is an operation-independent equality, whereas
strong monotonicity and convexity are operation-dependent
inequalities. In general, it is relatively easy to check whether a
coherence quantifier satisfies Eq. (3) more than (C3) and (C4).

In this paper we introduce a class of coherence measures
and attempt to answer the question posed in the beginning by
linking this coherence measure to ambiguous quantum state
discrimination (QSD). QSD, as a fundamental problem in
quantum mechanics, has been studied extensively [22–29]. It
is not only an important problem of theoretical research, but
also plays a key role in quantum communication and quantum
cryptography [30–34].

We briefly review the ambiguous QSD. Suppose there are
two persons, Alice and Bob. Alice chooses a state ρi from a
set of states {ρi}Ni=1 with probability ηi and sends it to Bob.
Now Bob’s job is to determine which state he has received,
as accurately as possible. To do this, Bob performs a positive-
operator valued measure (POVM) on each ρi and declares that
the state is ρj when the measurement outcome reads j . The
POVM is a set of positive operators {Mi} satisfying

∑
i Mi =

I . As the probability to get the result j with state ρi is pj |i =
Tr(Mjρi ), the corresponding maximal success probability is

P
opt
S ({ρi, ηi}) = max

{Mi }

∑
i

ηiTr(Miρi ), (4)

where the maximization is done over all POVMs. For the
N = 2 case, the analytic formula of P

opt
S and the optimal

measurement are known. However, no solution about optimal
probability and measurement is known for the general N > 2
case.

As a suboptimal choice, the least square measurement
(LSM) is an alternative to discriminate quantum states [35–
41]. In comparison with the optimal measurement, the LSM
has several nice properties. First, its construction is rela-
tively simple because it can be determined directly from
the given ensemble. Second, it is very close to the opti-
mal measurement when the states to be distinguished are
almost orthogonal [37,42]. The construction of the LSM is as
follows:

Given an ensemble {ρi, ηi}Ni=1 and denoting ρout =∑
i ηiρi , the least square measurements are [43]

Mlsm
i = ηiρ

−1/2
out ρiρ

−1/2
out , i = 1, 2, . . . , N. (5)

As a result, the minimal error probability of this measure-
ment is

P lsm
E ({ρi, ηi}) = 1 −

∑
i

ηiTr
(
Mlsm

i ρi

)
. (6)

The paper is structured as follows: In Sec. II we intro-
duce the α affinity of coherence. We reveal the connec-

tion between the 1/2 affinity of coherence and QSD with
least square measurements in Sec. III. Furthermore, we deal
with quantum state discrimination with coherence theory in
Secs. IV and V. Besides, we establish a duality between the
1/2 affinity of coherence and the path distinguishability in
Sec. VI, and finally conclude in Sec. VII with a summary and
outlook.

II. QUANTIFYING COHERENCE WITH AFFINITY

A. α affinity and α affinity of distance

Distances in state space are good candidates for quanti-
fying quantum correlations. In this section, we introduce a
distance that we can use to establish a bona fide measure of
quantify coherence. In classical statistical theory [44], affinity
is defined as

A(f, g) =
∑

x

√
f (x)g(x),

where f and g are discrete probability distributions. This defi-
nition is alike the Bhattacharyya coefficient [45] between two
probability distributions (discrete or continuous) in classical
probability theory. Classical affinity quantifies the closeness
of two probability distributions. Borrowing the notion from
classical statistical theory, Luo and Zhang [46] have intro-
duced quantum affinity as follows: Let H be a d-dimensional
Hilbert space and E (H) be the set of density matrices on H.
For any ρ, σ ∈ E (H), quantum affinity is defined as

A(ρ, σ ) := Tr(
√

ρ
√

σ ). (7)

Quantum affinity, similar to fidelity [47], describes how
close two quantum states are. We drop the adjective “quan-
tum” in the rest of this paper unless there is any ambiguity.

The notion of affinity has been extended to α affinity (0 <

α < 1) and is defined as

A(α)(ρ, σ ) := Trρασ 1−α.

For each α ∈ (0, 1), A(α)(ρ, σ ) satisfies the follow-
ing properties: (1) Boundedness. A(α)(ρ, σ ) ∈ [0, 1] with
A(α)(ρ, σ ) = 1 if and only if ρ = σ . (2) Monotonic-
ity. A(α)(ρ, σ ) � A(α)(�(ρ),�(σ )) for any CPTP map �.
(3) Joint concavity. If ρi, σi ∈ E (H) and pi � 0,

∑
i pi = 1,

then A(α)(
∑

i piρi,
∑

i piσi ) �
∑

i piA
(α)(ρi, σi ). The proof

of property (1) is given in Appendix A. See Ref. [48] for
property (2), and property (3) is the result of Lieb’s concavity
theorem [49].

It is well known that α affinity plays an important role in
quantum hypothesis testing. For two-state discrimination with
many identical copies, one has [50,51]

− lim
N→∞

1

N
P

opt
E,N

({
ρ⊗N

i , ηi

}2
i=1

) = − inf
α∈(0,1)

{
ln

(
Trρα

1 ρ1−α
2

)}
.

