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Unidimensional continuous-variable quantum key distribution using squeezed states

Vladyslav C. Usenko*

Department of Optics, Palacký University, 17 Listopadu 50, 772 07 Olomouc, Czech Republic
and Bogolyubov Institute for Theoretical Physics of National Academy of Sciences, Metrolohichna St. 14-b, 03680 Kiev, Ukraine

(Received 25 July 2018; published 20 September 2018)

The possibility of using squeezed states in the recently suggested unidimensional continuous-variable quantum
key distribution based on a single quadrature modulation is addressed. It is shown that squeezing of the signal
states expands the physicality bounds of the effective entangled state shared between the trusted parties due
to the antisqueezing noise in the unmodulated quadrature. Modulation of the antisqueezed quadrature, on the
other hand, effectively shrinks the physicality bounds due to the squeezing in the unmodulated quadrature and
also provides noise on the reference side of the protocol, thus limiting the possibility of eavesdropping in noisy
channels. This strategy is practical for low-loss (i.e., short-distance) channels, especially if direct reconciliation
scheme is applied.
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I. INTRODUCTION

Quantum key distribution (QKD) [1] is the practical ap-
plication of quantum information science, which is aimed at
the development of methods (protocols) for the distribution
of secure keys such that the security of a key is provided
by the laws of quantum physics. The key can be used later
in classical one-time pad cryptography, thus providing the
complete postquantum solution for secure communication
resilient against foreseen effective quantum computing. After
starting with qubit-based discrete-variable protocols (see [2]
for review) QKD was recently extended to continuous-variable
(CV) [3] protocols (see [4] for review) which are aimed
at providing higher key rates and simpler implementation
compared to their discrete-variable counterparts. The first ideas
in the field of CV QKD were based on discrete modulation
and decoding of coherent and quadrature-squeezed [5] states
of light as well as photon-number squeezed states [6–8], but
had limited security proofs. It was an important step in the
development of CV QKD when the use of Gaussian modulation
[9] was suggested [10] for quadrature-squeezed states [11] and
later shown to be applicable for coherent states as well [12]. It
was shown that Gaussian protocols using squeezed [10,13–15]
and coherent [12,16–23] states are secure against collective
attacks and can tolerate, in principle, any level of channel
attenuation if reverse information reconciliation is used [16].
In addition, a family of measurement-device-independent CV
QKD protocols was developed and tested using coherent
states of light [24]. Importantly, security of CV QKD against
collective attacks implies security against general attacks in the
asymptotic limit [25–27] of an infinite number of data as well
as, under certain constraints, in the finite-size regime [28–31],
when the number of data is finite.

Security analysis of Gaussian CV QKD protocols against
collective attacks is based on the extremality of Gaussian states

*usenko@optics.upol.cz

[32] and subsequent optimality of Gaussian collective attacks
[33,34]. This enables security analysis based on the covariance
matrix formalism, which is sufficient for characterization of
Gaussian states, and imposes that trusted parties perform
the channel estimation and are able to derive the covariance
matrix of an entangled state effectively shared between them
[35]. In order to know the channel properties the trusted
parties perform modulation and measurement of both the com-
plementary quadratures and then optimally switch between
channel estimation and key distribution [36]. Therefore, both
the amplitude and the phase modulators must be employed by
a trusted sender party in order to apply Gaussian modulation
of amplitude and phase quadratures. Recently a simplified
unidimensional (UD) CV QKD protocol [37] was suggested
and experimentally tested [38] on the basis of coherent states
of light in order to provide simpler implementation potentially
based on a single (e.g., phase) quadrature modulation with no
need to perform modulation in a complementary quadrature. It
was shown that if the remote trusted party is able to estimate the
variance of the unmodulated quadrature, an eavesdropper can
be limited by the physicality bounds on the effective entangled
state shared between the trusted parties, and security of the
protocol can be accessed by using a pessimistic assumption
on the correlation between the sender and the receiver in the
unmodulated quadrature.

