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Entangling an arbitrary pair of qubits in a long ion crystal
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It is well established that the collective motion of ion crystals can be used as a quantum bus for multiqubit
entanglement. However, as the number of ions increases, it becomes difficult to directly entangle ions far apart
and resolve all motional modes of the ion crystal. We introduce a scalable and flexible scheme for efficient
entanglement between any pair of ions within a large ion chain, using an evenly distributed 50-ion crystal as
an example. By performing amplitude and frequency modulation, we find high-fidelity pulse sequences that
primarily drive a transverse motional mode with a wavelength of four ion spacings. We present two 500 μs
pulses that can in theory suppress gate errors due to residual motion to below 10−4, and observe a trade-off
between gate power and robustness against unwanted frequency offsets.
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I. INTRODUCTION

One important challenge for the quantum information
community is to scale up the number of controllable qubits.
An exciting motivation would be to solve a computational
problem or to simulate a physical system beyond the reach of
classical computers. We are approaching the so-called noisy
intermediate-scale quantum (NISQ) regime [1], where gate
error is the limiting factor for the width and depth of a
quantum circuit. It is estimated that 50 qubits require more
memory to simulate than what modern supercomputers can
offer [2], and coherent control with 90 qubits may be suffi-
cient to demonstrate quantum supremacy [3]. Moreover, large
quantities of qubits are required to implement certain quantum
error correction schemes with high fault-tolerant thresholds
(physical error rate <10−2), where each logical qubit typically
consists of more than 10 physical qubits [4–6].

In the past few decades, ion trap experiments have been
realized with increasing precision [7–10], with or without
individual qubit addressing, offering various applications in
quantum information. With as few as five ions, many groups
have made proof-of-principle demonstrations of simple algo-
rithms [11], error correction [12], and quantum correlations
[13]. With larger numbers of ions, applying a global driving
force to the trap allows us to demonstrate large-scale entan-
glement and quantum phase transitions [14,15].

Multiqubit gates remain the limiting factor in terms of both
gate time and fidelity. For trapped ions, two-qubit gates can
be mediated through Mølmer-Sørensen interaction [16,17],
where a state-dependent force is applied to trigger the col-
lective motion of an ion lattice. Experimental groups have
achieved two-qubit gate fidelities of higher than 99.99%
for two-ion traps and about 99% for five-ion traps [18,19],
with gate times one to two orders of magnitude longer than
single-qubit gates. The interaction strength between qubits
decays as 1/dn, where n = 3 in the limit of far detuning
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from motional sidebands, and n ≈ 1 or less for near resonance
with the common mode [15]. Thus, the locality of interqubit
interaction inhibits long-distance controlled operations, which
is deemed necessary for the realization of intermediate-scale
quantum computers.

In this article, guided by previous experimental success
with five 171Yb+ ions [20], we show that it is theoretically
possible to entangle any pair of ions in a 50-ion trap with
high fidelity using pulse modulation. First, we derive the
effective trapping potential where all 50 ions align in one
axis with uniform density. We then predict the transverse
motional modes of the ion chain, and choose one of them
as the main quantum bus for entanglement. For the driving
force, we apply a smooth intensity profile along with small
frequency oscillations to minimize motional displacement of
all modes. Our results show that the total gate error due to
residual motion is less than 10−4 and can tolerate small drifts
in trap frequency.

II. TRANSVERSE MOTIONAL MODES OF AN EVENLY
SPACED ION CHAIN

We begin by outlining the requirements for a suitable
trap potential. For a typical one-dimensional (1D) ion lattice,
radial confinement (x and y axes) is assumed to be uniform,
harmonic, and much stronger than axial confinement (z axis).
In order to trap large numbers of ions (N � 10), highly
anharmonic terms are required in the axial potential. We also
need to ensure that all ions are sufficiently separated from their
neighbors such that they can be addressed individually using
tightly focused laser beams. Previous work with anharmonic
traps has used a parameterized form for the potential, then
sought to minimize the variance in ion separation [21,22].
Here we opt for a different approach: we first assume a
continuous ion distribution, then integrate to find the potential
required to generate it.