This limit defines a function of α affinity, and

Q(ρ, σ ) := min
α∈(0,1)

A(α)(ρ, σ ), (8)

is the nonlogarithmic version of the quantum Chernoff bound
(QCB) [51].
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Moreover, we can see that α affinity is related to α-z-
relative Rényi entropy [48],

Sα,z(ρ ‖ σ ) = 1

α − 1
ln Fα,z(ρ ‖ σ ),

where

Fα,z(ρ ‖ σ ) := Tr
(
σ

1−α
2z ρ

α
z σ

1−α
2z

)z
, (9)

and

A(α)(ρ, σ ) = Fα,1(ρ, σ ). (10)

Note that the family of α-z-relative Rényi entropies in-
cludes relative entropy S and max-relative entropy Smax [48]:

S = lim
α→1

Sα,α, Smax = lim
α→∞ Sα,α.

It is worth noting that several coherence measures like rel-
ative entropy [1], geometric coherence [9], and max-relative
entropy [16] are related to α-z-relative Rényi entropy. In the
next section, we introduce yet another measure of coherence;
namely, the α affinity of coherence which is related to α-z-
relative Rényi entropy.

Based on the α affinity, we introduce the α affinity of
distance as

d (α)
a (ρ, σ ) := 1 − [A(α)(ρ, σ )]1/α, (11)

where ρ, σ ∈ E (H). Obviously, the α affinity of distance
satisfies the following properties:

(P1) d (α)
a (ρ, σ ) � 0 with equality if and only if ρ = σ .

(P2) d (α)
a is contractive under CPTP maps.

B. Quantifying coherence

Quantification of entanglement from the geometric point
of view began in Refs. [18,19]. The authors of these two
papers put forward the scheme to quantify entanglement with
the minimal distance between a given quantum state and all
separable states with relative entropy and Bures distance.
Later, Luo and Zhang [46] studied the quantification of entan-
glement by using the Hellinger distance. The Bures distance
and the Hellinger distance have been proven to be good
choices to quantify quantum discord [52–54].

For any α ∈ (0, 1), we define the α affinity of coherence as
the minimal α affinity of distance over all incoherent states,

C (α)
a (ρ) := min

σ∈I
d (α)

a (ρ, σ )

= 1 − max
σ∈I

(Tr(ρασ 1−α ))1/α. (12)

An advantage of C (α)
a over geometric coherence, Cg (ρ) :=

1 − maxσ∈I (Tr(
√√

σρ
√

σ ))2 [9], is that it is relatively easy
to compute. Let σ = ∑

i μi |i〉〈i| be an incoherent state. Then

A(α)(ρ) ≡ max
σ∈I

Tr(ρασ 1−α ) = max
μi

(∑
i

μ1−α
i 〈i|ρα|i〉

)

� max
μi

(∑
i

μi

)1−α(∑
i

〈i|ρα|i〉1/α

)α

=
(∑

i

〈i|ρα|i〉1/α

)α

, (13)

where the inequality follows from Hölder’s inequality:∑n
i=1 |xiyi | � (

∑n
i=1 |xi |p )1/p(

∑n
i=1 |yi |q )1/q for p, q > 1

with 1
p

+ 1
q

= 1. Here, p = 1
1−α

> 1 and q = 1
α

> 1. Inequal-

ity (13) gives an upper bound on A(α)(ρ). This suggests that
we can choose suitable {μi} such that the above inequality
becomes an equality. As a result, we obtain the analytic
expression for C (α)

a as

C (α)
a (ρ) = 1 −

∑
i

〈i|ρα|i〉1/α, (14)

and the closest incoherent state which minimizes C (α)
a (ρ) is

σρ =
∑

i

〈i|ρα|i〉1/α∑
j 〈j |ρα|j 〉1/α

|i〉〈i|. (15)

With (P1), (P2), and Eq. (3), we have the following theo-
rem:

Theorem 1. The α affinity of coherence is a coherence
measure.

Proof. First, it is obvious that C (α)
a (ρ) � 0. Since

d (α)
a (ρ, σ ) = 0 if and only if ρ = σ , one has C (α)

a (ρ) = 0 if
and only if ρ ∈ I. In addition, since d (α)

a (ρ, σ ) obeys mono-
tonicity under CPTP maps, we have C (α)

a (ρ) � C (α)
a (�(ρ))

for any incoherent operation �. Now, instead of (C3) and
(C4), we prove that C (α)

a satisfies additivity of coherence for
block-diagonal states. We have

C (α)
a (pρ ⊕ (1 − p)σ )

= 1 −
∑

i

〈i|[pρ ⊕ (1 − p)σ ]α|i〉1/α

= 1 −
∑

i

〈i|(pρ)α ⊕ [(1 − p)σ ]α|i〉1/α

= p

(
1−

∑
i

〈i|ρα|i〉1/α

)
+ (1− p)

(
1−

∑
i

〈i|σα|i〉1/α

)
= pC (α)

a (ρ) + (1 − p)C (α)
a (σ ).

