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We demonstrate the existence of a finite temperature threshold for a one-dimensional stabilizer code under
an error correcting protocol that requires only a fraction of the syndrome measurements. Below the threshold
temperature, encoded states have exponentially long lifetimes, as demonstrated by numerical and analytical
arguments. We sketch how this algorithm generalizes to higher-dimensional stabilizer codes with stringlike
excitations, such as the toric code.
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I. INTRODUCTION

Quantum memories are an essential component for many
quantum technologies, including quantum computing and
quantum repeaters. In analogy to modern classical memories,
one ideally wants a stable quantum memory that requires little
or no active intervention and error correction. Unfortunately,
no physical system that passively preserves quantum infor-
mation indefinitely at finite temperatures and in an experi-
mentally accessible number of dimensions is known [1]. In-
stead, the operation of all known practical quantum memories
require a combination of passive elements (i.e., dissipative
cooling) and active measurement and correction cycles to
keep quantum information protected. In this work, we study
the degree to which the amount of active measurement and
correction can be reduced while maintaining quantum mem-
ory stability (our notion of stability, to be quantified later,
corresponds to exponentially long lifetime for encoded states
below some finite threshold temperature). We develop a new
decoding and correction protocol that enables one to trim
the number of measurements to a fraction of the complete
set of measurements normally considered, and still maintain
quantum memory stability.

We restrict our attention to quantum memories defined
through stabilizer codes. For near-term architectures, stabi-
lizer codes [2] have emerged as the leading candidates for en-
coding quantum information and subsequent active error cor-
rection in quantum hardware, with small-scale architectures
actively being developed and deployed [3–6]. A tremendous
amount of effort has gone into developing novel decoding and
correction schemes for stabilizer codes, particularly the toric
code. Different schemes often emphasize different decoding
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features, such as efficient decoding [7–9], locality [10–13],
robustness to particular sorts of noise [14–16], or use of
dissipation [17–31].

In previous work [32], we analyzed the finite-temperature
dynamics of the toric code, verifying the well-known no-go
theorems for the upper bound to the lifetime of the toric code
at finite temperature [24,33–39]. Using this analysis, we were
able to construct a measurement-free protocol for protecting
the encoded qubits of the toric code [17], but these protocols
again were limited by the no-go theorems, and only provided
a multiplicative constant increase to the lifetime.

Building off this previous work, here we examine the
extent to which a limited amount of measurement can increase
the lifetime of stabilizer codes with stringlike excitations.
In sum, we demonstrate an algorithm that, for any constant
density of measurements, for a stabilizer code with stringlike
excitations undergoing dissipation at a fixed temperature,
exhibits a threshold temperature, below which exponentially
long lifetimes can be achieved in the encoded space. The
threshold temperature scales with the amount of measure-
ment used—fewer measurements result in a smaller threshold
temperature, whereas more complete measurement raises the
threshold temperature. This tradeoff is commensurate with
and complements what is known about decoding the stabi-
lizer codes in the presence of noisy, but complete measure-
ments [40].

The remainder of the paper is structured as follows. Sec-
tion II briefly reviews the theoretical tools used for perform-
ing simulation of stabilizer codes at finite temperature. The
content of this section is also expanded upon in Refs. [17,32].
Section III includes the full description of our limited mea-
surement algorithm, including a discussion of the expected
low-temperature error processes that cause the algorithm to
fail, and a heuristic justification for the expectation of a thresh-
old temperature below which a stable quantum memory is
feasible. Section IV details our numerical investigations of our
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TABLE I. A short summary of the similarities and differences
between the Ising model considered as a code (left panel) versus as a
Hamiltonian (right panel).

Repetition Stabilizer Code 1D Ising Stabilizer Hamiltonian

Encoded States Ground states
Bit flip errors Excited states
Decoding and error correction Identical or by cooling

algorithm for the one-dimensional (1D) Ising model. Finally,
Sec. V sketches how this algorithm could be generalized to
higher dimensions, and Sec. VI provides some concluding
analysis and discussion.

II. STABILIZER CODES AT FINITE TEMPERATURE

A. Definitions

In this section, we briefly review the theory of the 1D
Ising model, as well as the Markovian open quantum systems
formalism for evaluating its finite-temperature dynamics. The
Hamiltonian for the 1D Ising model is

HIsing = −��iσ
i
zσ

i+1
z , (1)

where, for the remainder of the paper, unless explicitly stated
otherwise, we assume � = 1. This is exactly the Hamiltonian
version of the repetition stabilizer code [17]. Note that the
terms σ i

zσ
i+1
z correspond exactly to the parity check stabilizer

operators of the repetition code (see Table I).
In the parlance of the 1D Ising model, bit-flip errors are

often also classified via the dual variables called domain walls
or defects. Defects are simply locations on the 1D Ising chain
where a stabilizer operator yields a measurement of −1, i.e.,
locations where neighboring spins point in different direc-
tions. With periodic boundary, the number of these locations
is always even, and a single bit-flip event either creates a pair
of such defects, deletes a pair of defects, or causes a defect to
translate by one unit.

As long as less than half the system has had errors, a major-
ity rule decoder that has access to measurements of the full set
of stabilizers σ i

zσ
i+1
z will reliably be able to correctly identify

and remove errors. When errors are completely independent
(i.e., at very high temperature), we can define random vari-
ables xi = 1 when an error occurs on site i, and 0 otherwise.
If these errors occur with probability p on each spin, indepen-
dently at random every error detection cycle, then Chernoff’s
bound gives an upper bound to the probability of an error
in the encoded space, P (�ixi � L/2) � exp[−Lp δ2

2+δ
] for

δ = 1/2p − 1. Thus, for complete measurement, errors in
the encoded subspace are exponentially suppressed in system
size, so long as the error rate is sufficiently small. For much
of the remainder of the paper, we consider how the decoding
scheme changes when one does not have access to the full set
of stabilizer measurements.

