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Quantum coherence and nonlocality capture the nature of quantumness from different aspects. For the two-
qubit states with a diagonal correlation matrix, we prove strictly a hierarchy between the nonlocal advantage of
quantum coherence (NAQC) and Bell nonlocality by showing geometrically that the NAQC created on one qubit
by local measurement on another qubit captures quantum correlation which is stronger than Bell nonlocality.
For general states, our numerical results present strong evidence that this hierarchy may still hold. So the NAQC
states form a subset of the states that can exhibit Bell nonlocality. We further propose a measure of NAQC that
can be used for a quantitative study of it in bipartite states.
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I. INTRODUCTION

Quantum correlations in states of composite systems can
be characterized from different perspectives. From the ap-
plicative point of view, they are also invaluable physical
resources which are recognized to be responsible for the
power of those classically impossible tasks involving quantum
communication and quantum computation [1]. Stimulated by
this realization, there are a number of quantum correlation
measures being put forward to date [2–5]. Some of the ex-
tensively studied measures include Bell nonlocality (BN) [2],
quantum entanglement [3], Einstein-Podolski-Rosen steering
[4], and quantum discord [5]. For two-qubit states, a hierar-
chy of these quantum correlations has also been identified
[6–11]. This hierarchy reveals the different yet interlinked
subtle nature of correlations, and broadens our understanding
about the physical essence of quantumness in a state.

Quantum coherence is another basic notion in quantum
theory, and recent years have witnessed an increasing interest
in pursuing its quantification [12,13]. In particular, based on a
seminal framework formulated by Baumgratz et al. [14], there
are various coherence measures being proposed [15–21]. This
stimulates one’s enthusiasm to understand them from different
aspects, as for instance the distillation of coherence [19,22],
the role of coherence played in quantum state merging [23],
and the characteristics of coherence under local quantum
operations [24–27] and noisy quantum channels [28,29].
Moreover, some fundamental aspects of coherence, such as
its role in revealing the wave nature of a system [30,31]
and its tradeoffs under the mutually unbiased bases [32] or
incompatible bases [33], have also been extensively studied.

Conceptually, coherence is thought to be more fundamen-
tal than various forms of quantum correlations, hence it is
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natural to pursue their interrelations for bipartite and multipar-
tite systems. In fact, it has already been shown that coherence
itself can be quantified by the entanglement created between
the considered system and an incoherent ancilla [34]. There
are also several works which linked coherence to quantum
discord [35–37] and measurement-induced disturbance [38].

In a recent work, Mondal et al. [39] explored the interrela-
tion of quantum coherence and quantum correlations from an
operational perspective. By performing local measurements
on qubit A of a two-qubit state AB, they showed that the
average coherence of the conditional states of B summing
over the mutually unbiased bases can exceed a threshold that
cannot be exceeded by any single-qubit state. They termed this
as the nonlocal advantage of quantum coherence (NAQC), and
proved that any two-qubit state that can achieve a NAQC (we
will call it the NAQC state for short) is quantum entangled.
As there are many other quantum correlation measures, it
is significant to purse their connections with NAQC. We
explore such a problem in this paper. For two-qubit states with
diagonal correlation matrix, we showed strictly that quantum
correlation responsible for NAQC is stronger than that respon-
sible for BN, while for general states this result is conjectured
based on numerical analysis. We hope this finding may shed
some light on our current quest for a deep understanding of
the interrelation between quantum coherence and quantum
correlations in composite systems.

II. TECHNICAL PRELIMINARIES

We start by recalling two well-established coherence mea-
sures known as the l1 norm of coherence and relative entropy
of coherence [14]. For a state described by density operator ρ

in the reference basis {|i〉}, they are given, respectively, by

Cl1 (ρ) =
∑
i �=j

|〈i|ρ|j 〉|, Cre(ρ) = S(ρdiag) − S(ρ), (1)
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where S(·) denotes the von Neumann entropy, and ρdiag is an
operator comprised of the diagonal part of ρ.

Using the above measures, Mondal et al. presented a
“steering game” in Ref. [39]: Two players, Alice and Bob,
share a two-qubit state ρ. They begin this game by agreeing
on three observables {σ1, σ2, σ3}, with σ1,2,3 being the usual
Pauli operators. Alice then measures qubit A and informs
Bob of her choice σi and outcome a ∈ {0, 1}. Finally, Bob
measures coherence of qubit B in the eigenbasis of either σj

or σk (j, k �= i) randomly. By denoting the ensemble of his
conditional states as {p(a|σi ), ρB|σa

i
}, the average coherence

is given by

C̄
σj

α ({p(a|σi ), ρB|σa
i
}) =

∑
a

p(a|σi )C
σj

α (ρB|σa
i

), (2)

where p(a|σi ) = tr(�a
i ρ), ρB|σa

i
= trA(�a

i ρ)/p(a|σi ), �a
i =

[I2 + (−1)aσi]/2, I2 is the identity operator, and C
σj

α (α = l1
or re) is the coherence defined in the eigenbasis of σj .