Thus, C (α)
a is a coherence measure for each α ∈ (0, 1). �

Similarly, we define the quantum Chernoff bound of coher-
ence, Cqcb(ρ), and the affinity of coherence, C̃a (ρ), respec-
tively as

Cqcb(ρ) := min
σ∈I

(1 − Q1/α (ρ, σ ))

= 1 − max
σ∈I

min
α∈(0,1)

(Tr(ρασ 1−α ))1/α

= max
α∈(0,1)

C (α)
a (ρ), (16)

and

C̃a (ρ) := min
σ∈I

(1 − A(ρ, σ )) = 1 − max
σ∈I

Tr(
√

ρ
√

σ )

= 1 −
√∑

i

〈i|√ρ|i〉2, (17)

and the closest incoherent state is again σρ in Eq. (15).
Note that Eq. (16) does not necessarily imply that

Cqcb is a coherence measure for some α ∈ (0, 1) because
Cα

a is a coherence measure. This can be argued as fol-
lows: for a given ρ, let α′ be the value of α such
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that C (α′ )
a (ρ) = maxα C (α)

a (ρ). Then, Cqcb(ρ) = C (α′ )
a (ρ) �

C (α′ )
a [�(ρ)] � maxα C (α)

a [�(ρ)], where � is an incoherent
operation. Thus, it is not immediately clear that Cqcb is a
coherence measure. Next, we can show that C̃a is a convex
weak coherence monotone. Following the same lines of the
proof of Theorem 1, C̃a satisfies (C1) and (C2). Moreover, the
convexity of C̃a can be derived from the joint concavity of
A(ρ, σ ). However, C̃a does not satisfy strong monotonicity.

Let ρ1 = 1

2

(
1 1
1 1

)
and ρ2 = 1

3

⎛⎝1 1 1
1 1 1
1 1 1

⎞⎠,

then C̃a (ρ1) = 1 −
√

1
2 , C̃a (ρ2) = 1 −

√
1
3 , and

C̃a

(
1

2
ρ1 ⊕ 1

2
ρ2

)
= 1 −

√
5

12
= 1

2
[C̃a (ρ1) + C̃a (ρ2)].

In conclusion, C̃a is a convex weak coherence monotone.

C. Coherence for pure states and single-qubit states

In this section, we evaluate the α affinity of coherence for
pure states and single-qubit states. For any pure state |ψ〉,

C (α)
a (|ψ〉) = 1 −

∑
i

|〈i|ψ〉|2/α, (18)

is a nonincreasing function of α. We have Cα
a (|ψ〉) → 1

when α → 0. This is a very interesting observation that all
coherent pure states are almost the maximally coherent states.
If we consider the convex roof extension of the α affinity of
coherence for a mixed state ρ as

C (α)
a (ρ) := min

{pi ,|ψi 〉}

∑
i

piC
(α)
a (|ψi〉), (19)

then limα→0C
(α)
a (ρ) = 1. That is, limα→0C

(α)
a is a coherence

measure which equals unity when the state is coherent and
is zero otherwise. A similar measure; namely, the trivial
coherence measure, was discussed in Ref. [55] for which
similar consequences were observed.

For a single-qubit state ρ = 1
2 (I + ∑

i ciσi ) with σi (i =
1, 2, 3) being Pauli matrices, the eigenvalues are λ1,2 = (1 ∓
|c|)/2, and

ρα =
⎛⎝ λα

1 +λα
2

2 + c3(λα
2 −λα

1 )
2|c|

(−c1+ic2 )(λα
1 −λα

2 )
2|c|

(−c1−ic2 )(λα
1 −λα

2 )
2|c|

λα
1 +λα

2
2 − c3(λα

2 −λα
1 )

2|c|

⎞⎠.

Therefore, the corresponding α affinity of coherence is

C (α)
a (ρ) = 1 − (A + B )1/α − (A − B )1/α, (20)

where

A =
( 1−|c|

2

)α + ( 1+|c|
2

)α

2
, and

B = c3
[( 1+|c|

2

)α − ( 1−|c|
2

)α]
2|c| .

III. 1/2 AFFINITY OF COHERENCE AND LEAST
SQUARE MEASUREMENT

Spehner and Orszag [56] first revealed the connection
between quantum correlation (Hellinger-distance-based quan-
tum discord) and QSD with least square measurements. In
coherence theory, there is a very close relationship between
geometric coherence and QSD. The authors of Ref. [57] have
recently shown that geometric coherence of ρ is equal to
the minimum error probability to discriminate a set of lin-
early independent pure states {|ψi〉, ηi}di=1 with von Neumann
measurement, where |ψi〉 = η

−1/2
i

√
ρ|i〉, ηi = ρii , and d =

rank(ρ). Since the optimal measurement is not easy to find,
we consider the least square measurement for {|ψi〉, ηi}di=1.

For {|ψi〉, ηi}di=1, there are two cases. If ηi = 0 (i =
1, . . . , d ), then the ensemble contains d states. Since∑

i ηi |ψi〉〈ψi | = ρ, the least square measurement is

Mlsm
i = ηiρ

−1/2|ψi〉〈ψi |ρ−1/2 = |i〉〈i|, (21)

where ρ−1/2 := ∑
i λ

−1/2|ai〉〈ai | if ρ = ∑
i λ|ai〉〈ai | is the

spectral decomposition. Thus,
∑

i M
lsm
i = I and the success-

ful probability to discriminate the ensemble {|ψi〉, ηi}di=1 with
{Mlsm

i } is

P lsm
S

({|ψi〉, ηi}di=1

) =
∑

i

ηiTr
(
Mlsm

i |ψi〉〈ψi |
)

=
∑

i

〈i|√ρ|i〉2

= [A(1/2)(ρ)]2. (22)