It was previously shown that the use of squeezed states can
make CV QKD more robust against imperfections, such as
channel noise and limited postprocessing efficiency [13–15];
moreover, squeezing, if used optimally, can potentially elim-
inate information leakage from purely attenuating channels
[39]. Moreover, the use of squeezed states in CV QKD becomes
more and more feasible, in particular, with the development
of compact on-chip squeezers [40,41]. Thus it is important
to verify the effect of signal-state squeezing and identify its
possible advantages in UD CV QKD.

In the current paper we generalize the result considering
the use of quadrature-squeezed signal states in UD CV QKD.
We show that the presence of antisqueezing noise makes the
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protocol worse compared to its coherent-state counterpart if the
squeezed quadrature is modulated. On the other hand, we show,
surprisingly, a positive effect arising from the modulation of
the noisy antisqueezed quadrature, which is concerned with
the fact that the unmodulated quadrature remains squeezed
and therefore allows better tolerance of channel noise and
losses if direct information reconciliation is used. We therefore
suggest the effective UD CV QKD protocol for short-distance
channels, which benefits from the reduced fluctuations of the
unmodulated quadrature and the trusted excess noise present in
the modulated quadrature. Thus we fill the gap in the analysis of
UD CV QKD by studying squeezed-state protocols as well as
suggest the improvement of UD CV QKD by using modulation
of the antisqueezed quadrature, which increases the key rate,
secure distance of the protocol, and robustness to noise of the
UD CV QKD with direct reconciliation, thereby contributing
to solution of the major current challenges in QKD [42]. The
paper is structured as follows: in Sec. II we consider the
generalized squeezed-state UD CV QKD protocol; in Sec. III
we study the security and physicality bounds in the general
phase-insensitive channels; in Sec. IV we consider the typical
case of phase-insensitive Gaussian channels, and we devise
analytical expressions for lower bounds on the secure key rate
in the limit of strong modulation and compare the performance
of the protocols based on the modulation of coherent and
squeezed states; and in Sec. V we give our Summary and
Conclusions.

II. SQUEEZED-STATE BASED UNIDIMENSIONAL
CV QKD PROTOCOL

We consider the protocol based on the preparation of
quadrature-squeezed states [11] (e.g., using an optical para-
metric oscillator) and their subsequent Gaussian modulation
in one of the quadratures. The scheme is depicted in Fig. 1.
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FIG. 1. Scheme of the squeezed-state UD CV QKD protocol.
Alice prepares quadrature-squeezed states using, e.g., an optical
parametric oscillator, and then modulates a state by displacing it
along the modulated quadrature using the modulator M so that the
modulation variance is VM . The states travel through an untrusted,
generally phase-sensitive channel (with transmittance values ηx and
ηp and excess noise values εx and εp in the x- and p-quadratures,
respectively) to a remote party, Bob, who performs homodyne
measurement of the modulated quadrature. Inset: The equivalent
entanglement-based scheme using a two-mode squeezed vacuum
source; mode A is measured by Alice using a homodyne detector,
and mode B is squeezed on the squeezer S and sent to a channel.
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FIG. 2. Modulation schemes for unidimensional protocols: (a)
using coherent states [37], (b) using x-quadrature squeezed states and
modulation in the squeezed quadrature, and (c) using p-quadrature
squeezed states and modulation in the antisqueezed quadrature.

In the following with no loss of generality we assume
that the signal states are squeezed or antisqueezed in the
x-quadrature. Therefore if the source generates pure x-
quadrature-squeezed states characterized by the quadrature
values xS and pS , respectively, their variances are Var(xS ) =
VS < 1 and Var(pS ) = 1/VS > 1. Alternatively, the source
can generate p-quadrature-squeezed states so that Var(xS ) =
VS > 1 and Var(pS ) = 1/VS < 1. The modulator then dis-
places x-quadrature, therefore performing modulation of the
squeezed or antisqueezed quadrature, so that the modulated
quadrature of the signal state sent to the channel in the case
of x-quadrature modulation becomes xA = xS + xM , where
xM is the value of displacement, randomly picked from a
zero-centered Gaussian distribution with variance VM and
so Var(xA) = VS + VM and pA ≡ pS since no modulation
was performed in the p-quadrature. Therefore two modulation
schemes are possible in the case of squeezed states: modulation
in the squeezed quadrature and modulation in the antisqueezed
quadrature. The modulation schemes are depicted in Fig. 2
along with the single-quadrature modulation of coherent states
[37,38] for comparison.