Following Ref. [17], we consider a simple local Ohmic,
Markovian bath to model finite-temperature effects. This is
modeled by the following master equation in Lindblad form:

ρ̇ =
∑

i

2ciρc
†
i − c

†
i ciρ − ρc

†
i ci . (2)

Here ρ is the density matrix, with Lindblad operators ci

chosen to take the form:

{ci (�)} = {
√

γ (0)Ti,
√

γ (�)D†
i ,

√
γ (−�)Di}, (3)

where Tb translates a defect by one unit, D
†
b creates a pair

of defects, Db dissipates a pair of defects, and γ (·) is a rate
function dependent on the details of the bath. This bath is
chosen to model the dynamics of local, single bit-flip errors.
In the Pauli basis, these operators take the following form:

D
†
i = 1

4

(
I iσ i+1

x I i+2
)(

1 + I iσ i+1
z σ i+2

z

)(
1 + σ i

zσ
i+1
z I i+2

)
Di = 1

4

(
I iσ i+1

x I i+2)(1 − I iσ i+1
z σ i+2

z

)(
1 − σ i

zσ
i+1
z I i+2)

Ti = 1
4

(
I iσ i+1

x I i+2
)(

1 − I iσ i+1
z σ i+2

z

)(
1 + σ i

zσ
i+1
z I i+2

)
.

(4)

By convention, we define i to index the first qubit in these
operators.

Finally, the remaining details of the bath are specified by
the spectral density, which determines the rates with which
the different Lindblad operators act:

γ (ω) = ξ

∣∣∣∣ ωn

1 − e−βω

∣∣∣∣, (5)

where n = 1 corresponds to an Ohmic spectral density, which
is the choice we make for the remainder of the paper. With
this choice, in the absence of any error correcting protocol,
it can be shown that the 1D Ising model has a system-size-
independent thermal logical error rate given by [17]

�0 = γ (0)

1 + e1/T
. (6)

We define the bare lifetime of qubits evolving under the 1D
Ising model Hamiltonian in contact with an Ohmic thermal
bath to be �−1

0 .

B. Finite temperature vs. infinite temperature

The majority of the error correction literature assumes
an error model akin to an infinite-temperature limit. More
precisely, an array of physical qubits receives errors from
some set of error operators Ei independently at random with
some probability p during every error correction cycle. The
threshold theorems state that there exists some critical error
probability pc below which it is possible to return an error
correcting code to its encoded state with unit probability for
asymptotically large systems; e.g., for the toric code, pc ≈
.109 [8].

In contrast, thresholds at finite temperature are usually
quoted in terms of a critical temperature. That is, there must
exist some critical temperature Tc below which codes can be
reliably corrected. Unfortunately, this definition obscures a
great deal of physics—different choices of bath model can
greatly affect the dynamics of the error processes, to the extent
that a quoted critical temperature often implicitly specifies a
choice of bath model. Because different bath interactions can
give rise to different system dynamics, the choice of bath also
directly affects the strategy used for error correction. For ex-
ample, it is known that the toric code’s threshold temperature
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is altered by considering a space-correlated bath rather than
an uncorrelated one [14].

The main consequence of choosing an Ohmic bath is that it
sets the amplitude of the excitation hopping process. That is,
γ (0) is determined by the ω → 0 limit of the spectral density
of the bath, and for the Ohmic bath taking the ω → 0 limit
of Eq. (5) yields γ (0) ∼ T . Ultimately, this means that the
hopping rate of domain walls is controlled by this choice of
bath model. At finite temperatures, this introduces correla-
tions into the patterns of errors that effect the system, and so it
is no longer possible to talk about an independent error prob-
ability per site. In contrast to the behavior of γ (0), the other
operationally important feature of the bath, the ratio of defect
creation and annihilation rates, is set by detailed balance to
Boltzmann-like scaling [i.e., γ (�)/γ (−�) = exp(−�/T )],
and is independent of the choice of bath spectrum.

In the most extreme case, at sufficiently low temperature,
pairs of neighboring defects are most often immediately dis-
sipated by the bath upon creation via a Db operator. However,
if a pair creation is followed by a pair hopping event, i.e., a
D

†
b followed by a Tb—the error can no longer be immediately

dissipated by the local action of the bath. Subsequently the de-
fects will undergo a one-dimensional random walk, and topo-
logically nontrivial random walks will cause uncorrectable
logical errors.

Thus, error correcting the 1D Ising model at low temper-
ature with this sort of bath dynamics reduces to attempting
to identify these randomly migrating rare pairs of defects.
While a majority-rule decoding scheme works in both low-
and high-temperature limits for the Ising model, if the number
of measurement resources is restricted, the standard majority
rule scheme breaks down because of the intrinsic uncertainty
regarding unmeasured defects.

III. FEW MEASUREMENT ERROR
CORRECTION ALGORITHM

A. Algorithm

In this section, we sketch a new algorithm, which reliably
removes errors in the 1D Ising model below a threshold
temperature, which we determine numerically. The primary
technical innovation of this algorithm, and its generalization
to quantum memories based on any stabilizer Hamiltonian, is
that it does not require measurement of the complete set of
stabilizer operators for a given stabilizer code, only a fixed
subset. We assume (i) that the system is subject to periodic
measurements on periodically spaced measurement patches,
(ii) that measurement readout and processing occurs much
faster than any system timescale, and (iii) that the system is
subject to a thermal bath as described in Sec. II A.

The algorithm can be summarized in five steps.
(i) Measure stabilizers on patches, keeping record of the

age of defects that are already on patches, i.e., the amount of
time a defect is continuously detected on a patch, as well as
defect locations.

(ii) Perform centering on patches with defects (see Fig. 1),
based on centering protocol introduced in Ref. [17].