If ηi = 0 for some i = i1, i2, . . . , is , then the ensem-
ble {|ψi〉, ηi}di=1 reduces to {|ψi ′ 〉, ηi ′ }d−s

i ′=1. In fact, as ηi =
〈i|ρ|i〉 = |√ρ|i〉|2, ηi = 0 implies that |ψi〉 is a zero vector.
If S is the subspace spanned by {|ψi ′ 〉}d−s

i ′=1, then

Mlsm
i ′ = ηi ′ρ

−1/2|ψi ′ 〉〈ψi ′ |ρ−1/2 = |i ′〉〈i ′|

for all i ′, and
∑d−s

i ′ Mlsm
i ′ = IS . Moreover, the successful

probability to discriminate the ensemble {|ψi ′ 〉, ηi ′ }d−s
i ′=1 with

{Mlsm
i ′ } is

P lsm
S

({|ψi ′ 〉, ηi ′ }d−s
i ′=1

) =
d−s∑
i ′=1

ηi ′Tr
(
Mlsm

i ′ |ψi ′ 〉〈ψi ′ |
)

=
d−s∑
i ′=1

〈i ′|√ρ|i ′〉2

=
d∑

i=1

〈i|√ρ|i〉2

= [A(1/2)(ρ)]2.

In other words, the corresponding error probability to
discriminate linearly independent pure states {|ψi〉, ηi}di=1 is

P lsm
E ({|ψi〉, ηi}) = 1 − P lsm

S

({|ψi〉, ηi}di=1

) = C (1/2)
a (ρ).

Thus, we have the following theorem:
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Theorem 2. If quantum state ρ describes a quantum system
in d-dimensional Hilbert space H with {|i〉}di=1 being a refer-
ence basis, then the α affinity of coherence of ρ is equal to
the error probability to discriminate {|ψi〉, ηi}di=1 with a least
square measurement. That is,

C (1/2)
a (ρ) = P lsm

E

({|ψi〉, ηi}di=1

)
, (23)

where ηi = 〈i|ρ|i〉 and |ψi〉 = η
−1/2
i

√
ρ|i〉.

Remark 2.1. If ρ is an incoherent state, then C
1/2
a (ρ) = 0

which means that {|ψi〉, ηi}i can be perfectly discriminated
by the least square measurement. In other words, the LSM is
actually the optimal measurement.

IV. LEAST SQUARE MEASUREMENT
AND OPTIMAL MEASUREMENT

A. Quantum state discrimination with least square
measurement and 1/2 affinity of coherence

In this section, we review a connection between the least
square measurement (as a suboptimal choice) and the optimal
measurement in QSD protocol. The authors in Ref. [57] have
linked quantum state discrimination to geometric coherence.

Let us consider QSD of a set of pure states {|ψi〉, ηi}di=1.
Denote a matrix M with Mij = √

ηiηj 〈ψi |ψj 〉, 1 � i, j � d;
that is,

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1
√

η1η2〈ψ1|ψ2〉 . . .
√

η1ηd〈ψ1|ψd〉√
η2η1〈ψ2|ψ1〉 η2 . . .

√
η2ηd〈ψ2|ψd〉

...
... . . .

...

...
... . . .

...
√

ηdη1〈ψd |ψ1〉 √
ηdη2〈ψd |ψ2〉 . . . ηd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (24)

Then, M is a density matrix and we call it the QSD state of
{|ψi〉, ηi}di=1.

Theorem 3 [57]. Let H be a d-dimensional Hilbert
space and {|i〉}di=1 be the computable basis; that is, |i〉 =
(0, . . . , 0, 1, 0, . . . , 0)t , the ith entry is 1 for each i. For |ψi〉 ∈
H, the minimal error probability to discriminate the collection
of linearly independent pure states {|ψi〉, ηi}di=1 is equal to the
geometric coherence of the corresponding QSD-state M; that
is,

P
opt
E

({|ψi〉, ηi}di=1

) = Cg (M ). (25)

For 1/2 affinity and the least square measurement, there
exists a similar relationship. If we denote the corresponding
QSD state by M; namely, νi = Mii = ηi , |ϕi〉 = ν

−1/2
i

√
M|i〉

for each i, then 〈ϕi |ϕj 〉 = (νiνj )−1/2〈i|M|j 〉 = 〈ψi |ψj 〉, 1 �
i, j � d. With Lemma 8 from Ref. [57], there exists a unitary
V such that |ϕi〉 = V |ψi〉 for each i.

As a result, the least square measurement for {|ψi〉, ηi}di=1
is

Mi = ηiρ
−1/2
out |ψi〉〈ψi |ρ−1/2

out , i = 1, . . . , d, (26)

with ρout = ∑
i ηi |ψi〉〈ψi |. Since σout = ∑

i ηi |ϕi〉〈ϕi | =
VρoutV

†, the LSM for {|ϕi〉, ηi}di=1 is

Ni = ηiσ
−1/2
out |ϕi〉〈ϕi |σ−1/2

out = V MiV
†. (27)

In addition, one has

P lsm
E ({|ψi〉, ηi}) =

∑
i

ηi tr(Mi |ψi〉〈ψi |)

=
∑

i

ηi tr(Ni |ϕi〉〈ϕi |)

= P lsm
S ({|ϕi〉, νi})

= C (1/2)
a (M ).