The states then travel through an untrusted, generally phase-
sensitive channel, which is characterized by transmittance
values ηx and ηp and excess noise values εx and εp in the
x- and p-quadratures, respectively. After the channel, the
states are measured by Bob using a homodyne detector set to
measure the x- or p-quadrature. Bob has to switch between
the quadratures often enough in order to characterize the
variance in both quadratures and estimate the correlation in the
modulated quadrature, but in the asymptotic limit the fraction
of p-quadrature measurements can be assumed to be negligible
[37]. After a sufficient number of runs of the protocol, Alice
and Bob analyze the security of the protocol and perform error
correction and privacy amplification in order to distill the key
using either the direct or the reverse reconciliation scheme
when Alice or Bob are, respectively, the reference sides for
the error correction algorithms. In the following section we
estimate the security region of the squeezed-state UD protocol
depending on the modulation scheme and reconciliation direc-
tion and compare it to the coherent-state-based UD CV QKD
protocol.

III. SECURITY OF THE SQUEEZED-STATE
UD PROTOCOL

Let us analyze the security of the protocol against the
optimal Gaussian collective attacks, which, as mentioned
above, implies security against general attacks in the asymp-
totic limit. To do so we follow the purification-based security
analysis, where Eve is assumed to be able to purify (i.e.,
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control) all the noise added in the untrusted quantum channel.
Following the extension of the classical Csiszár-Körner theo-
rem [43] to the quantum measurements, performed by Devetak
and Winter [44], the secure key can be distilled once the trusted
parties Alice and Bob have the information advantage over the
adversary Eve. Therefore, the protocol is secure once the lower
bound on the key rate

KDR = βDRIAB − χAE, KRR = βRRIAB − χBE (1)

is positive for either direct (DR) or reverse (RR) reconciliation,
i.e. when the mutual classical information between the trusted
parties IAB exceeds the Holevo quantity [45]χAE/BE . The latter
upper bounds the information available to an eavesdropper
on the key bits possessed by a reference-side trusted party in
the case of DR or RR, respectively. The mutual information
between the trusted parties is scaled by the postprocessing
efficiency βDR/RR ∈ (0, 1), which depends on the effectiveness
of the error correction algorithms for a given signal-to-noise
ratio and is specific for a particular implementation of the
protocol and direction of postprocessing. In the current paper
we aim to compare the ultimate performance of the protocols,
therefore we set β = 1; effects arising from the realistic
finite-size regime shall not change the interplay between the
protocols.

After the signal travels through the untrusted quantum chan-
nel, the trusted parties perform the estimation of the channel
parameters, publicly revealing optimized fraction of the data
[36]. A Gaussian phase-sensitive channel acts as a linear map
that transforms quadratures so that the output reads {x ′, p′} =√

η{x,p}{x, p} + {x, p}N + √
(1 − η{x,p}){x, p}0, where η{x,p}

are the channel transmittance values, and {x, p}N and {x, p}0

are the excess and vacuum noise contributions, respectively,
with Var({x, p}N ) = ε{x,p} and Var({x, p}0) = 1 for the x- and
p-quadratures.

The classical mutual information IAB can be explicitly
obtained from the variances and the correlations between
the modulation data on the side of trusted sender (Alice)
and measurement data on the side of trusted receiver (Bob)

after the channel as IAB = 1
2 log2 VA/(VA|B , where VA = VM

is the variance of Alice’s data, VA|B = VA − C2
AB/VB is the

conditional variance of Alice’s data, CAB = √
ηxVM is the

correlation between Alice’s and Bob’s data after the channel,
andVB = ηx (VS + VM + εx ) + 1 − ηx is the variance of Bob’s
measured data after the channel. The mutual information then
reads

IAB = 1

2
log2

[
1 + ηxVM

1 + ηx (VS + εx − 1)

