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Initial-state-dependent thermalization in open qubits
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We study, from a thermodynamic perspective, the equilibrium states of a qubit interacting with an arbitrary
environment of dimension N � 2. We show that even in the presence of memory about the initial state, in
some cases the qubit can be considered in a thermal state characterized by an entanglement Hamiltonian, which
encodes the effects of the environment, and an initial-state-dependent entanglement temperature that measures
the degree of entanglement generated between the system and its environment. Geometrical aspects of the
thermal states are studied and the results are confirmed for the concrete case of the quantum walk on the line.
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I. INTRODUCTION

Quantum thermodynamics tries to account for the emer-
gence, from the principles of quantum mechanics, of the
thermodynamic behavior observed in macroscopic systems.
This is not an easy task since the unitary evolution of isolated
quantum systems implies that the expected values of the
corresponding physical quantities oscillate in time and, as a
consequence, the system is, in general, out of equilibrium [1].
For a general review of this problem, see Ref. [2]; more recent
discussions can be found in Refs. [3–5].

Recent theoretical work has considered the eigenstate ther-
malization hypothesis, showing that quantum systems can
indeed thermalize [6]. This hypothesis provides a framework
connecting microscopic models and macroscopic phenomena,
based on the notion of highly entangled quantum states. The
role of quantum entanglement in the emergence of statistical
mechanics in the quantum regime has been experimentally
studied in Ref. [7]. This work shows that the entanglement
entropy can be measured, playing a similar role as that of the
thermal entropy in the classical thermalization processes. This
validates the use of statistical physics for the measurement of
local observables.

When we consider open quantum systems, we observe that
in some cases the interaction with the environment may lead
the system to an equilibrium state, despite the unitarity of the
global dynamics. Although, in general, it is not an equilibrium
stricto sensu, but rather a situation in which the system
spends most of the time in the neighborhood of an average
state, an attempt to conciliate thermodynamics with such
kind of systems is therefore possible [8–11]. In particular, it
has been proved that a large energy-level occupation of the
environment in the initial state establishes strong bounds to
the distance between the reduced state of the subsystem and its
corresponding time average, which assures equilibration if the
mentioned condition is satisfied [12]. Moreover, the canonical
typicality of reduced states of bipartite quantum systems has
been proved, showing the ubiquity of the thermal behavior,
even at the nanoscale [13,14].

In this context, we explore the equilibrium states of an
open qubit, which, due to interaction with the environment,

evolves to an initial-state-dependent equilibrium state. We
find that in some cases, this dependence can be factorized in
such a way that the reduced density operator (RDO) adopts
the form of a thermal state for some fixed operator that we
call entanglement Hamiltonian, which depends on the relevant
parameters of the global dynamics. Meanwhile, the corre-
sponding entanglement temperature encloses the dependence
on the initial state and can be interpreted as a measure of the
entanglement generated during the process.

This paper is organized as follows. In Sec. II, we introduce
the concepts of entanglement Hamiltonian and entanglement
temperature, notions that will allow us to define the thermal
states in a proper way. Then, we explore some of their prop-
erties and find a property that allows one to identify which
of the asymptotically equilibrated initial-state-dependent re-
duced operators correspond to thermal states. In Sec. III, we
study this class of thermal states from a geometric perspective,
finding their location on the Bloch sphere. In Sec. IV, we
find the thermal states associated to the chirality degrees of
freedom for a quantum walk on the line. Finally, some remarks
and perspectives are discussed in Sec. V.

II. RDO AND THERMAL STATES

Let us consider an isolated bipartite quantum system com-
posed of a qubit S in thermal contact with an arbitrary envi-
ronment E, so that the state space for the composed system is

H = H
E

⊗ H
S
. (1)

Let us suppose there is no initial correlation between the
systems, so the initial state is a product state that can be
written as

|�(0)〉 =
∑

n

Cn|n〉 ⊗ |φ0〉, (2)

with

|φ0〉 = cos
γ

2
|+〉 + eiϕ sin

γ

2
|−〉, (3)

where
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(i) {|+〉, |−〉} and {|n〉} are some orthonormal bases in H
S

and H
E
, respectively,

(ii) γ and ϕ define the point over the Bloch sphere associ-
ated to the initial state of the qubit, and