In conclusion, we have the following result:
Theorem 4. Let H be a d-dimensional Hilbert space

and {|i〉}di=1 be the computable basis; that is, |i〉 =
(0, . . . , 0, 1, 0, . . . , 0)t , the ith entry is 1 for i = 1, . . . , d. For
|ψi〉 ∈ H, i = 1, . . . , d , the error probability to discriminate
the collection of pure states {|ψi〉, ηi}di=1 with a least square
measurement is equal to the 1/2 affinity of coherence of the
corresponding QSD-state M; that is,

P lsm
E

({|ψi〉, ηi}di=1

) = C (1/2)
a (M ), (28)

where the incoherent pure states are {|i〉}di=1.

B. Least square measurement and optimal measurement

First, we recall the following result:
Theorem 5 [42,58]. Let {ρi, μi}mi=1 to be an ensemble of m

states of a system in an n-dimensional Hilbert space H (m �
n), then

P
opt
S

({ρi, μi}mi=1

)
�

√
P lsm

S

({ρi, μi}mi=1

)
. (29)

Because P
opt
E = 1 − P

opt
S is the minimal error probability

of QSD, the error probability with LSM is

P lsm
E = 1 − P lsm

S � 1 − (
P

opt
S

)2 � 2P
opt
E . (30)

Therefore, if P
opt
E is very close to 0, so is P lsm

E . In fact, LSM is
very close to the optimal measurement for almost orthogonal
states.

Because the LSM to discriminate a set of pure states
is actually a von Neumann measurement and the result of
Theorem 3, one has

2Cg (ρ) � C (1/2)
a (ρ) � Cg (ρ) � C̃a (ρ),

for any ρ. The last inequality is due to Theorem
5 above and Theorem 1 of Ref. [57] as follows:
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Cg (ρ) � 1 − P
opt
S ({ρi, μi}mi=1) � 1 −

√
P lsm

S ({ρi, μi}mi=1) =
C̃a (ρ). In addition, since Cg (ρ) � Cl1 (ρ)

d−1 for any ρ > 0 (that
is, ρ is invertible) [57], where Cl1 (ρ) is the l1 norm of
coherence defined as Cl1 (ρ) := ∑

i =j |〈i|ρ|j 〉|, we have that,
for any ρ > 0, the following inequality holds:

2

d − 1
Cl1 (ρ) � 2Cg (ρ) � C (1/2)

a (ρ) � Cg (ρ) � C̃a (ρ).

On the other hand, we consider the connection between
least square measurement and optimal measurement through
coherence.

In Ref. [59], Zhang et al. gave an upper bound for geomet-
ric coherence as

Cg (ρ) � min{l1, l2}, (31)

where l1 = 1 − maxi{ρii} and l2 = 1 − ∑
i b

2
ii with bij being

the (i, j )th entry of
√

ρ. This is interesting to note that l2 is
actually equal to C

(1/2)
a (ρ) and, moreover, they also show that

l2 is tight for the maximally coherent mixed states given by

ρm = p|ψd〉〈ψd | + 1 − p

d
Id, (32)

where 0 < p < 1, and |ψd〉 = 1√
d

∑
i |i〉 is the maximally

coherent state.
In other words, one has

Cg (ρm) = C (1/2)
a (ρm). (33)

Combining Theorem 3, Theorem 1, and Eq. (33), we
recover the following result:

Theorem 6 [22,28]. For the equiprobable quantum state
discrimination task {|φi〉, 1/d}di=1 with 〈φi |φj 〉 = p for i =
j , the least square measurement is optimal. Moreover, the
maximum successful probability is

P
opt
S

({|φi〉, 1/d}di=1

) =
[
d − 1

d

√
1 − p + 1

d

√
1 − p + dp

]2

.

Proof. Note that the QSD-state of the above-mentioned
task is ρm. Because

P
opt
E

({|φi〉, 1/d}di=1

) = Cg (ρm)

= C (1/2)
a (ρm) = P lsm

E

({|φi〉, 1/d}di=1

)
,

then the least square measurement is optimal. The first equal-
ity is the result of Theorem 3 and the fact that {|φi〉} is linearly
independent. The last equality is due to Theorem 4. Using the
result from Ref. [59],

Cg (ρm) = 1 −
[
d − 1

d

√
1 − p + 1

d

√
1 − p + dp

]2

,

the maximum successful probability is

P
opt
S

({|φi〉, 1/d}di=1

) =
[
d − 1

d

√
1− p + 1

d

√
1− p + dp

]2

,

and the corresponding optimal measurement is

M
opt
i = 1

d
ρ

−1/2
out |φi〉〈φi |ρ−1/2

out ,

where ρout = 1
d

∑
i |φi〉〈φi | (i = 1, . . . , d, ). �

V. WHEN IS LEAST SQUARE MEASUREMENT OPTIMAL?

Theorem 6 indicates that LSM is optimal for the equiprob-
able case. However, we find that this is not the only case, as
discussed below.

A. Case of two pure states

Since we have the explicit expressions of geometric co-
herence and 1/2 affinity of coherence for single-qubit states,
we can derive the condition for LSM being optimal for an
ensemble containing two pure states. Given an ensemble
{|ψi〉, ηi}2

i=1, the corresponding QSD-state is a single-qubit
state ρ = ∑

i ciσi . From Eq. (20), one has

[A(1/2)(ρ)]2 = 1

2

(
1 +

√
1 − |c|2 + c2

3

1 +
√

1 − |c|2

)
.