]
(2)

and is the same for DR and RR protocols.
The calculation of the Holevo bound in either of the

reconciliation scenarios is, however, more involved. In the case
of Gaussian modulation, the Holevo bound is the difference
χAE = S(E) − S(E|A) or χBE = S(E) − S(E|B ) between
the von Neumann entropy S(E) of the state available to Eve
for collective measurement and the von Neumann entropy of
Eve’s state conditioned by data on Alice’s S(E|A) or Bob’s
S(E|B ), respectively, for DR and RR. In the general case
of channel noise being present it is assumed that Eve holds
purification of the channel noise [33,34] and then the equalities
S(E) = S(AB ), S(E|A) = S(B|A), and S(E|B ) = S(A|B )
hold, where S(AB ) is the entropy of an initially pure state
shared between the trusted parties through the noisy channel
and S(B|A), S(A|B ) are entropies of this state conditioned on
the measurement results on Alice’s or Bob’s side in the DR
and RR scenarios, respectively. Therefore, in order to assess
the security of Gaussian CV QKD protocols in the case of
collective attacks in noisy quantum channels, one needs to
build an equivalent purification scheme, corresponding to the
state preparation on Alice’s side and state measurement on
Bob’s side. To do so for the UD squeezed-state CV QKD
protocol, we start from the covariance matrix of a pure two-
mode squeezed vacuum state with variance V , which purifies
the Gaussian symmetrical modulation scheme [35]. In order to
comply with the UD modulation of squeezed or antisqueezed
states, we apply a squeezing operation on one of the modes
with the squeezing parameter set to − log V VS . The resulting
state is then described by the covariance matrix

γAB =

⎡
⎢⎢⎢⎢⎢⎢⎣

V 0
√

V VS (V 2 − 1) 0

0 V 0 −
√

V 2−1
V VS√

V VS (V 2 − 1) 0 V 2VS 0

0 −
√

V 2−1
V VS

0 1
VS

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3)

It is easy to see that when Alice performs homodyne detection
in the x-quadrature on mode A, she conditionally prepares the
signal squeezed or antisqueezed state in mode B described by
the diagonal covariance γB|xA

= γB − σAB[xγBx]MPσAB =
diag(VS, 1/VS ), where γA and γB are diagonal single-mode
submatrices of (3) standing for modes A and B, respectively,
σAB is the off-diagonal correlation submatrix of (3), the diago-
nal matrix x = diag(1, 0) stands for homodyne detection in the
x-quadrature, and MP stands for the Moore-Penrose inverse of
a matrix, applicable to singular matrices. On the other hand,

the state of mode B, which is characterized by the diagonal
single-mode covariance matrix γB = diag(V 2VS, 1/VS ),
corresponds to the modulated signal squeezed or
antisqueezed state in the prepare-and-measure scheme
once V = √

1 + VM/VS , then γB = diag(VS + VM, 1/VS ),
which is exactly the same as the state of the signal mode, sent
to the channel in the prepare-and-measure scheme. Therefore,
the entanglement-based scheme, depicted in the inset in Fig. 1,
is equivalent to the prepare-and-measure scheme based on
squeezed or antisqueezed states with squeezed or antisqueezed
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variance VS modulated with modulation variance VM = VS

(V 2 − 1).
Since the p-quadrature is not modulated, the correlation

term in the unmodulated quadrature remains unknown to the

trusted parties, similarly to the the coherent-state UD CV QKD
[37]. Therefore, after the quantum channel, the covariance
matrix of the initially pure state, (3), shared between Alice
and Bob, in terms of the modulation variance VM reads

γ ′
AB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
1 + VM

VS
0

√
ηxVM (1 + VM

VS
)

1
4 0

0
√

1 + VM

VS
0 Cp

√
ηxVM (1 + VM

VS
)

1
4 0 V B

x 0

0 Cp 0 V B
p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where CP is the unknown correlation in the p-quadrature and
V B

x = ηx (VS + VM + εx ) + 1 − ηx .
The covariance matrices of the conditioned states after the

signal propagation through the channel and after Alice’s or
Bob’s measurements in the x-quadrature read, respectively,