(iii) Calculate probability of fusion [explicitly given in
Eq. (A2)] for all pairs of measured defects residing on the

FIG. 1. This drawing illustrates the centering procedure for de-
tected defects on a unit cell. Spin variables are in small, gray circles,
and domain wall variables are in large blue (no defect present) and
large red, hatched (defect present) circles. When a defect is detected
on a measurement patch (blue, rectangular box), it is swapped to
the center of the measurement patch via the DSWAP operator (black
arrows). The defect immediately adjacent to it is also swapped onto
the measurement patch so as not to pull apart defect pairs that
would have otherwise dissipated. Measurement patch length scale
λ indicated by arrow on top, and unit cell length scale λ indicated by
arrow on bottom. The measurement fraction is defined as m ≡ λm/λ.

measurement sites. This probability serves as an estimate for
whether two defects should be paired or not for the purposes
of error correction.

(iv) Probabilistically perform error correction based on
probabilities calculated in step (iii).

(v) Repeat steps (i)–(iv).
Step (ii) encourages defects to remain localized at mea-

surement patches. This centering protocol can be performed
entirely unitarily by the DSWAP operator, which takes the
following form in the Pauli basis:

DSWAPi = 1
2

(
I iI i+1I i+2 + I iσ i+1

x I i+2

+ σ i
z I

i+1σ i+2
z − σ i

zσ
i+1
x σ i+2

z

)
, (7)

where i indexes the location of the first qubit being acted upon
by the operator by convention.

If a domain wall exists either between the first and second
qubit or the second and third qubit, then the DSWAP operator
exchanges those domain walls. If there are no domain walls, it
acts as the identity. By concatenating a sequence of DSWAPs,
i.e., DSWAPiDSWAPi+1DSWAPi+2 . . ., domain walls can be
shuttled to the center of the measurement patch for efficient
tracking.

The centering process, illustrated in Fig. 1, aids the prob-
ability of fusion calculation by ensuring that the coordinates
and measurement times are representative of when and where
defects are actually created. If defects escape from mea-
surement patches, then upon being measured again, the time
recorded by the measurement patch now underestimates how
old the defect actually is, biasing the probability estimate. This
centering operation greatly reduces the probability of defect
escape. Any remaining underestimate of defect lifetimes can
be fixed by a more elaborate record keeping protocol (see
Appendix B).

Note that the pattern of DSWAPs used in Fig. 1 also swaps
the neighboring, unmeasured defect onto the measurement
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patch. This is to ensure that the protocol does not inadver-
tently create a new separated pair of defects in the system
by shifting only one defect in a potentially adjacent pair.
More specifically, if the domain wall variable marked with
a “*” actually also carried a defect, then DSWAPing only the
measured defect would inadvertently create a free pair.

B. Fusion probability calculation

To perform error correction properly, we need to be able to
estimate the probability that two given measured defects are
a pair, given that they have been measured at two particular
measurement patches at two different times. For notational
convenience, we define:

d1 : d2 ≡ defect d1 and d2 are a pair (8)

and

d
x1,t1
i ≡ defect di measured at time t1 at patch x1. (9)

Then, we aim to calculate the fusion probability:

P
(
d1 : d2

∣∣dx1,t1
1 ∧ d

x2,t2
2

)
, (10)

i.e., the probability that two detects measured at space-time
coordinates (x1, t1) and (x2, t2) are part of the same defect
pair, and therefore should be fused in a correction step.

To calculate this probability, we proceed via Bayes rule:

P
(
d1 : d2

∣∣dx1,t1
1 ∧ d

x2,t2
2

)= P
(
d

x1,t1
1 ∧ d

x2,t2
2

∣∣d1 : d2
)
P (d1 : d2)

P
(
d

x1,t1
1 ∧ d

x2,t2
2

) .

(11)

The individual terms on the right-hand side of Eq. (11) are
straightforward to interpret. d

xi ,ti
i indicates a defect residing

on a measurement patch centered on space-time coordinate
xi, ti . P (dx1,t1

1 ∧ d
x2,t2
2 |d1 : d2) represents the probability that

two measured defects would be at (x1, t1) and (x2, t2) given
that they are indeed a pair. P (d1 : d2) represents the proba-
bility that two measured defects, d1 and d2, are in fact a pair.
Finally, P (dx1,t1

1 ∧ d
x2,t2
2 ) is the probability that two defects are

measured, one at (x1, t1), and the other at (x2, t2).
P (dx1,t1

1 ∧ d
x2,t2
2 |d1 : d2) can be related to the probabil-

ity that a one-dimensional diffusion process with diffusion
constant D will perform an excursion with a displacement
|x2 − x1| or greater in a time t2 − t1, i.e., will perform an
excursion that can reach measurement patches at x1 and x2.
Explicitly,

P
(
d

x1,t1
1 ∧ d

x2,t2
2

∣∣d1 : d2
)

= 1 − 2
∫ |x2−x1|

0
dx

1

2πD|t2 − t1|exp

(
− |x2 − x1|2

2D|t2 − t1|
)

= 1 − erf

( |x2 − x1|
2
√

D|t2 − t1|
)

. (12)

For our analysis, we will choose D ∝ γ0. The exact corre-
spondence between D and γ0 depends on the details of the
error correction algorithm itself, so, in practice, we treat the
constant of proportionality as an empirically tuned parameter.
Furthermore, we approximate any detected defects as arising
from a pair that was created an equal distance between the

measurement patches at locations x1 and x2 for the purposes
of calculating the probability in Eq. (12).

As we discuss in Appendix A, the remaining two factors
are not as important for the decoding scheme as the likelihood
term in Eq. (12). In practice, we find that using the expression
from Eq. (12) alone is sufficient to provide resilient error
correction. We defer further discussion to the Appendix.

C. Error dynamics

In this section, we discuss the parameter regime in which
we expect the error correcting algorithm to perform well. We
then derive the logical error rate for a simple error model, un-
der some simplifying assumptions about the error dynamics.
While this error model does not account for the complete error
dynamics of the full 1D Ising model in the presence of our
protocol, we argue how it nonetheless serves as a worst-case
approximation to the true error dynamics. Finally, we describe
how this protocol provides a threshold for any finite density of
measurements.