On the other hand, with fidelity F (ρ, σ ) := tr
√√

σρ
√

σ ,

F (ρ) := max
σ∈I

F (ρ, σ ) =
√

1

2

(
1 +

√
1 − c2

1 − c2
2

)
.

The above expressions reduce to simpler forms when
ρ is a pure state [|c| = (c2

1 + c2
2 + c2

3 )1/2 = 1]. That is,
[A(1/2)(ρ)]2 = 1

2 (1 + c2
3 ) and F 2(ρ) = 1

2 (1 + |c3|). Then,
A(1/2)(ρ) = F (ρ) if and only if c3 = 0 or ±1. The same can
be shown to be true for mixed states with some tedious cal-
culations. Hence, the least square measurement is optimal for
two pure states case if and only if these states are orthogonal
or have equal probabilities.

B. Multiple copy quantum state discrimination
with least square measurement

We consider QSD protocol with multiple copies, as the
error probability of a QSD task decreases when we have more
copies of states.

For the N -copy case {|ψi〉⊗N, ηi}di=1, the (i, j )th entry of
the corresponding QSD-state is

ρ
(N )
ij = √

ηiηj 〈ψi |ψj 〉N (1 � i, j � d ).

Let N → ∞ and ρ
(N )
ij → 0 for each i = j . Since

{|ψi〉⊗N }di=1 is linearly independent for large N , the QSD-state
ρ (N ) is invertible. Then,

C (1/2)
a (ρ) � 2

d − 1
Cl1 (ρ),

and the error probability to discriminate {|ψi〉⊗N, ηi}di=1 tends
to zero. In other words, if we have enough copies of states,
pure states {|ψi〉, ηi}di=1 can be almost perfectly distinguished
by the LSM. In other words, we prove that LSM is asymp-
totically optimal for the discrimination of pure states in
the sense that the corresponding QSD-state ρ → ρdiag =∑

i 〈i|ρ|i〉|i〉〈i|.

VI. DUALITY BETWEEN 1/2 AFFINITY OF COHERENCE
AND PATH DISTINGUISHABILITY

Wave-particle duality is an intriguing but central concept in
quantum physics. In the double-slit interference experiment, a
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single quantum object can exhibit the wave nature as long as
knowledge about the path chosen by the object is uncertain.
More knowledge about the path corresponds to poor inter-
ference. In this direction, quantitative relations in the form
of trade-offs between wave and particle aspects were studied
by Greenberger–Yasin [60] and Englert [61], respectively.
Englert, in his famous paper [61], derived a path-visibility
duality relation for the optimal detector measurement for two
paths as follows:

V2 + D2 � 1, (34)

where V is the visibility of the interference pattern and D is a
measure of path distinguishability or which-way information.
Recently, Bera et al. [62] obtained a complementarity relation
between the l1 norm of coherence and path distinguishability
in the case of Yang’s n-slit experiment. Here, although we are
unable to provide a general proof for mixed states in arbitrary
dimensions, we establish the complementarity between 1/2
affinity of coherence and path distinguishability for some
special cases.

Consider the case of d-slit quantum interference with pure
quantons. In Yang’s n-slit experiment, if the quanton passes
through the ith slit or takes the ith path, then we denote |i〉 as
the possible state. As a result, the state of the quanton can be
represented with d basis states {|1〉, . . . , |d〉} as

|�〉 = c1|1〉 + · · · + cd |d〉, (35)

where |i〉 represents the ith slit and ci is the amplitude of
taking the ith slit. To determine through which slit the quan-
ton passes, one needs to perform a quantum measurement.
According to quantum measurement theory, the quanton will
interact with a detector state and the compound state is given
by

U (|�〉|0d〉) =
∑

i

ci |i〉|di〉, (36)

where {|di〉} are normalized but not necessarily orthogonal
states of the detector.

To quantify the coherence of quanton, one considers the
reduced density matrix of the quanton after tracing out the
detector states,

ρs =
d∑

i,j=1

ci c̄j 〈dj |di〉|i〉〈j |. (37)

From Theorem 2, the 1/2 affinity of coherence is

C (1/2)
a (ρs ) = 1 − P lsm

S

({|ψi〉, ηi}di=1

)
, (38)

where ηi = |ci |2, |ψi〉 = exp(
√−1θi )η

−1/2
i

√
ρs |i〉, and θi is

the argument of ci .
Now, to know which path the quanton takes, one has

to discriminate the detector states {|di〉, |ci |2}di=1. In other
words, the path distinguishability is actually equivalent to the
discrimination of the corresponding detector states.

Since 〈ψi |ψj 〉 = 〈dj |di〉 = 〈di |dj 〉, there exists a unitary
matrix V such that |di〉 = V |ψi〉. Therefore, one has

ρout =
∑

i

|ci |2|di〉〈di | = V
∑

i

|ci |2|ψi〉〈ψi |V † = V ρsV
†,

and then the corresponding LSM for {|di〉, |ci |2} is

Nlsm
i = |ci |2ρ−1/2

out |di〉〈di |ρ−1/2
out = V |i〉〈i|V †.