(iii) {Cn} are the amplitudes that define the initial occu-
pation of the bath and satisfy the normalization condition∑

n |Cn|2 = 1.
If the system equilibrates on average via interaction with

the environment, the equilibrium state is described by the
time-averaged RDO [15],

ρ
S
({Cn}, γ, ϕ) = 〈ρ

S
(t, {Cn}, γ, ϕ)〉t

= lim
τ→∞

1

τ

∫ τ

0
ρ

S
(t, {Cn}, γ, ϕ)dt, (4)

where ρ
S

= tr
E
ρ

SE
= tr

E
|�〉〈�|. Without loss of generality,

ρ
S

can be written as

ρ
S
({Cn}, γ, ϕ) =

(
1
2 + a b

b∗ 1
2 − a

)
, (5)

where a and b depend on the initial conditions {Cn}, γ ,
and ϕ. In a few interesting cases, the limit (4) coincides
with the asymptotic limit of the RDO as t → ∞ [8]. But,
in most cases, the notion of equilibration on average (or in
another relevant sense) is necessary since, due to the quantum
recurrence theorem, in general the asymptotic limit of local
operators does not exist [16].

Now we will investigate if, despite the initial-state de-
pendence, there are situations in which the system can be
considered in thermal equilibrium, i.e., if there exists an
operator Hent, defined on HS , and a real number β such that
ρ

S
adopts the form

ρ
S

= e−βHent

tr(e−βHent )
. (6)

Note that the operator Hent may not coincide with the free
Hamiltonian due to environment effects. The Hamiltonian
Hent that governs the dynamics in the asymptotic regime
cannot (or, at least, should not) be initial-state dependent. So
we will center our attention on investigating if it is possible
to factorize the exponent in Eq. (6) in such a way that the
initial-state dependence appears as a scalar factor, which we
will interpret as the entanglement temperature, multiplied by
a initial-state-independent operator, which plays the role of
an entanglement Hamiltonian. When such a factorization is
possible, the entanglement Hamiltonian will be well defined
except for an additive multiple of the identity (related to
an irrelevant energy shift) and a multiplicative factor that
represents an also irrelevant change of scale in the temper-
ature. Then, we will have that systems in different initial
states, governed by the same entanglement Hamiltonian, will
thermalize at different inverse entanglement temperatures β.

As we will see, the aforementioned factorization is only
possible for a small set of initial-state-dependent RDOs,
which we will call initial-state-dependent thermal states.

The parameter Tent = 1/β is, a priori, not related
to the thermodynamic temperature and will be denoted
entanglement temperature. It is easy to show the following
properties of the thermal states defined in Eq. (6):

(i) If λj are the natural populations of the system S
and Ej its energy eigenvalues, then δQ = TentdSvN , where
δQ = ∑

j Ejdλj is the heat exchanged with the environment
and SvN = −∑

j λj ln λj is the von Neumann entropy [2].
This result, valid for infinitesimal transitions between thermal
states, emphasizes the similarity between entanglement ther-
modynamics and classical thermodynamics.

(ii) Tent = 0 for pure reduced states and Tent = ∞ for the
maximally mixed state. In fact, Tent is a growing function
of SvN , so the entanglement temperature is a measure of the
entanglement generated between the system and its environ-
ment.

We note that the positivity of the RDO ρ
S

implies that
it is always possible to express it in the exponential form
of Eq. (6), so, a priori, every reduced state is, potentially, a
thermal state. In fact, there is an infinite number of ways of
selecting β and Hent for a given state, so the system can be
considered in equilibrium at any temperature, depending on
the choice of Hent.