1. Correspondence between model and full error dynamics

In this section, we detail the approximations and rate
assumptions that are necessary for the error correcting al-
gorithm to perform well. The primary approximations made
are concerning (i) fast defect detection, (ii) accurate pair-
ing, (iii) defects escaping measurement patches, (iv) defect
interactions, and (v) errors during application of swaps and
measurements.

(i) If defects are produced in between measurement patches
faster than they are detected, then this algorithm cannot in
principle correct errors. Thus, we require that the character-
istic diffusion time for defects in the bulk to migrate to a mea-
surement patch, γ −1

0 (λb )2, where λb = λ − λm, to be much
shorter than the characteristic timescale over which a pair of
defects is created in the bulk, γ −1

0 exp �/T . Thus, working at
low temperature ensures the validity of this approximation.

(ii) If defects are paired incorrectly more often than they
are paired correctly, then the algorithm will fail. Let τ−1

ε be the
rate of the error process and τ−1

d be the rate of a nonerroneous
error correction operation. To ensure that (τ−1

ε /τ−1
d ) � 1 [see

Eq. (14)], we must work in the diffuse limit, where the average
number of defects per unit cell is much less than 1. This is
equivalent to λγ+ 	 1. This ensures that, when defects are
being processed by the algorithm, more often than not defects
will be correctly paired simply because it is unlikely there are
any other defects nearby. Thus, assuming condition (i)—that
defects are detected quickly—defect pairs satisfying Eq. (12)
are more likely than not to be genuine pairs.

(iii) While the simple model does not account for defects
escaping measurement patches, this can occur in the real
system when a series of translation events occurs between
measurements. For a measurement rate χ , these processes are
of O[γ+(γ0/γ−)(γ0/χ )λm/2], for measurement patches of size
λm, assuming χ > γ0. Thus, this process can be suppressed
by working with a larger sized measurement patch, or with a
measurement rate suitably larger than the intrinsic translation
rate of the system, γ0. At worst, the age of defects that escape
measurement patches but that are subsequently recaptured
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may be underestimated by the algorithm, because the age of
the defect would be erroneously reset to zero. This would then
erroneously underestimate the distance the algorithm would
plausibly search for a pairing defect, i.e., the denominator
of the error function in Eq. (12) could be artificially small
because the real defect age is actually older. While these sorts
of errors can potentially spoil the error correcting protocol
at very long distances—much larger than considered in this
paper—these errors can be corrected with a modified ver-
sion of our algorithm without any additional measurement
resources, detailed in Appendix B.

(iv) In reality, defects can annihilate without the protocol
intentionally pairing them. To leading order, at low temper-
ature, these processes are self-correcting. That is, a pair of
neighboring defects enters the system, and then is subse-
quently annihilated. In principle, it is possible for a sequence
of k free pairs of defects to appear in the bulk—one pair per
unit cell—of which k − 1 are then subsequently erroneously
corrected, resulting in two defects separated by a distance kλ,
but this process is exponentially slow in the average defect
unit cell density, which we already choose to be small via
condition (ii). That is, the error rate due to the erroneous
separation of defects by a distance λk is ∝ (λγ+)k .

(v) In reality, operators cannot be applied instantaneously.
While we make the assumption that these operators occur in-
stantaneously for our analysis and in our simulations, we note
that as long as measurements and DSWAPs are performed
much faster than the fastest system timescale, then errors
arising from erroneously applied DSWAPs or measurements
(arising from errors occurring during the application of either
operator) can be suppressed. The fastest timescale in the
system is the translation rate, γ (0)−1. If applying swaps or
measurements (whichever is slower) occurs over a timescale
τ , then γ (0)−1 can be enforced to be much slower than τ by
tuning temperature sufficiently low.

2. A simple error model

To bound the error rate of the Ising model in the presence
of our protocol, we study a simple error model for spurious
error correction events. A representative example of one of
these events is when two pairs of defects are detected in
the system (four defects total on four distinct measurement
patches), and the protocol erroneously pairs one defect from
each distinct pair. Because the density of defects is low at low
temperature, this error process is similar to an error process
that occasionally randomly translates one defect of a pair
some distance. The distance one of the pair becomes separated
depends on the age of the defect, as well as whether the
erroneously paired defect was to the left or the right of the
original pair of defects.

Thus, the simplified error model is defined as follows:
suppose that two defects are in the system, and that no
new defects will be introduced. One of the defects is fixed
on a measurement patch, and the other is, at time t = 0,
undetected and residing somewhere in the bulk between mea-
surement patches. We will model spurious error correction by
an error process that translates the unmeasured defect by a
distance 2

√
γ0δt . As time increases, the characteristic distance

over which this error process can occur also increases, in

accordance with the typical pairwise separation between two
defects performing a random walk. This typical distance is
exactly the factor used by the error correction algorithm to
determine if a pair of defects should be corrected or not.

An uncorrectable error will occur if the bulk defect remains
undetected up until it crosses half the system. For unit cells of
size λ, the probability that this occurs is roughly (τ−1

ε /τ−1
d )k ,

where k is the number of times the error process must occur
for the error process to have separated the defects a distance
(L/2λ), τ−1

ε is the rate of the error process and τ−1
d is the

rate of a nonerroneous error correction operation. After a
timescale qτd , the defect pairs will have been separated a
distance equal to

√
qγ0τd (13)

assuming that they are never correctly paired. This grows
as q1/2, thus, k scales approximately as (L/λ)2. Finally,
assuming there are L/λ such simultaneous independent
error processes in the system—one for each measurement
patch—then the total error probability scales as

P (error) � (L/λ)(τ−1
ε /τ−1

d )(L/λ)2
. (14)

For sufficiently low temperatures (see Sec. III C 1), τ−1
ε is

much smaller than τ−1
d , thus the full probability of erroneous

corrective operations is exponentially small in system size.
While our toy error model is noninteracting—that is, it

assumes L/λ independent error processes, which, in sum, take
the form described in Eq. (14)—a more careful treatment of
the error process, including interactions between defects, as
in the real model, would result in an error probability smaller
than the one calculated here. In Sec. IV, we provide numerical
evidence that the lifetime of the Ising model in the presence of
the protocol scales exponentially with the number of measure-
ment patches, as anticipated by the upper bound in Eq. (14).