We investigate the idealistic case of having N = 50 evenly
spaced ions across the whole chain, with an average separation
�z ≈ 3 μm. In the continuous limit, the chain can be modeled
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FIG. 1. Depiction of how we may choose particular motional
modes as the quantum channel for entanglement. (a) Ideal trap
potential from Eq. (2) for r = 0.95 and the corresponding distribu-
tion of ions found by gradient descent of electric potential energy.
A minimum trap depth of 1.52 meV is required to trap all 50
ions. (b) The middle section of the transverse motional frequencies,
showing ω22 to ω31 (solid red lines) and the approximate driving
frequency μ0 = ω26 − 3.7 kHz (blue dashed line), for radial trapping
frequency ωx = 3.07 MHz and average ion separation = 2.9 μm.
(c) The 25th, 26th, and 27th transverse motional modes (normalized).
The uniformity of the 26th mode makes it useful as a channel for
arbitrary two-qubit entanglement.

as a uniform charge density ρ0 = q/�z. We find an analytical
expression for the effective electric field acting on each ion
due to Coulombic repulsion,

Erep(z)=
(∫ z−ε

−L

−
∫ L

z+ε

)
kρ0dz′

(z′ − z)2
=kρ0

(
1

L − z
− 1

L + z

)
,

(1)

where L is the half length of the ion chain, ε is half the
average ion-to-ion separation, and ρ0 = q/�z is the linear
charge density. We integrate again to find the effective trap
potential required to maintain the shape of the lattice,

Vtrap(z) = rkρ0ln

(
L2

L2 − z2

)
, (2)

where r ≈ 1 is an additional scaling factor for adjustment
[blue curve in Fig. 1(a)]. We have to consider the constraint
of the Laplace equation, which will weaken the radial con-
finement of the ions due to the increasing second derivative
of Vtrap(z) towards the edges. A quick check shows that
qV ′′

trap(z) � mω2
x for the vast majority of ions and result in

only a 10% drop in the radial frequency for the outermost
ion. Thus, the edge effects are ignored in this paper, but could

ideally be compensated in one radial direction with additional
dc fields.

To avoid infinite potential walls, we let this expression be
valid only for |z| < sL, where s is slightly smaller than 1 such
that there is a finite upper bound for the electric field, Emax.
The minimum for Emax is the electric field experienced by the
ions at the edges of the chain, given approximately by

Eedge =
N∑

n=1

kq

(n�z)2
≈ π2

6

kq

�z2
≈ 260 V/m, (3)

for an average separation �z = 3 μm. This should be well
within the maximum field ∼10 V/100 μm = 105 V/m that
can be generated by typical microfabricated ion traps. Tight
laser beamwidths of about 1.5 μm have been realized in past
experiments [11], allowing us to address any ion with very
small crosstalk errors with precision beam steering.

We calculate the equilibrium positions {zi} of N ions due
to such potential [blue dots in Fig. 1(a)]. We initialize the
ion crystal at even ion separations slightly smaller than the
expected �z. We repeatedly evaluate the total force acting on
each ion, and move them fractionally in that direction in order
to minimize electric potential energy. The results show that
the equilibrium ion separation averages to about 2.9 μm with
less than 5% variation from minimum to maximum.

Next, we find the collective transverse vibrations of the
ion chain by computing the xixj dependence of the Hamil-
tonian [Figs. 1(b) and 1(c)]. This is done by expanding
electric potential and inter-ion repulsion around their equilib-
rium positions {zi}, based on the Lamb-Dicke approximation
(
√

h̄
2mω

√
n + 1

2 � λ < �z). The radial potential Vtrap(x) =
1
2mωxx

2 is assumed to be constant along the z axis, whereas
the axial potential Vtrap(z) is given by Eq. (2). Note that
xizj couplings vanish up to the first order, allowing us to
calculate the longitudinal and transverse motional modes sep-
arately. The xixj terms can then be diagonalized, giving us
the transverse motional modes X̂k = ∑N

i=1 uki x̂i and resonant
frequencies ωk [23], for k from 1 to N . Using the new
basis {X̂k}, the total potential energy is now equivalent to
a collection of N nondegenerate harmonic oscillators with
no phonon hopping, and the motion can be characterized by
coherent displacements of these oscillators in their respective
rotating frames [24].