In order to obtain an explicit condition for such factoriza-
tion, let us consider the basis {|ψ+〉, |ψ−〉} that diagonalizes
ρ

S
. The functional relation between ρ

S
and Hent implies that

the latter will also have a diagonal expression in that basis. If
we denote by {ε, −ε} the eigenvalues of Hent and by {λ+, λ−}
the corresponding natural populations, we have

H
(diag)
ent =

(
ε 0
0 −ε

)
, ρ

S

(diag) =
(

λ+ 0
0 λ−

)
. (7)

Now, observe that if ρ
S

(diag) can be obtained from ρ
S

through the change of basis,

ρ
S

(diag) = Q†ρ
S
Q, (8)

then, via the inverse transformation, we can find the explicit
form of Hent in the base {|+〉, |−〉}:

Hent = QH
(diag)
ent Q†. (9)

Let us implement the described procedure. We first find the
eigenvalues of (5),

λ± = 1
2 ±

√
a2 + |b|2, (10)

and the corresponding eigenvectors,

|ψ±〉 =
(

ψ±
1

ψ±
2

)
, (11)

where

ψ±
1 = |b|(a ±

√
a2 + |b|2)

b∗
√

(a ±
√

a2 + |b|2)2 + |b|2
,

ψ±
2 = |b|√

(a ±
√

a2 + |b|2)2 + |b|2
. (12)

So the change of basis matrix that simultaneously diagonal-
izes the operators ρ

S
and Hent is

Q =
(

ψ+
1 ψ−

1

ψ+
2 ψ−

2

)
. (13)
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Now, employing Eq. (9), we obtain the following expression
for the entanglement Hamiltonian in the base {|+〉, |−〉}:

Hent = QH
(diag)
ent Q† = ε

⎛
⎝ a√

a2+|b|2
b√

a2+|b|2
b∗√

a2+|b|2
−a√

a2+|b|2

⎞
⎠. (14)

Equation (14) shows an evident dependence on the initial state
through the coefficients a and b. We then conclude that, in
general, it is not possible to express the equilibrium state in
the form of a thermal state [Eq. (6)] with a universal, i.e., valid
for any initial condition, entanglement Hamiltonian. However,
there is a particular relation between the parameters a and b

that makes Hent independent of the initial state. Note that if a
constant κ independent of γ , ϕ, and {Cn} can be found such
that b = κa, and taking into account that a ∈ R, we have

Hent = ε√
1 + |κ|2

(
1 κ

κ∗ −1

)
. (15)

Reciprocally, if Eq. (14) is independent of the initial state,
we can write

ε

⎛
⎝ a√

a2+|b|2
b√

a2+|b|2
b∗√

a2+|b|2
−a√

a2+|b|2

⎞
⎠ =

(
η1 η2

η∗
2 η1

)
, (16)

where η1 and η2 do not depend on {Cn}, γ , and ϕ. Then, we
have

b/a =
b√

a2+|b|2
a√

a2+|b|2
= η2

η1
= κ, (17)

where κ is a constant.
The previous analysis can be summarized in the following

proposition:
Proposition 1. A time-averaged RDO of the type of Eq. (5)

describing an equilibrated qubit is an initial-state-dependent
thermal state if, and only if, there exists a set of initial
conditions such that

b({Cn}, γ, ϕ) = κa({Cn}, γ, ϕ), (18)

where κ ∈ C is a constant independent of the initial state.
In that case, the entanglement Hamiltonian in the basis
{|+〉, |−〉} takes the form

Hent = ε√
1 + |κ|2

(
1 κ

κ∗ −1

)
, (19)

except for an arbitrary multiplicative factor or an additive
multiple of the identity, which do not lead to relevant physical
consequences.

III. THE ROLE OF THE ENTANGLEMENT
HAMILTONIAN: GEOMETRY OF THERMAL STATES

In general, we expect that the dimensionless quantity κ

that defines the entanglement Hamiltonian can be constructed
from the parameters involved in the global Hamiltonian that
characterize the system and its interaction with the environ-
ment, such as coupling constants or characteristic frequencies.

In particular, a simple consequence of the restriction
b(Cn, γ, ϕ) = κa(Cn, γ, ϕ) arises by analyzing the location
of the thermal states on the Bloch sphere.