3. Error correction at any measurement density

A key feature of the protocol is the ability to provide an
error correcting threshold temperature at any finite measure-
ment density. In particular, for a fixed measurement density
m, and fixed measurement and bulk length scales λm and λb,
respectively, it is still possible to satisfy the rate assumptions
of Sec. III C 1 by tuning temperature sufficiently low. Each
rate assumption does not explicitly depend on total system
size L, only unit cell size λ.

In practice, larger λb (alternatively, smaller m) will result in
lower threshold temperatures simply because the temperature
must be lower to satisfy the rate assumptions of conditions
(i) and (ii). We provide explicit evidence of this scaling in
Fig. 5.

IV. FINITE-TEMPERATURE SIMULATIONS

In this section, we present the numerical simulations of
the protocol on finite-size systems of length L. We consider
systems with unit cells of size λ with λm = 3 measured sites
in each unit cell, and a measurement fraction of m ≡ λm/λ.

To collect simulation data, we performed continuous time
kinetic Monte Carlo of Eq. (2) on linear chains with peri-
odic boundary. Creation, annihilation, and translation rates of
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FIG. 2. Lifetime enhancement of several system sizes L as a
function of temperature T using a measurement fraction of m =
3/7. Dotted line indicates example fit for threshold temperature Tth

extraction for L = 224 data. Below T ≈ 0.16, we find the lifetime
to grow exponentially with L, indicative of a finite-temperature
threshold. Inset: Finite-size scaling of Tth with inverse length 1/L.
Extrapolation to the infinite system limit yields a threshold tempera-
ture of Tth = .155(6). Data collected via Monte Carlo simulation of
Eq. (2)

defects were set according to (v), with the choice of an Ohmic
spectrum, which fixes γ (0) = ζβ, where ζ is the overall scale.
For all simulations, we set ζ = 1.0. Where applicable, we
report values of L, T , λ, λm, and �, which is the full set of
varied parameters. Observables were recorded and averaged
over 1000 independent samples from chains initialized with
no defects. We also provide a link to an open source imple-
mentation of our simulations here.

Figure 2 depicts the scaling of the system lifetime en-
hancement with temperature for several system sizes. Below
a certain temperature, the system lifetime increases exponen-
tially with system size. Due to finite-size effects, it is difficult
to extract an unambiguous threshold temperature, but below
T ≈ 0.16, the lifetime increases exponentially with larger
system size. We estimate the threshold by fitting �(T )−1 to
1 + exp[−a(T − Tth)]. The inset of Fig. 2 shows the finite-
size scaling of Tth, which suggests that Tth remains nonzero in
the limit of L → ∞; this demonstrates that this protocol has
a finite-temperature threshold in the thermodynamic limit. In
this limit, we find Tth = .155(6).

Figure 3 (top) depicts the finite-size scaling of the lifetime
enhancement for temperatures below and above the threshold.
Note that for systems above T ≈ 0.16, larger system sizes
asymptote to a constant lifetime enhancement, whereas for
models below T ≈ 0.16, the lifetime grows monotonically
with system size. We find that beyond L = 100, finite-size
effects are significantly reduced, as small system sizes cannot
easily suppress second-order errors, such as defects escaping
from measurement patches or multiple pairs of defects in the
system. Such errors are actually uncorrectable for systems
where L/λ � 4, hence the plateau appearing around L = 50
to L = 100. Above these system sizes, the exponential scaling
returns. This plateau is of height O(�−2

0 )—the characteristic
timescale of these second-order events. This scaling is made
apparent in Fig. 3 (bottom), where the lifetime has been scaled
by of �−2

0 for each temperature.
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0
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1

T=0.09
T=0.12

T=0.15
T=0.18

T=0.21
T=0.24
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L

10−5

10−3

10−1

(Γ
/Γ

2 0
)−

1

FIG. 3. (Top) Lifetime enhancement for temperatures both below
and above the threshold as a function of system size L, using
a measurement fraction m = 3/7. Note the monotonic growth in
lifetime at low temperatures, as well as the plateau in lifetime for
moderately sized systems. A 3/7 measurement fraction was used for
this data. (Bottom) The same data rescaled by an additional factor
�−1

0 , to emphasize the origin and scaling of the plateau in system
lifetimes.

Figure 4 depicts the lifetime enhancement as a function
of temperature for several different measurement fractions as
well as different energy scales, �. It is evident that measuring
a smaller fraction of the lattice causes the threshold temper-
ature to shift downwards. This dependence of the threshold
temperature on the measurement fraction is depicted explicitly
in Fig. 5 (left panel).

The scaling of the threshold temperature with � is pre-
sented in Fig. 5 (right panel). By contrasting the left and
right panels of Fig. 4, one can deduce the relative benefits
of error suppression via more measurement resources versus
error suppression via hamiltonian engineering (i.e., a larger
gap to excitation).