γ ′
B|xA

=
[
ηx (VS + εx − 1) + 1 0

0 V B
p

]
(5)

and

γ ′
A|xB

=

⎡
⎢⎣

√
1+ VM

VS
[ηx (VS+εx−1)+1]

V B
x

0

0
√

1 + VM

VS

⎤
⎥⎦. (6)

Now the Holevo bound can be assessed in either the DR or
the RR scenario by calculating the von Neumann entropies of
state (5) or (6), respectively, and subtracting them from the
von Neumann entropy of the two-mode state, (4), which is
done using the bosonic entropic function [46] of the symplectic
eigenvalues of the respective covariance matrices [9] (see [47]
for details on Gaussian security analysis). The von Neumann
entropy S(AB ) of the two-mode state, (4), then depends on
the unknown correlation parameter CP in the unmodulated
quadrature, which can, in principle, be set arbitrary by an
eavesdropping attack in the untrusted channel. Nevertheless,
the parameter can be bounded by the physicality considera-
tions. Indeed, Eve’s attack on the protocol should preserve the
physicality of the state, effectively measured by Alice and Bob.
In terms of the covariance matrix this is given by the constraint,
following from the uncertainty principle,

γ ′
AB + i� � 0, (7)

where � is the symplectic form

� =
n⊕

i=1

ω, ω =
(

0 1
−1 0

)
, (8)

which imposes limitations on the possible values of Cp. The
physicality constraint in the general case can be represented
by the parabolic equation on the {V B

p , Cp} plane,

(Cp − C0)2 � VM√
VS (VS + VM )

(
1 − ηxVSV

B
0

)(
V B

p − V B
0

)
,

(9)

with vertex (V B
0 , C0), defined as

V B
0 = 1

1 + ηx (VS + εx − 1)
(10)

and

C0 = −V B
0

√
ηxVM(

VM

VS
+ 1

) 1
4

. (11)

The typical physicality regions are given in Fig. 3. In addition,
squeezing or antisqueezing of the signal and, respectively,
antisqueezing or squeezing of the unmodulated quadrature also
influence the security bounds of the protocol, given by the
condition KDR = 0 or KRR = 0 for DR or RR, respectively.
In the general case the security can be evaluated numerically
and the typical bounds are given in Fig. 3 along the physicality
bounds.

It is evident from the physicality bounds plotted in Fig. 3 that
the use of squeezed or antisqueezed states as the signal carriers
shifts the physicality region. Indeed, if the squeezed states are
used, the region is shifted towards higher values of noise V B

p

and expanded, because the antisqueezing noise present in the p-
quadrature should result in above-shot-noise fluctuations in the

1.0 1.2 1.4 1.6
VpB

1.8

1.6

1.4

1.2

Cp

FIG. 3. Physicality (solid lines) and security within the physical-
ity (dotted lines, DR; dashed lines, RR) regions of the UD protocol.
Modulation variance VM = 10, channel transmittance in x ηx = 0.9,
noise in x εx = 3% SNR. Plots are given for coherent-state (VS = 1;
middle, black lines), squeezed-state (VS = 0.9;lower, red lines), and
anti-squeezed-state (VS = 1.1; upper, blue lines) protocols.
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p-quadrature and allows for a wider region of correlation term
Cp values than those for the coherent-state protocol. On the
other hand, modulation in the antisqueezed quadrature shifts
the physicality region to V B

p below shot noise, since the p-
quadrature in this case is squeezed, and allows for a narrower
region of correlation term values for given noise V B

p . In the
next section we consider the role of signal-state squeezing and
antisqueezing in UD CV QKD protocols in the typical class of
phase-insensitive Gaussian channels.

IV. ROLE OF SIGNAL SQUEEZING OR ANTISQUEEZING
IN SYMMETRICAL CHANNELS

In the previous section we have derived the general physical-
ity and security bounds considering generally phase-sensitive
channel, having different transmittance and excess noise in
the x- and p-quadratures. However, in practice the quantum
channels (fiber or free space) are typically inclined to the same
transmittance and the same excess noise in both quadratures,
thus being phase insensitive (symmetric). In the current section
we focus on the role of signal-state squeezing and antisqueez-
ing in UD CV QKD protocols over such channels.