Because of Proposition 1, we know that the RDO of an
initial-state-dependent thermal state can be written in the form

ρ
S

=
( 1

2 + a κa

κ∗a
1

2
− a

)
, (20)

where the dependence on the initial state is totally included in
a. On the other hand, in terms of the Bloch vector components
�B = (B1, B2, B3), representing the state, the expression for
this operator is [15]

ρ
S

= 1

2

(
1 + B3 B1 − iB2

B1 + iB2 1 − B3

)
. (21)

Comparing both expressions, we have that

�B = 2a�v, (22)

with

�v = [Re(κ ),−Im(κ ), 1], (23)

where Re(κ ) and Im(κ ) denote the real and imaginary parts
of κ . Note that the direction of the Bloch vector is completely
defined by the quantity κ , while the initial state only plays a
role in fixing its modulus. Given that κ only depends on the
relevant parameters involved in the global dynamics, which
are fixed in advance, we conclude that the entanglement
Hamiltonian fixes, through the parameter κ , the diameter of
the Bloch sphere that corresponds to the locus of the thermal
states. In fact, observe that the entanglement Hamiltonian (15)
can be expressed as

Hent = ε√
1 + |κ|2

(�v · �σ ), (24)

where �σ = (σx, σy, σz) is the vector whose components are
the Pauli matrices. So the vector �v can be interpreted as an
effective magnetic field that selects the privileged direction
along which the spin will relax due to interaction with the
environment.

As an example, let us analyze the case in which ρ
S

pos-
sesses an asymptotic limit ρ∞

S
that admits a Kraus representa-

tion in terms of orthogonal projectors, i.e.,

ρ∞
S

=
∑

j

MjρS
(0)M†

j , (25)

where Mj = |ψj 〉〈ψj | and 〈ψi |ψj 〉 = δij , j = 1, 2. This
could seem rather artificial, but in the following section we
provide an example of a relevant quantum system verifying
such conditions.

It is clear that in this case, the time-averaged RDO, ρ
S
,

coincides with the asymptotic limit, ρ∞
S

. If ρ
S
(0) = |φ0〉〈φ0|,

then

ρS |ψ1,2〉 = |〈φ0|ψ1,2〉|2|ψ1,2〉, (26)

so the kets |ψ1,2〉 are eigenvectors of ρ
S
, with corresponding

eigenvalues |〈φ0|ψ1,2〉|2, and so it is clear that

|ψ1,2〉 = |ψ±〉, (27)

where |ψ±〉 are given by (11). Using Eqs. (26) and (27), we
have that

λ+ − λ− = |〈φ0|ψ+〉|2 − |〈φ0|ψ−〉|2, (28)
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FIG. 1. Level plots of the entanglement temperature over the
Bloch sphere for a time-averaged RDO whose Kraus operators are
orthogonal projectors. The temperature T0 (green point) corresponds
to the asymptotic limit of all initial pure states located on the
intersection of the plane Re(κ )x − Im(κ )y + z =

√
1 + |�κ|2 cos α0

with the sphere, as shown by the arrows. Also represented are the
minimum temperature states T = 0 (blue points) and the T = ∞
state (red point).

and using Eqs. (10), (12), (18), and (28), it is straightforward
to show that

a = cos α

2
√

1 + |κ|2
, (29)

where

cos α ≡ Re(κ ) sin γ cos ϕ − Im(κ ) sin γ sin ϕ + cos γ√
1 + |κ|2

.

(30)
It is interesting to point out that Eq. (30) can be expressed as

cos α = �B0 · �v
|�v| , (31)

where �B0 = (sin γ cos ϕ, sin γ sin ϕ, cos γ ) is the initial
Bloch vector. From Eq. (31), we see that α is the angle
between �B0 and �v. Finally, the expression for ρ

S
is

ρ
S

= 1

2

⎛
⎝1 + cos α√

1+|κ|2
κ cos α√

1+|κ|2
κ∗ cos α√

1+|κ|2 1 − cos α√
1+|κ|2

⎞
⎠. (32)

The entanglement temperature can be obtained from the
eigenvalues of ρ

S
, so we can construct the isotemperature

contour lines on the Bloch sphere (see Fig. 1) considering

Tent = 2ε

ln
(

λ+
λ−

) = −ε

ln [tan α/2]
, (33)

which implies that these lines correspond to constant values
of the angle α. Expressing this condition in Cartesian coordi-
nates, x = sin γ cos ϕ, y = sin γ sin ϕ, z = cos γ , we obtain