V. GENERALIZATION TO HIGHER DIMENSION

In this section, we sketch how the algorithm presented in
Sec. III generalizes to a higher-dimensional stabilizer quan-
tum memory: the 2D toric code. Where the dynamics of the
1D Ising model are typified by one-dimensional random walks
of defects, the nonequilibrium dynamics of the toric code
are driven by two-dimensional random walks of quasiparticle
excitations. Consider the toric code Hamiltonian:

HTC = −�e

∑
v

Av − �m

∑
p

Bp, (15)

Av ≡
∏
j∈v

σ z
j , Bp ≡

∏
j∈p

σ x
j , (16)
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FIG. 4. (Top) The lifetime enhancement as a function of temper-
ature for several measurement fractions m of 32 (i.e., L = 32 · 3/m.
Note the threshold temperature decreases with m. For this data, � =
1.0. (Bottom) Lifetime enhancement as a function of temperature for
a variety of energy scales � [see Eq. (1)] for an L = 224 system with
constant m = 3/7.

where v denotes the four-spin vertices of the square lattice,
and where and p denotes the four-qubit plaquettes on the
edges of a 2D square lattice [41]. While domain wall excita-
tions in the 1D ising model are associated with −1 eigenstates
of the σ i

zσ
i+1
z stabilizers, quasiparticle excitations for the toric

code are associated with −1 eigenstates of the Av and Bp

stabilizers as defined in Eq. (16).
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m = λm/(λm + λb)
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0.14

0.15

0.16

FIG. 5. The threshold temperatures as a function of measurement
fraction, m (left), and the Hamiltonian energy scale � [see Eq. (1)]
(right). At zero measurement fraction, the critical temperature is 0,
and at unit measurement fraction, the critical temperature is O(1).

FIG. 6. Here we sketch one possible m = 63/144 (for a 12 × 12
unit cell) geometry for the measurement rails for a realization of
our protocol. More sparse geometries can be realized simply by
moving the rails of measurement farther apart. Measured sites are
in light blue, and vertex locations for the toric code are circles.
Spin variables (not pictured) reside directly between neighboring
vertices.

Broadly speaking, the algorithm is identical, but instead
of having patches of measurement, there are measurement
rails, as indicated in Fig. 6. One such set of rails must
exist for both types of excitations in the toric code, that is,
one for the Bp stabilizers, and another set of measurement
rails for the Av stabilizers. The error detection and correction
can then be performed completely in parallel for both types
of excitations, as they are independent. Centering of defects
on rails amounts to shift-swapping defects into the center
of the measurement rail [17]. We conjecture that a sparse
measurement strategy with randomly placed measurement
patches of fixed diameter might exist for sufficiently large and
sufficiently cold systems. However, the rail geometry of Fig. 6
is the simplest geometry that allows us to argue for a threshold
temperature for the toric code, based on a generalization of the
simple error model used for the Ising model in Sec. III C 2.
The only difference between the upper bound to the expected
scaling of the probability of uncorrectable errors in the toric
code versus the expected scaling of the Ising model [i.e.,
Eq. (14)] is the prefactor becomes ∝ (L/λ)2 for the toric code
instead of L/λ, where L represents the linear dimension of the
toric code.

Finally, while the periodic, torus geometry of the toric code
is largely impractical for real applications, the majority of this
machinery translates neatly onto the case of the toric code’s
more easily implementable cousin, the surface code. For
patches of stabilizers in the bulk, the algorithm can proceed
exactly identically. Because of the cut in the torus geometry so
that the code can be flattened, the full algorithm will depend
on the details of how the Hamiltonian is implemented on
the edges. In practice, by locating measurement bands on the
edges, i.e., by monitoring the edge stabilizers, errors arising
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from defects appearing on boundaries can be easily tracked
and corrected.

VI. DISCUSSION

We have provided numerical and theoretical evidence of
a limited measurement error correction protocol for a stabi-
lizer code with stringlike excitations. The primary technical
innovation of our algorithm is a Bayesian decoding scheme
for pairing defects based on partial information, sketched in
Sec. III. When combined with the measurement-free defect
localization technique developed in Ref. [17], this decoding
scheme performs error correction efficiently and results in a
stable quantum memory at temperatures below an empirically
determined threshold temperature. So long as an appropriate
geometry of measurement devices is in place, and so long as
defects undergo diffusive motion via coupling to a thermal
bath, this scheme can be extended to higher-dimensional
stabilizer systems such as the toric code, as demonstrated in
Sec. V.

Our results for variable measurement fraction complement
what is known about decoders in the presence of noisy
measurements [40]. Figures 4 (top) and 5 (left) demonstrate
how a reduction in the measurement fraction in the lattice
corresponds to a concomitant decrease in the threshold tem-
perature, similar to how thresholds are known to be reduced
when increasing the noise on measurements.

More fundamentally, our algorithm can be understood as
an entropy reduction scheme. Configurations that give rise
to errors in the encoded subspace are exponentially sup-
pressed as system size is made larger. This is in contrast with
energetic suppression, that is, suppression by widening the
gap to excitations, � (or equivalently lowering the operating
temperature). This tradeoff between entropic and energetic
contributions is depicted in Figs. 4 (top versus bottom) and 5
(left versus right). Depending on the resource requirements
of a particular architecture, the threshold temperature can be
tuned either by engineering a larger gap, �, or by changing the
number of measurements used. In practice, this will depend on
the lowest effective temperature available, the maximum mea-
surement rate, as well as the practical difficulty of employing
more measuring devices.
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APPENDIX A: BAYESIAN DECODING FOR
THE ISING MODEL

In this section, we provide further discussion of Eq. (11),
as well as analytic and numerical arguments for how it can be
more simply approximated. First, we decompose P (d1 : d2)
into two pieces: a combinatorial piece, and a dynamical piece.

For the combinatorial piece, note that a necessary condition
for pairing to be possible is for both defects belonging to a pair
to actually be measured. That is, there might be a large number
of measured defects d1, d2, . . . , dnm

, but the pairing defect for
some of these defects might not be measured. Among those
defects that are both measured, and that have their pair also
measured, the probability of selecting two defects that are
a pair is simply the combinatorial factor 1/

(
Nmeasured pair defects

2

)
where Nmeasured pair defects counts the average number of mea-
sured defects for which their pair is also measured.