First, we assume that the channel transmittance is symmet-
rical, ηx = ηp ≡ η; then the structure of noise measured in the
p-quadrature on Bob’s side is V B

p = η(1/VS + εp ). In Fig. 4
we plot physicality and security bounds in this case similarly
to the ones given in Fig. 3. This allows us to compare the
robustness of the UD protocols to channel noise. It is evident
from the plot that in the case of the squeezed-state protocol
(lower, red lines) the security upon arbitrary Cp is lost at
lower excess noise for DR (dotted lines) than for RR (dashed
lines) and, in both cases, at lower noise than for the coherent
and antisqueezed protocols. On the other hand, the coherent-
state protocol (middle, black lines) demonstrates almost the
same tolerance to channel noise for RR and DR under a
given transmittance and with the given modulation. Finally,

0.00 0.05 0.10 0.15 0.20

−4

−3

−2

−1
Cp

FIG. 4. Physicality (solid lines) and security within the physical-
ity (dotted lines, DR; dashed lines, RR) regions of the UD protocol in
channels with symmetric transmittance ηx = ηp = 0.9 with respect
to excess noise εp . Modulation variance VM = 10, noise in x εx = 3%
SNR. Plots are given for coherent-state (VS = 1; middle, black lines),
squeezed-state (VS = 0.9; lower, red lines), and anti-squeezed-state
(VS = 1.1; upper, blue lines) protocols.

FIG. 5. Secure key rate versus channel attenuation (on dB
scale), secure against collective attacks for the DR (left) and RR
(right) protocols, for the coherent-state (solid lines), squeezed-state
(VS = 0.5; dashed lines), and anti-squeezed-state (VS = 2; dotted
lines) protocols. Channel noise ε = 3% SNU, modulation variance
VM = 100.

the antisqueezed protocol (upper, blue lines) demonstrates a
similar tolerance to channel noise as the coherent-state protocol
for RR but is more robust against channel noise in the case
of DR. Indeed, the antisqueezed protocol allows for weaker
noise-infusing attacks due to squeezing of the p-quadrature; on
the other hand, it is known that the DR protocol is more robust
against trusted preparation noise [47–49]. On the contrary, the
squeezed-state UD protocol loses this advantage, allowing for
broader attacks within the noisy antisqueezed p-quadrature,
which is not compensated by having less noise in the modulated
(squeezed) x-quadrature.

The above result is confirmed in fully phase-insensitive
(symmetrical) channels with the same transmittance as well
as the same noise εx = εp ≡ ε in both quadratures. We first
plot the lower bound on the key rate, (1), for the DR and RR
squeezed-, coherent-, and anti-squeezed-state protocols upon
fixed channel excess noise in Fig. 5.

It can be clearly seen that upon RR the coherent-state
protocol provides much better robustness against channel
attenuation at given noise levels than the squeezed- or anti-
squeezed protocol (therefore allowing for a much longer secure
distance in the same fiber or free-space channels). The weak
performance of anti-squeezed-state-based CV QKD can be
explained by the sensitivity of RR protocols to the noise in the
state preparation [47,50,51]. On the contrary, in the case of DR
the antisqueezed protocol can tolerate more channel loss than
the squeezed-state one (demonstrating very poor results) and
even outperforms the coherent-state protocol. In a telecom fiber
with attenuation of −0.2 dB/km the higher robustness of the
antisqueezed DR UD CV QKD at the considered levels of noise
would result in an almost-double increase in the maximum
secure distance (from 4.5 to 7.5 km) compared to the coherent-
state protocol. Note that the positive effect of antisqueezing
noise of signal states is observed in the noisy channels and
can be seen as the manifestation of the effect known as
“fighting noise with noise,” when noise on the reference side
of the protocol makes it more robust against channel noise
[13,47]. In this regime, quantum squeezing of signal states
in terms of the sub-shot-noise fluctuations may, in princi-
ple, not be needed and signal states with above-shot-noise
fluctuations in the modulated (x-) quadrature and shot-noise
and even above-shot-noise fluctuations in the unmodulated
(p-) quadrature can be sufficient for improving the robustness
of the DR UD CV QKD once impure signal states are
considered.
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For symmetrical channels and in the limit of infinitely strong
modulation of pure squeezed states, the lower bound on the key
rate in the DR scenario can be simplified as