Re(κ )x − Im(κ )y + z =
√

1 + |κ|2 cos α. (34)

Equation (34) represents a family of parallel planes, which
are orthogonal to the vector �v (see Fig. 1). The intersection
of these planes with the Bloch surface produces a family of
concentric circumferences, each of which is characterized by
a specific value of asymptotic entanglement temperature. For
the particular initial states on the equatorial plane Re(κ )x −
Im(κ )y + z = 0 (α = π/2), the matrix expression for the
RDO adopts the maximally mixed form

ρ
S

= 1

2

(
1 0
0 1

)
. (35)

As we move over on the northern hemisphere’s surface to-
wards the pole defined by the vector �v (α = 0), the temper-
ature decreases from Tent → +∞ near the equatorial plane,
reaching its minimum value Tent = 0 at the north pole in
Fig. 1. Similarly, as we move towards the south pole, defined
by the vector �v (α = π ), the entanglement temperature in-
creases from Tent = −∞ at the equator to Tent = 0 at the pole.

In what refers to the location of a particular thermal state
on the Bloch sphere, it is clear that its Bloch vector is
orthogonal to the level plots of the entanglement temperature.
The distance between the center of the sphere �O = (0, 0, 0)
and the plane πα0 of Eq. (34) is given by

d( �O,πα0 ) = |
√

1 + |κ|2 cos α0|√
1 + κ2

= |cos α0|, (36)

while the norm of �B, given by Eq. (22), is

| �B| = 2|a|
√

1 + κ2, (37)

where a is given by Eq. (29). Thus, we have

| �B| = |cos α0| = d( �O,πα0 ). (38)

So, we conclude that the thermal state is located at the center
of the corresponding entanglement temperature level plot; see
Fig. 1.

IV. EXAMPLE: THERMALIZATION IN THE
QUANTUM WALK ON THE LINE

The quantum walk (QW) is the quantum analog of the
classical random walk, and it has been studied from multiple
perspectives given the wealth of its applications [17–19]. In
particular, the relation between the asymptotic coin-position
entanglement and the initial conditions of the QW has been
investigated by several authors [20–31]. In this context, we
shall emphasize the thermodynamical aspects, as an appli-
cation of the previous section. We begin by noting that the
mathematical structure behind the QW allows us to consider
the chirality degrees of freedom as a qubit S, described
by a two-dimensional Hilbert space HS , in interaction with
a thermal bath, represented by the walker’s Hilbert space
Hn. Then, we will show that for an adequate initial state
of the bath, the asymptotic reduced state of the qubit is an
initial-state-dependent thermal state, which will allow one to
illustrate the results obtained in the previous section and, in
this context, give a physical interpretation to the parameter κ .

First, we briefly review the QW dynamical equations in
discrete time. The system evolves under successive applica-
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tions of the evolution operator U , acting on Hn ⊗ HS ,

U = T (In ⊗ Uθ ), (39)

where Uθ is an unitary evolution operator in two dimensions
(2D), describing the quantum coin and parameterized by the
coin bias parameter θ ,

Uθ =
(

cos θ sin θ

sin θ − cos θ

)
. (40)

This particular parametrization of Uθ is sufficient to display
all the possible evolutions of the QW.

In Eq. (39), T is the conditional translation operator,

T =
∑

n

|n + 1〉〈n| ⊗ |+〉〈+| +
∑

n

|n − 1〉〈n| ⊗ |−〉〈−|,
(41)

and In is the identity operator in Hn.
Any pure initial state can be expressed as

|ψ (0)〉 =
∑

n

|n〉 ⊗ [dn(0)|+〉 + en(0)|−〉], (42)

where {|n〉}, n ∈ Z is an orthonormal basis of Hn

associated to the classical positions of the walker (integer
points on the line), {|+〉, |−〉} are the chirality eigenstates
in HS , and dn(0), en(0) satisfy the normalization condition∑

n [|dn(0)|2 + |en(0)|2] = 1. After t applications of U , the
QW state is

|ψ (t )〉 = Ut |ψ (0)〉 =
∑

n

|n〉 ⊗ [dn(t )|+〉 + en(t )|−〉].
(43)