The dynamical piece is the probability that d1 and d2

are defects whose pairs are also measured. This probability
depends on how quickly defects make excursions to mea-
surement sites, as well as how quickly defects are being
paired—either erroneously or correctly—by the protocol. We
can crudely lower bound this by taking the equilibrium de-
fect distribution, and calculating the probability that a pair
of defects lands on a measurement patch. λm/λ sites have
measurement operators, thus (λm/λ)Lγ+ is an underestimate
of the number of defects on measurement patches. This is
an underestimate because the protocol is actually more effi-
cient at concentrating defects on measurement patches than
equilibrium dynamics is. Given Lγ+ pairs, this amounts to
a binomial counting argument, and the expected number of
measured pairs is simply Lγ+(λm/λ)2. Thus, a lower bound
to the equilibrium probability of two selected defects being a
measured pair is simply [Lγ+(λm/λ)2]/(Lγ+) = (λm/λ)2.

As mentioned in Sec. III B, P (dx1,t1
1 ∧ d

x2,t2
2 ) is the proba-

bility that two defects are measured, one at (x1, t1), and the
other at (x2, t2). This can be decomposed:

P
(
d

x1,t1
1 ∧ d

x2,t2
2

) = P
(
d

x1,t1
1 ∧ d

x2,t2
2

∣∣d1 : d2
)
P (d1 : d2)

+P
(
d

x1,t1
1 ∧ d

x2,t2
2

∣∣d1�:d2
)
[1−P (d1 : d2)].

(A1)

The first term is precisely Eq. (12), multiplied by P (d1 : d2),
which we estimated above. The second term represents the
probability of two measurement events, conditioned on those
events not being part of a pair. This is essentially the probabil-
ity that two independent measurement events have occurred,
which is approximately the probability that two independent
creation events have occurred (assuming defects are measured
suitably efficiently). For a suitably large system at moderately
low temperature, this probability can be estimated as ∝ (|t2 −
t1|2)/[(Lγ+)−2] := δ(L, T ,�t ).

In practice, at low temperature for moderately sized sys-
tems, P (d1 : d2) is very nearly 1. This arises from the low
density of defects meaning that only rarely are there even
a pair of defects in the system. Of course, if system size is
made sufficiently large, this bare probability will become di-
minished, but it is still the case that defects within a separation
distance 2

√
D|t2 − t1| are, more often than not, a pair at low

temperature. For the same reason, P (dx1,t1
1 ∧ d

x2,t2
2 |d1�:d2) is
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very nearly 0 because this probability is roughly equivalent to
the probability that two independent pair creation events have
occurred, which is unlikely at low temperature and moderate
system size. Again, for sufficiently large systems this proba-
bility grows, but it is likewise the case that this probability is
small for defects within a distance 2

√
D|t2 − t1|. Then, if we

write P (d1 : d2) = 1 − ε(L, T ), and perform some rearrang-
ing:

P
(
d1 : d2

∣∣dx1,t1
1 ∧ d

x2,t2
2

) = 1

1 + P

(
d

x1 ,t1
1 ∧d

x2 ,t2
2

∣∣d1�:d2

)
ε(L,T )

P

(
d

x1 ,t1
1 ∧d

x2 ,t2
2

∣∣d1:d2

)
[1−ε(T )]

� 1

1 +
δ(L,T ,�t )
1−ε(L,T )

P

(
d

x1 ,t1
1 ∧d

x2 ,t2
2

∣∣d1:d2

)

≈ 1

1 + δ(L,T ,�t )

P

(
d

x1 ,t1
1 ∧d

x2 ,t2
2

∣∣d1:d2

) . (A2)

Thus, only when P (dx1,t1
1 ∧ d

x2,t2
2 |d1 : d2) 	 δ(L, T ,�t )

is this factor not equal to 1. This naturally occurs when
comparing defects that are much farther apart than diffusive
motion would usually allow. For example: for a very large
system, if one defect of a pair is measured at site 0 and another
defect belonging to another independent pair is measured
at site L/2 shortly thereafter (compared to the timescale
for defect motion), it is exceedingly unlikely for these two
measured defects to be a pair because it is exponentially
unlikely for such a long random excursion to occur. In this
way, the factor P (dx1,t1

1 ∧ d
x2,t2
2 |d1 : d2) serves as an indicator

function, which answers the questionof whether these two
defects could have arisen from a random walk starting in
the same place. The factor δ(L, T ,�t ) sets the cutoff for a
plausible excursion, i.e., when the error function is much less
than this term, the denominator of (A2) blows up, and the
probability of performing that fusion is essentially zero.

In practice, the precise details of these additional factors
arising from Bayes’ theorem are not too important for the
protocol to function, and we find that using the conditional
probability P (dx1,t1

1 ∧ d
x2,t2
2 |d1 : d2) itself as a proxy for the

full expression from Bayes’ theorem is sufficient to reliably
correct errors. We provide some heuristic comparisons of
different decoding schemes in Appendix C.

APPENDIX B: ALTERNATIVE ALGORITHM FOR
ESTIMATING DEFECT LIFETIMES

The algorithm, as presented in Sec. III, is susceptible to
errors due to systematically underestimating defect lifetimes.
In practice, this error rate is small—small enough that it was
not detectible in our numerical studies—but it is nonetheless
present and has the potential to spoil the increase in lifetime
with system size for the protocol. In this section, we outline
how this problem introduces a system-size-independent un-
correctable length scale into the algorithm, and we provide an
alteration to our presented algorithm that can account for these
errors, restoring the expected system size scaling.

1. Maximum correctible length scale

If we denote the timescale over which defects escapes
measurement patches on average as τesc, then a defect pair that
is separated by much more than

√
Dτesc will be overwhelm-

ingly likely to escape from its measurement patch before the
denominator of Eq. (12) can grow large enough to match the
defect to its pair—potentially spoiling the system size scaling
of the algorithm.

In practice, by occasionally scaling the size of the mea-
surement patches, λm, keeping the ratio of measured sites to
unmeasured sites fixed, this maximum distance can be tuned
larger. For our simulations, we did not need to perform this
measurement patch scaling, because the rate of defect escape
was so small, even for λm = 3. Care must be taken, however,
because measurement patches cannot be made arbitrarily large
without violating the condition mentioned in point (ii).