KDR|VM→∞ = (log2 e)

[
CArcTanh

1

C
− 1

]

+ log2
η|1 − VS |

1 + η|1 − VS | , (12)

where C ≡ √
[1 + η(1/VS − 1)][1 + η(VS − 1)]. For the

coherent-state protocol VS = 1 the expression further simpli-
fies as

K
(coh)
DR

∣∣
VM→∞ = log2 2η − 1

2
log2[η(1 − η)] − log2 e, (13)

which is lower by log2 [e] − 1 ≈ 0.44 than the asymptotic
expression for the lower bound on the key rate for the standard
coherent-state protocol upon DR, being 1

2 log2
η

1−η
[47].

On the other hand, in the case of the RR scenario, in the limit
of infinitely strong modulation the key rate in the symmetrical
channel reads

KRR|VM→∞ = D

2

[
log2

D + 1

2
− log2

D − 1

2

]
− log2 [1 + η|1 − VS |] − log2 e, (14)

where D ≡
√

1+η(VS−1)
ηVS

. This can be further simplified for the

coherent-state protocol, i.e., for VS = 1, as

K
(coh)
RR

∣∣
VM→∞ = 1

ln 2

[
ArcTanh(

√
η)√

η
− 1

]
, (15)

which, in the limit of low transmittance η → 0, can be well
approximated by η log2 e

3 , being lower by a factor of 2/3 than
the similar limit for the standard coherent-state CV QKD
protocol [37].

We observe similar behavior (disadvantage of squeezing or
antisqueezing in the RR scenario and advantage of antisqueez-
ing in the DR scenario even compared to the coherent-state
protocol) if we consider the robustness to excess channel noise
at a given transmittance in the case of symmetrical channels,
as plotted in Fig. 6.

Indeed, while the coherent-state protocol is more robust
against channel noise in the case of RR, the antisqueezed
protocol can tolerate larger amounts of channel excess noise

FIG. 6. Maximal tolerable channel noise ε versus channel attenu-
ation (on dB scale) for the protocols, secure against collective attacks
for DR (left) and RR (right), based on coherent states (solid lines),
squeezed states (VS = 0.5; dashed lines), and antisqueezed states
(VS = 2; dotted lines). Modulation variance VM = 100.

once DR is used. It is evident from the plot that the antisqueezed
protocol can tolerate about 50% more channel noise than the
coherent-state UD CV QKD. Therefore, surprisingly, modu-
lation of a noisy antisqueezed quadrature (having more noise
than the standard shot-noise level of a coherent state) can be
advantageous for the UD CV QKD in the short-range quantum
channels, increasing the key rate, the secure distance, and the
tolerable channel noise of the protocol.

V. SUMMARY AND CONCLUSIONS

We have considered the possibility of using squeezed or
antisqueezed signal states in the unidimensional continuous-
variable quantum key distribution protocol based on the Gaus-
sian modulation of a single quadrature. The results show that
squeezing or antisqueezing of the signal affects the physicality
and security bounds of the protocol in the general case
of phase-insensitive channels. In the typical case of phase-
insensitive (symmetrical) channels the coherent-state protocol
outperforms its squeezed- and anti-squeezed-state counterparts
once reverse reconciliation is used. On the other hand, the
anti-squeezed-state protocol, based on the modulation of a
quadrature, having more noise than a standard shot-noise level
of a coherent state, demonstrates higher key rates and better
robustness to losses and channel excess noise than coherent-
and squeezed-state protocols. The result will be useful for
the development of secure quantum communication systems
upon short distances using a simplified single-quadrature
modulation scheme and compact sources of squeezed light.
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