For an infinite line, it is a well-known fact that the coin system
reaches an equilibrium state as t → ∞ [20]. The reduced state
of the coin adopts the characteristic form of Eq. (5), where the
expression for b in terms of the wave-function coefficients is

b ≡ limt→∞
∞∑

n=−∞
dn(t )e∗

n(t )
. (44)

In Ref. [8], it is shown that the entries of the coin RDO
defined in Eq. (5), for an arbitrary initial state, satisfy the
relation

a(θ, γ, ϕ) = Re[b(θ, γ, ϕ)]

tan θ
. (45)

On the other hand, Proposition 1 shows that an initial-state-
dependent thermal state must verify that

b(θ, γ, ϕ)

a(θ, γ, ϕ)
= κ (θ ), (46)

since κ must be independent of the initial state.
Given that b = Re(b) + iIm(b) and using Eqs. (45)

and (46), we find that the thermal state is guaranteed if{
1 + iIm[b(θ, γ, ϕ)]

Re[b(θ, γ, ϕ)]

}
tan θ = κ (θ ), (47)

a condition that is satisfied if the real and imaginary parts of b

are proportional to each other, with a proportionality constant
function of only θ .

As a first example, we assume that the initial state of
the walker is sharply localized at the origin, with arbitrary
chirality. Thus,

|ψ (0)〉 = |0〉 ⊗ |φ0〉, (48)

where φ0 was defined in Eq. (3). This situation was studied
in Ref. [8], where an explicit expression for b was obtained
[Eq. (16) of that reference] for a coin-toss bias parameter θ =
π/4. In our present nomenclature,

b = 1
2

(
1 − 1√

2

)
[cos γ + sin γ (cos ϕ + i

√
2 sin ϕ)]. (49)

In this case, from the considerations below Eq. (47), it is clear
that κ depends on the initial state, so the equilibrium state is
not an initial-state-dependent thermal state.

As a second case, we consider strongly nonlocalized initial
states of the walker. One way of implementing this initial
condition was studied in Ref. [33], where the following initial
state is considered:

dn(0) = e
−n2

4ξ2

4
√

2πξ 2
cos(γ /2), (50)

en(0) = e
−n2

4ξ2

4
√

2πξ 2
sin(γ /2)eiϕ, (51)

which corresponds to an initially Gaussian distributed walker
with the restriction ξ � 1. We obtained the relation between
b and the initial condition using directly Eqs. (19) and (29) of
Ref. [33] in the case θ = π/4,

b = 1
4 (cos γ + sin γ cos ϕ). (52)

Following the same procedure, we have generalized this last
equation for all θ . The result is

b = 1
2 sin θ cos α, (53)

where cos α = sin θ sin γ cos ϕ + cos θ cos γ is the cosine of
the angle determined by the initial Bloch vector and the vector
(sin θ, 0, cos θ ). Then, the RDO of the qubit adopts the form

ρ
S

= 1

2

(
1 + cos θ cos α sin θ cos α

sin θ cos α 1 − cos θ cos α

)
. (54)

Since b is a real number, from Eq. (47) we conclude that κ

is independent of the initial condition, which shows that in
this case, an initial-state-dependent thermal state is reached.
Additionally, the parameter κ that defines the entanglement
Hamiltonian is, in this case,

κ = tan θ. (55)

In order to verify the geometric results of the previous
section, we calculate the eigenvalues of the coin RDO,

λ± = 1
2 (1 ± cos α). (56)

Therefore, according to Eq. (33), the entanglement tempera-
ture is proportional to −1/ ln [tan(α/2)]. The corresponding
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FIG. 2. Level plots of the entanglement temperature on the Bloch
sphere, for an initially distributed Gaussian walker, in the limit
ξ � 1. The initial coin states on the equator (red circumference,
α = π/2) thermalize at T = ∞ (red point at the center of the Bloch
sphere), those in the intermediate latitude (green circumference,
0 < α < π/2) converge to the green state at its center at some finite
temperature, while the blue states at the poles, corresponding to
α = 1, remain at T = 0 during the evolution.