We let the common mode frequency ωx be 3.07 MHz and
calculate the higher-order modes using the {zi} previously
obtained where �z ≈ 2.9 μm. As expected, the resonant
frequencies are unevenly spaced, with the lowest frequency
being 2.45 MHz. The motional modes appear to be standing
waves with increasing wave numbers, which can be explained
by the periodicity of a uniform charge density. Figure 1(b)
shows the middle part of the spectrum and Figs. 1(c) shows
the the 25th to 27th transverse modes explicitly.

III. ION MOTION DUE TO A TIME-DEPENDENT
DRIVING FORCE

The Mølmer-Sørensen gate is performed by applying two
tones with equal but opposite detunings from the carrier
transition to each chosen ion [16,17]. For each sideband k, the
motional state of the ion chain when the ith ion is driven by
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a time-dependent external force is described as the following
complex integral:

αk (t ) = ηik

∫ t

0
�(t ′)eiθk (t ′ )dt ′, θk (t ) =

∫ t

0
δk (t ′)dt ′, (4)

where ηik is the Lamb-Dicke parameter when the ith ion is
addressed, �(t ) is the carrier Rabi frequency for single-qubit
rotation (proportional to driving intensity), and δk (t ) is the
detuning between the driving frequency μ(t ) and sideband
frequency ωk [20,24]. To characterize the ions’ vibrational
motion, we keep track of αk as a trajectory in the phase space,
one for each sideband. Thus, αk (0) = 0 and αk (τ ) are the
starting and end point of the trajectory, respectively.

When we apply the same driving force to two ions, not
only is the ion lattice set in motion, the ions also become
entangled in the qubit space due to the noncommutativity of
the ladder operators of motional phonons. Full entanglement
can be achieved if the appropriate Rabi strength is applied.
Conveniently, the degree of entanglement is proportional to
the area encircled by the trajectory. However, if αk (t ) is
nonzero at t = τ , where τ is the total gate time, the qubits will
remain entangled to the motional space. Without optimization,
this becomes a source of gate error, which can be estimated as
E = ∑N

k=1 |αk (τ )|2 for αk � 1 [20].
There are many ways we can minimize E , or |αk (τ )|

for all k, which is a nontrivial problem for large N due to
the crowding of motional spectrum. In general, far-detuned
modes (δk � 1/τ ) will be decoupled as long as the inten-
sity profile for �(t ) is reasonably smooth, or if the rate of
change of � is slower than the detuning (as opposed to step
functions). Such pulses have a narrow frequency response,
meaning that excitation of motional modes will vanish quickly
as detuning increases. For near-detuned modes, we may min-
imize remaining motion by introducing a suitable number of
free parameters during the gate [20,25,26]. Here we propose
allowing small, periodic oscillations of the applied frequency
to suppress the residual motion for the 10 nearest modes.

To analyze the impact of oscillations in frequency on αk ,
we assume that the detuning pattern can be decomposed to
Fourier components, expressed as follows:

δk (t ) = δk,0 +
∞∑

n=1

an cos(wnt ), where wn = 2nπ/τ, (5)

and where an vanishes quickly with n for smooth δk (t ).
Plugging Eq. (5) in (4), and assuming anτ � 1, we may write

αk (t ) ≈ ηik

{∫ t

0
�(t ′)eiδk,0t

′
dt ′

+
∞∑

n=1

an

2wn

[ ∫ t

0
�(t ′)ei(δk,0+wn )t ′dt ′

−
∫ t

0
�(t ′)ei(δk,0−wn )t ′dt ′

]}
. (6)

The summed terms are effectively additional tones cen-
tered around the average detuning δk,0. For large δk,0, most of
these terms are negligible due to the smallness of an/wn and
largeness of δk,0τ and (δk,0 ± wn)τ , leading to small, quickly
rotating terms. This result allows us to minimize near-detuned

terms by using a particular combination of an, while keeping
far-detuned modes decoupled.

IV. OPTIMIZATION PROCEDURE AND RESULTS

In this paper, the sideband spectrum is obtained from the
50-ion simulation described in the previous section, but in the
future it should be obtained by experimental measurement.
This information will help us minimize gate error, but the
power required for full entanglement depends on the ions
chosen.