Now, suppose two defects come into a configuration where
they are separated by a distance C

√
Dτesc for an integer C

and system diffusion constant D. We will estimate the C after
which it is just as likely for a defect pair to be corrected by the
algorithm as it is to cause an error. Without loss of generality,
define the left defect to be at position 0.

Suppose the left defect has recently escaped a measure-
ment patch and been recaptured, thus its estimated age is
0. For the error correcting protocol to be able to pair these
defects, it must remain on its measurement patch for a time
C · τesc. However, over a timescale τesc, the defect is equally
likely to escape its measurement patch as it is to remain on it,
resetting its effective age. Treating this as a binomial process,
we need to estimate the expected amount of time it takes the
defect to remain on its measurement patch for C consecutive
timescales τesc. Call this timescale T(C, τ ) for C consecutive
events with timescale τ . More colloquially, this is equivalent
to the expected number of coin flips before a coin has a run of
C heads in a row. For an event with probability p of occurring,
this takes the form

T(C, τ ) = τ
p−C − 1

1 − p
. (B1)

Thus, after a time T(C, τ ), a defect could, in principle, be
paired with another defect a distance C

√
(Dτ ) away by the

algorithm.
Recall that a diffusion process with constant D will, in δt

time, become displaced by a distance δx = √
Dδt . Because

the defects are trapped by the measurement patches, the diffu-
sion rate must be renormalized: δx = √

Dδt (λ)/(γ0τesc). This
is because it takes a time τesc for a defect to actually perform
escape from a measurement patch to perform a random step,
and this random step has a characteristic length equal to the
length of the unit cell, λ. Thus, on average, it takes a time δt =
C2γ0τ

2
esc/λ for a diffusive process to perform an excursion of

distance C
√

Dτesc.
Note that when the timescale over which it takes a defect

to remain on a patch C consecutive times equals the timescale
it takes a defect to travel a distance C

√
(Dτesc), it is no longer

likely for error correction to work. This only becomes worse
as defects become more separated—the pairing defect is more
likely to diffuse than it is likely that its pair will remain
trapped on a measurement site. Setting these timescales equal
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results in the transcendental equation,

τesc2C = γ0C
2τ 2

esc/λ. (B2)

Asymptotically for large τesc/λ, C = log (γ0τesc/λ). Thus,
the length scale

√
Dτesc log (γ0τesc/λ) is approximately the

maximum correctible length scale for our protocol, in the
absence of any other corrective measures. Note that, for our
system parameters, this is many thousands of unit cells, and
therefore was not detectable by our finite system size analysis.

2. Accurate lifetime estimation

To ameliorate this issue, we can modify our protocol
with additional steps to keep track of defect lifetimes. That
is, within step (i) of the algorithm, perform the following
subprotocol.

Let each measurement patch, mi , have two internal clocks,
T i

1 and T i
2 .

(i) If a measurement patch becomes unoccupied without a
corrective operation being applied, record the time at which
the patch was measured as empty, T1 = Tempty, and keep the
most recent lifetime, tage in memory with a decay constant set
by τdecay. Thus, T2 ≡ tage(t ) = tage0

exp[−(t − Tempty)/τdecay].
(ii) If a defect is subsequently remeasured on this patch

at time tj , treat it within the original protocol as if it had
been measured at time tage(tj ). So long as a defect is on
the measurement patch, leave T

j

2 constant, and update T1 =
Tcurrent, where Tcurrent is the current system clock time.

(iii) If a defect is subsequently measured on patch mi with
no active memory of a lifetime, i.e., T i

2 < .01, calculate the
probabilities given by Eq. (A2) between mi and all other
unoccupied measurement patches, mj , using Tcurrent − T

j

1 as
the diffusion timescale in Eq. (A2) for the current system time,
Tcurrent. Then, probabilistically set T i

2 equal to T
j

2 , and then
reset T

j

2 to 0.
Finally, we impose that τdecay is several times larger than

the diffusive timescale for defects to migrate between mea-
surement patches, but still much smaller than the character-
istic timescale over which unpaired defect creation occurs
within a unit cell. This ensures that lifetimes T i

2 decay reason-
ably quickly if a pair of defects happens to self-annihilate far
away from a measurement patch, and will be near 0 should
a new creation event occur, but also ensures that lifetimes
are kept in memory long enough to be useful for subsequent
redetection events of escaped defects.

APPENDIX C: ALTERNATIVE DECODING SCHEMES

While the approximate Bayesian fusion probability ex-
pressed in Eq. (A2) works well in practice, we find empirically
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FIG. 7. Comparison of three different functional forms used as
proxies for P (d1 : d2). Protocol (i) is simply the error function
expression given by Eq. (12). Protocol (ii) is the probability density

1
2πD|t2−t1| exp(− |x2−x1|2

2D|t2−t1| ). Protocol (iii) is the more complicated ex-
pression in the last line of Eq. (A2). In practice, each approximation
for P (d1 : d2) is seen to perform approximately equally well.

that the precise prefactors of the probability calculation are not
terribly important for the decoder functioning correctly. That
is, we find that the final expression in Eq. (A2) works about as
well as P (dx1,t1

1 ∧ d
x2,t2
2 |d1 : d2), and that even using the raw

probability density,

1

2πD|t2 − t1|exp

(
− |x2 − x1|2

2D|t2 − t1|
)

(C1)

from Eq. (12) serves as a decent proxy for the probability, even
if this is mathematically dubious in principle.

What is most important for the function of the protocol
is that the fusion probability correctly incorporates the ex-
pectation that defects are diffusive. An amount of sloppiness
in this calculation is tolerable, because the defects are ef-
ficiently trapped by the protocol, and remain trapped for a
long time relative to the diffusive timescales for the system.
However, so long as defects that are plausibly close to one
another are the defects that are fused, then we find the protocol
to extend system lifetimes effectively. We plot a comparison
of the three aforementioned decoding schemes in Fig. 7.
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