level plots over the Bloch sphere are defined by the α values
or, equivalently, in Cartesian coordinates, by the equation

x sin θ + z cos θ = cos α. (57)

Equation (57) is a particular case of the general situation
described in Eq. (34) since it represents a family of planes,
orthogonal to the direction [Re(κ ),−Im(κ ), 1] (see Fig. 2),
determined by the parameter κ = tan θ . This implies that ini-
tial qubit states located on the intersection of a particular plane
with the Bloch sphere evolve to the same asymptotic mixed
state. In particular, the extreme cases |cos α| = 1 [correspond-
ing to the initial states associated to the points (γ = θ, ϕ = 0)
and (γ = π − θ, ϕ = π )] (the poles defined by the privileged
direction) thermalize at Tent = 0. It is easy to see that these
particular states are eigenstates of the coin operator Uθ and,
accordingly, entanglement never occurs, so they remain pure
during the evolution, and the global state is separable for all
times t . This emphasizes the interpretation of the entangle-
ment temperature as a measure of the entanglement produced
between the system and its environment.

A further verification of the previous section results is
possible analyzing the position of the thermal states on the
Bloch sphere. A particular Bloch vector �B representing the
coin reduced state is

�B = cos α0 (sin θ, 0, cos θ ), (58)

which satisfies | �B| = | cos α0 |. A direct calculation shows that
the distance from the origin to the corresponding level plot
is d( �O,πα0 ) = |cos α0 |. Thus every thermal state is located at
the center of its corresponding level plot, which implies that
the set of accessible thermal states is a diameter of the Bloch
sphere, as expected. These results are illustrated in Figs. 2
and 3.

0 π/2 π
0

π/2

π

3π/2

2π

γ

ϕ

FIG. 3. Level plots of the entanglement temperature in the (γ, ϕ)
space, for a Hadamard walk with an initially Gaussian distributed
walker. The thick central line corresponds to T = ∞, while the
center of the closed lines is associated to the states that thermalize
at T = 0 (γ = π/4, ϕ = 0) and (γ = 3π/4, ϕ = π ).

V. REMARKS AND CONCLUSIONS

Independence of the initial state is considered to be an
important requirement for thermalization in quantum systems
[32]. In this work, we have shown that even in the presence of
memory, there is a class of initial-state-dependent equilibrium
states for which this dependence appears as a scalar factor in
the exponent of a thermal-state expression, allowing one to
identify a fixed Hermitian operator that plays the role of an
effective Hamiltonian, valid once the equilibrium has reached.
These states are halfway between being simple equilibrium
states and being pure thermal states, where the dependence on
the initial state disappears completely.

In the particular case of the thermal state, the effective
Hamiltonian operates as a magnetic-field spin interaction. It
is determined by a dimensionless parameter κ that depends
on the relevant physical parameters involved in the global
dynamics, selecting a privileged direction along which the
thermal states are located. In the particular case of the QW
on the line, κ is the tangent of the coin bias, κ = tan θ .

The initial-state-dependent entanglement temperature as-
sociated to the defined thermal states can serve as a measure
of the entanglement produced between the subsystem and its
environment, as illustrated in the case of a QW.

The role of a large initial bath occupation for this kind of
thermalization to occur must be emphasized. In the case of a
localized walker, the system evolves to an equilibrium state
that cannot be written in the exponential form with a fixed
Hamiltonian, i.e., one valid for all initial states of the coin.
This seems to agree with previous results, e.g., of Ref. [12].

It is remarkable that although the example employed in this
work to illustrate the theoretical results does not correspond
to a typical thermal contact process, but a rather abstract
one, the thermalization obtained is identical to that found in
other physical systems [9]. This suggests that a more profound
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analysis of the underlying mathematical structure could reveal
some kind of universality, which is an aspect that needs to be
explored. The study of other two-level open systems from the
perspective presented in this work could be interesting and is
currently under investigation.
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