The first step is to set the shape of �(t ). For the sake of
comparison, we assume two intensity profiles, pulses A and B
[Figs. 2(a) and 2(b)], and perform the same optimization with
frequency to minimize state-dependent motion. Pulse A has a
time dependence of [sin(πt/τ )]1.5, whereas pulse B consists
of three steps connected by cosine functions. We note that
pulse A is “smoother” than B in the sense that it has a lower
maximum rate of change in intensity, which should make it
more resilient against frequency offsets. In both cases, the
smoothness suppresses excitation of far-detuned modes, such
that they only contribute to a small fraction of E .

For both pulses, we need to initialize the frequency pattern
and then seek a final pattern that minimizes ion motion. In
this example, we choose a reference frequency μ0 ≈ ω26 −
3.7 kHz, such that the phase-space trajectory of the 26th
mode closes for the desired gate time. We then modify the
driving frequency μ(t ) around μ0 periodically to minimize the
displacement for the 10 nearest-detuned modes (α22 through
α31). Finally, we calculate the total error due to motion in
all 50 modes and confirm that E < 10−4, and test the gate’s
robustness against frequency offsets.

We pause here to explain the rationale behind this proce-
dure. The driving frequency is chosen to be near resonant
with ω26 since all ions are excited to a similar degree in the
26th mode, making it an ideal quantum channel for multiqubit
entanglement. We note that the sideband splitting near this
mode is at 18 kHz, less dense than most other parts of the
spectrum, which allows us to resolve the motional modes with
shorter gate times. Another important advantage of using such
a high-order mode is the significantly lower heating rates due
to trap noises since typical trap electrode sizes are much larger
than the average separation between neighboring ions.

The frequency pattern is constructed as follows. We set a
series of turning points [blue dots in Fig. 2(b)] at equal time
intervals and connect each pair of neighboring points with
cosine curves, leading to an oscillatory shape. Our algorithm
adjusts the vertical positions of the extreme points until the
cost function reaches a local minimum. It can be readily
verified that this pattern can be described by a truncated
Fourier series very accurately, so the argument using Eq. (6)
still holds. The cost function we seek to minimize is the sum
of squares of time-averaged displacements of the phase-space
trajectories of the 10 nearest-detuned modes. The pulse is also
chosen to be symmetric in time, such that the minimization
will not only suppress the displacement from the origin,
but also the first-order dependence of the displacement on
unwanted frequency offsets δ1 (see supplemental material of
[20] for a derivation). As a result, E = ∑N

k=1 |αk (τ )|2 will

032318-3



PAK HONG LEUNG AND KENNETH R. BROWN PHYSICAL REVIEW A 98, 032318 (2018)

(a)

(c)

(e)

(b)
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FIG. 2. (a),(b) The relative Rabi strength �(t ) applied over a gate time of 500 μs, denoted as pulse A and B, respectively. (c),(d) The
corresponding frequency patterns [μ(t ) − μ0 where μ0 = ω26 − 3.7 kHz] that minimize residual ion motion. The blue dots are allowed to
move vertically during optimization. Note that the pulses are set to be symmetric in time. (e),(f) The resultant phase-space trajectories from
the 24th to 28th motional modes. Note that the detuning determines the curvature of the phase-space trajectories, whereas the Rabi strength
determines trajectory speed as well as curvature.

scale as δ4
1 , making the gate robust against small frequency

drifts of the trap.
Figures 2(c) and 2(d) show the optimized frequency pat-

terns for pulses A and B, both consisting of 8 oscillations
and thus 15 turning points. But since the pulse is set to be
symmetric, there are only 8 degrees of freedom (8 blue dots)
for frequency modulation. The oscillatory amplitude is about
2 kHz or less, much smaller than the average sideband split-
ting of 18 kHz. The initial gate error [when μ(t ) = μ0] due to
residual motion is 9.4 × 10−4 for pulse A and 6.3 × 10−3 for
pulse B, and the final error is 2.4 × 10−6 and 3.0 × 10−5 after
optimization with μ(t ). The corresponding trajectories of the
five nearest modes are plotted in Figs. 2(e) and 2(f). The fact
that they are centered around the origin confirms that the pulse
suppresses final motion and is robust against slow frequency
drifts (small change in overall curvature of trajectories).