As a result, one has

P lsm
S

({|di〉, |ci |2}di=1

) =
∑

i

|ci |2|〈i|V †|di〉|2

=
∑

i

|〈i|
√

ρs |i〉|2

= P lsm
S

({|ψi〉, |ci |2}di=1

)
.

Even though it is not the optimal choice for quantum state
discrimination, LSM is very close to the optimal choice when
the states to be distinguished are almost orthogonal, and its
construction is also relatively simple. Moreover, the com-
plementarity between coherence and path distinguishability
holds just for linearly independent detector states [57,62].
Therefore, if we define the optimal successful probability
to discriminate the detector states with LSM as path distin-
guishability, Dq := P lsm

S ({|di〉, |ci |2}di=1), and the 1/2 affinity
of coherence as coherence, C := C

(1/2)
a (ρs ), we obtain the

complementarity between 1/2 affinity of coherence and path
distinguishability as

C + Dq = 1. (39)

Thus, the wave nature of the quanton can also be charac-
terized by C

(1/2)
a (ρs ). If the quantum system is exposed to the

environment; that is, the quanton state is a mixed state ρ =∑
i,j ρij |i〉〈j |, we can obtain a generalized complementarity.

The composite system of the quanton and the path detector
after the unitary interaction can be given as

ρsd =
∑
i,j

ρij |i〉〈j | ⊗ |di〉〈dj |, (40)

and the reduced density matrix of the quanton after tracing out
the detector states is

ρs =
d∑

i,j=1

ρij 〈dj |di〉|i〉〈j |. (41)

As every principal 2 × 2 submatrix in Eq. (41) is positive
semidefinite [63, p. 434], we have

√
ρiiρjj − |ρij | � 0 (1 � i, j � d ). (42)

Assuming that the corresponding ensemble to ρs is {|ψi〉, ρii},
we have

|〈ψi |ψj 〉| = |〈i|ρs |j 〉|√
ρiiρjj

= |ρij |√
ρiiρjj

|〈di |dj 〉| � |〈di |dj 〉|,

for each i and j . In other words, a pair of states in {|di〉, ρii}di=1
is more difficult to distinguish than the corresponding pair
in {|ψi〉, ρii}di=1. Suppose ρ ′

s = ∑d
i,j=1

√
ρiiρjj 〈dj |di〉|i〉〈j |.

Then for certain special cases where there exists an incoherent
operation � (see Appendix B), we have

�(ρ ′
s ) = ρs. (43)
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Because C
(1/2)
a is a coherence measure, we have

1 − C (1/2)
a (ρs ) � 1 − C (1/2)

a (ρ ′
s )

= P lsm
S

({|di〉, ρii}di=1

) ≡ Dq.

Thus, we have the following complementarity relation
between coherence and path distinguishability,

C + Dq � 1. (44)

VII. CONCLUSION

In this paper, we have introduced a family of coherence
measures; namely, the α affinity of coherence for α ∈ (0, 1).
Moreover, we obtained the analytic formulas for these quan-
tifiers and also studied their convex roof extension. In par-
ticular, we have offered an operational meaning for the 1/2
affinity of coherence by showing that this equals the error
probability to discriminate a set of pure states with least
square measurement. Based on the relationship between the
LSM and the optimal measurement, we obtained the optimal
measurement for the equiprobable quantum state discrimina-
tion. Furthermore, we obtained conditions for the LSM to be
the optimal measurement for two pure states from the per-
spective of coherence theory. In addition, we also studied the
multiple copy QSD and concluded that LSM is optimal in the
asymptotical sense. At last, we established the complementary
relationship between the 1/2 affinity of coherence and path
distinguishability.

Our results not only offer a class of bona fide coherence
quantifiers, but also reveal a close link between the quantifica-
tion of coherence and quantum state discrimination. However,
the operational interpretation of general α-affinity coherence
needs further investigation.

Note added. Recently, we have been informed by
Hyukjoon Kwon that the 1/2 affinity of coherence has been
computed and proven to be a coherence measure indepen-
dently in Refs. [64,65] by different methods, yielding the same
result.
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APPENDIX A: A(α) is Bounded

Proposition 7. 0 � A(α)(ρ, σ ) � 1, with A(α)(ρ, σ ) = 1 if
and only if ρ = σ .

Proof. Because ρ
α
2 σ 1−αρ

α
2 is a positive matrix, one has

Tr(ρασ 1−α ) = Tr
(
ρ

α
2 σ 1−αρ

α
2
)
� 0.

The other part can be proved as in Ref. [66]. Let
{|x〉}x be a basis of H, then M = {Mx |Mx = |x〉〈x|} is an
informationally complete measurement. Denoting �(ρ) =∑

x 〈x|ρ|x〉|x〉〈x|, we have from the monotonicity of

A(α)(ρ, σ ) and Jensen’s inequality

A(α)(ρ, σ )�A(α)(�(ρ),�(σ ))

=
∑

x

(〈x|ρ|x〉
〈x|σ |x〉

)α

〈x|σ |x〉�
(∑

x

〈x|ρ|x〉
)α

=1.