A log-log graph is plotted in Fig. 3 of the additional gate
error E − E0 versus constant frequency offsets δ1 (E = E0

when δ1 = 0). It is readily seen that pulse A (blue circles)
has a greater tolerance against frequency offsets than pulse
B (green triangles), especially for lower error thresholds. The
slopes found by linear regression are 5.95 ± 0.29 for pulse
A and 4.01 ± 0.16 for pulse B, which are equal to or larger
than the predicted 4. We conclude that pulse A is more robust
against frequency errors than pulse B, as expected.

The colored graph in Fig. 4 shows the power or maximum
Rabi strength required to entangle any pair of ions in the
chain (�max such that βij = π/4). All pairs can be entangled
with power � 2π × 541 kHz for pulse A and � 2π × 263
kHz for pulse B, implying that the latter pulse has higher
coupling efficiency. This is partly due to a higher overall
detuning of the optimized frequency pattern from ω26 for

pulse A than for pulse B [see Figs. 2(c) and 2(d)], which
leads to a greater enclosed area by the phase-space trajectory
for pulse B [Figs. 2(e) and 2(f)]. The required power does
not increase as a function of distance. Instead, it alternates
between low and high, and averages to roughly 2π × 150 kHz
for long distances. The required power is also higher towards
the edges of the ion chain. To summarize, for the same gate
time and degrees of freedom, pulse A consumes less power,
but pulse B has a higher tolerance against frequency errors.
This flexibility with the initial conditions allows a trade-off
between robustness and power efficiency.

FIG. 3. Log-log plot of extra gate error (E − E0) vs frequency
offset in the applied frequency (μ0 → μ0 + δ1) for pulses A and B
(blue circles and green triangles), where E0 is the gate error when
there is no offset. The average slope is 5.95 and 4.01 for pulses A
and B, respectively, compared to the the expected 4.
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FIG. 4. Rabi frequency �max required to entangle any pair
of qubits [�max corresponds to relative Rabi strength = 100 in
Fig. 2(a)]. It ranges from 2π × 109 to 541 kHz for pulse A, and from
2π× 97 to 263 kHz for pulse B.

V. CONCLUSION

We have provided a suite of tools that can predict the
distribution and motion of a 1D ion lattice and search for

pulses that entangle any pair of ions with high fidelity and rea-
sonable overhead. Despite the crowding of resonant motional
mode spectrum, the interaction strength between an ion pair
does not decrease with distance, and maximal entanglement
is achieved with finite driving power. The residual motion of
the lattice can be suppressed efficiently by using an optimized
pulse with modulated amplitude and frequency. At least two
distinct solutions have been found with limited degrees of
freedom, showing the balance between gate power scaling and
robustness against frequency errors.

Unwanted frequency offset is only one of the many er-
ror sources we observe with ion traps, which also include
intensity fluctuations and trap heating. These can be treated
by deploying similar physical control methods [27–29]. We
can also mitigate such effects with other control sequences
such as Walsh modulation [30] or two-qubit composite pulse
sequences [31–33].

It is also important to note that the motional mode struc-
tures are sensitive to trap imperfections, and we argue that
our method does not lose generality because of this. For
example, we may not be able to generate the potential in
Eq. (2) which leads to uniform ion density with arbitrary
accuracy. Also, the radial confinement may also not be per-
fectly uniform across the length of the ions. These deviations
will considerably alter the mode structures, meaning that ion
participation will not be as predictable as shown in Fig. 1(c).
This dilemma can be solved by searching for alternative pulses
with different starting frequencies μ0, so that any pair of
ions can be entangled through at least one of the pulses,
since each ion is more involved in some sidebands than the
others.

As we advance towards 100 ions or more, there are many
proposals for dividing ions into groups and establishing en-
tanglement between them. Instead of further enlarging the
trap, we may rely on modular approaches such as zoning and
shuttling of ions [34–38] as well as photonic links [39,40].
Whichever direction we go, the ability to entangle ions arbi-
trarily within the same trap will vastly improve the scalability
of ion traps as a quantum computer.
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