Because the equality holds if and only if 〈x|ρ|x〉 =
〈x|σ |x〉 for any informationally complete measurement, one
has A(α)(ρ, σ ) = 1 if and only if ρ = σ . �

APPENDIX B: C (1/2)
a (ρs ) � C (1/2)

a (ρ ′
s )

1. d = 2 case

For d = 2, let � = {K12,K11,K22} with

K12 =
⎛⎝ √

ρ12

(ρ11ρ22 )1/4 0

0
√

ρ21

(ρ11ρ22 )1/4

⎞⎠,

K11 =
⎛⎝√

1 − |ρ12|√
ρ11ρ22

0

0 0

⎞⎠,

K22 =
⎛⎝0 0

0
√

1 − |ρ12|√
ρ11ρ22

⎞⎠.

Since |ρ12|√
ρ11ρ22

� 1 we have

∣∣∣∣ √
ρ12

(ρ11ρ22)1/4

∣∣∣∣2

+
∣∣∣∣∣
√

1 − |ρ12|√
ρ11ρ22

∣∣∣∣∣
2

= 1,

and � is an incoherent operation such that �(ρ ′
s ) = ρs . Thus,

C
(1/2)
a (ρ ′

s ) � C
(1/2)
a (ρs ).

2. d = 3 case

For d = 3, we denote σij = ρij√
ρiiρjj

and ρij = |ρij |eiθij .

Without any loss of generality, we can assume that
|σ12| � |σ13| � |σ23|. Then the quantum operation � =
{K12,K13,K11,K22,K33} is

K12 =
⎛⎝√

σ12 0 0
0

√
σ12 0

0 0 σ23√
σ12

⎞⎠,

K13 =
⎛⎝

√
σ13 − σ23eiθ12 0 0

0 0 0
0 0

√
σ31 − σ32e−iθ12

⎞⎠,

K11 =
⎛⎝√

1 − |σ12| − |σ13 − σ23eiθ12 | 0 0
0 0 0
0 0 0

⎞⎠,

K22 =
⎛⎝0 0 0

0
√

1 − |σ12| 0
0 0 0

⎞⎠,

K33 =

⎛⎜⎝0 0 0
0 0 0

0 0
√

1 − |σ23|2
|σ12| − |σ13 − σ23eiθ12 |

⎞⎟⎠.
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If |σ12| + |σ13 − σ23e
iθ12 | � 1 and thus |σ13 − σ23e

iθ12 | � 1, then � is an incoherent operation. But, this may not be true for
all states because these conditions may not be satisfied. Moreover,

K12ρ
′
sK

†
12 =

⎛⎜⎝ |σ12|ρ11 ρ12〈d2|d1〉
√

ρ11ρ23e
iθ12√

ρ22
〈d3|d1〉

ρ21〈d1|d2〉 |σ12|ρ22 ρ23〈d3|d2〉√
ρ11ρ32e

−iθ12√
ρ22

〈d1|d3〉 ρ32〈d2|d3〉 |σ23|2
|σ12| ρ33

⎞⎟⎠
and

K13ρ
′
sK

†
13 =

⎛⎜⎝ |σ13 − σ23e
iθ12 |ρ11 0

(
ρ13 −

√
ρ11ρ23e

iθ12√
ρ22

)〈d3|d1〉
0 0 0(

ρ31 −
√

ρ11ρ32e
−iθ12√

ρ22

)〈d3|d1〉 0 |σ13 − σ23e
iθ12 |ρ33

⎞⎟⎠.

As a result, �(ρ ′
s ) = ρs and C

(1/2)
a (ρs ) � C

(1/2)
a (ρ ′

s ).

3. Finite-dimensional case

If
∑

j =i

|ρij |√
ρiiρjj

� 1 (for each i, j ), then the duality relation is true. We denote the Kraus operators of quantum operation

� ≡ {Kij } (1 � i � j � d) as follows:

Kij (i < j ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 . . . 0 . . . 0
... . . .

... . . .
... . . .

...
... . . .

... . . .
... . . .

...
... . . .

... . . .
... . . .

...

0 . . .
√

ρij

(ρiiρjj )1/4 . . . 0 . . . 0

... . . .
... . . .

... . . .
...

... . . .
... . . .

... . . .
...

... . . .
... . . .

... . . .
...

0 . . . 0 . . .
√

ρji

(ρiiρjj )1/4 . . . 0

... . . .
... . . .

... . . .
...

... . . .
... . . .

... . . .
...

... . . .
... . . .

... . . .
...

0 . . . 0 . . . 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
d×d

,

Kii =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 . . . 0 . . . 0
... . . .

... . . .
... . . .

...
... . . .

... . . .
... . . .

...
... . . .

... . . .
... . . .

...

0 . . .
√

1 − ∑
j =i

|ρij |√
ρiiρjj

. . . 0 . . . 0
... . . .

... . . .
... . . .

...
... . . .

... . . .
... . . .

...
... . . .

... . . .
... . . .

...
0 . . . 0 . . . 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
d×d

.

Then, it is not difficult to check that � is an incoherent operation and, for ρ ′
s = ∑d

i,j=1
√

ρiiρjj 〈dj |di〉|i〉〈j |, we have �(ρ ′
s ) =∑d

i,j=1 ρij 〈dj |di〉|i〉〈j | = ρs . Since C
(1/2)
a is a coherence measure, we have

C (1/2)
a (ρs ) = C (1/2)

a [�(ρ ′
s )] � C (1/2)

a (ρ ′
s ). (B1)
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