By further averaging over the three possible measurements
of Alice and the corresponding possible reference eigenbases
chosen by Bob, Mondal et al. [39] derived the criterion for
achieving NAQC, which is given by

Cna
α (ρ) = 1

2

∑
i,j,a

i �=j

p(a|σi )C
σj

α (ρB|σa
i

) > Cm
α , (3)

where Cm
l1

= √
6, Cm

re = 3H (1/2 + √
3/6) � 2.2320, and

H (·) stands for the binary Shannon entropy function.
In fact, the above critical values are also direct results of

the complementarity relations of coherence under mutually
unbiased bases [32]. To be explicit, by Eq. (4) of Ref. [32]
and the mean inequality (the arithmetic mean of a list of
non-negative real numbers is not larger than the quadratic
mean of the same list) one can obtain the critical value Cm

l1
,

while from Eq. (24) of Ref. [32] one can obtain the critical
value Cm

re.
To detect nonlocality in ρ, one can use the Bell-CHSH

inequality |〈BCHSH〉ρ | � 2, where BCHSH is the Bell operator
[40]. Violation of this inequality implies that ρ is Bell nonlo-
cal. The maximum of |BCHSH〉ρ | over all mutually orthogonal
pairs of unit vectors in R3 is given by [41]

Bmax(ρ) = 2
√

M (ρ), (4)

where M (ρ) = u1 + u2, with ui (i = 1, 2, 3) being the eigen-
values of T †T arranged in nonincreasing order, and T stands
for the matrix formed by elements tij = tr(ρσi ⊗ σj ). Clearly,
M (ρ) > 1 is also a manifestation of BN in ρ.

It has been shown that any ρ that can achieve a NAQC
is entangled, while the opposite case is not always true
[39]. This gives rise to a hierarchy of them. To further
establish the hierarchy between NAQC and BN, and based
on the consideration that the BN is local unitary invari-
ant, we first consider the representative class of two-qubit
states,

ρ̃ = 1

4

(
I4 + 	r · 	σ ⊗ I2 + I2 ⊗ 	s · 	σ +

3∑
i=1

viσi ⊗ σi

)
, (5)
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FIG. 1. The tetrahedron T and octahedron O associated with
ρBell (a), and the level surfaces of M (ρ̃) = 1 (b), Cna

l1
(ρBell ) = √

6
(c), and Cna

re (ρBell ) = Cm
re (d). The regions of Bell nonlocal states ρ̃

and NAQC states ρBell are those outside the level surfaces.

where {	r, 	s, 	v} ∈ R3 satisfy the physical requirement ρ̃ � 0.
For 	r = 	s = 0, it reduces to the Bell-diagonal state ρBell which
is characterized by the tetrahedron T [see Fig. 1(a)], and the
region of separable ρBell is the octahedron O [42]. For 	r · 	s �=
0, physical ρ̃ shrinks to partial regions of T . For this case,
while the separable region is still inside O, the entangled ones
may not be limited to the four regions outside O.

III. HIERARCHY OF NAQC AND BN

The hierarchy of entanglement, steering, and BN shows
that while entanglement clearly reveals the nonclassical nature
of a state, steering and BN exhibit even stronger deviations
from classicality [6–11]. Here, we show that NAQC may be
viewed as a quantum correlation which is even stronger than
BN.

To begin with, we prove the convexity of NAQC,

Cna
α

(∑
k

qkρk

)
�

∑
k

qkC
na
α (ρk ), (6)

that is, the NAQC is nonincreasing under mixing of states.
By combining Eqs. (2) and (3), one can see that the NAQC
is convex provided C̄

σj

α is convex. For ρ = ∑
k qkρk , the

conditional state of B after Alice’s local measurements is

ρB|σa
i

=
∑

k qktrA

(
�a

i ρk

)
∑

k qktr
(
�a

i ρk

) =
∑

k qkpk (a|σi )ρk
B|σa

i

p(a|σi )
, (7)

where ρk
B|σa

i
= trA(�a

i ρk )/pk (a|σi ), pk (a|σi ) = tr(�a
i ρk ),

and we have denoted by p(a|σi ) = ∑
k qkpk (a|σi ).
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FIG. 2. Geometric representation of the polyhedron P (the red
lines) inside T . Here, O and O ′ are the coordinate origin and the
midpoint of BC, respectively, while the khaki curve is the curve of
constant BN M (ρ̃) = 1 at the facet ABC.

Then

C̄
σj

α ({p(a|σi ), ρB|σa
i
}) =

∑
a

p(a|σi )C
σj

α (ρB|σa
i

)

�
∑
k,a

p(a|σi )
qkpk (a|σi )

p(a|σi )
C

σj

α

(
ρk

B|σa
i

)

=
∑
k,a

qkpk (a|σi )C
σj

α

(
ρk

B|σa
i

)

=
∑

k

qkC̄
σj

α ({pk (a|σi ), ρ
k
B|σa

i
}), (8)

where the first inequality is due to convexity of the coherence
measure. This completes the proof of Eq. (6).

Next, we give the level surface S of constant BN M (ρ̃) =
1. It can be divided into four parts, corresponding to the four
vertices of T . For convenience of later presentation, we denote
by SA the part near vertex A (see Fig. 2). It is described by

vi = sin θ, vj = cos θ,

vk ∈ [max{sin θ, cos θ}, 1 + sin θ + cos θ ], θ ∈ [π, 1.5π ],

(9)

where (i, j, k) = (1, 2, 3), (2,3,1), and (3,1,2). The equations
for the other three parts of S can be obtained directly by their
symmetry about the coordinate origin O. The corresponding
results are shown in Fig. 1(b).

In the following, we denote by N the set of NAQC states
and B the set of Bell nonlocal states. We will prove the inclu-
sion relation N ⊂ B for any ρ̃, meaning that the existence of
NAQC implies the existence of BN.

A. l1 norm of NAQC

First, we consider the class of Bell-diagonal states. Without
loss of generality, we assume |v1| � |v2| � |v3|, then

Cna
l1

(ρBell ) =
∑

i

|vi |, M (ρBell ) = v2
1 + v2

2, (10)

from which one can obtain |v1| >
√

6/3 and |v2| > (
√

6 −
1)/2 when Cna

l1
(ρBell ) >

√
6. This further gives rise to

M (ρBell ) > 1. That is, any ρBell that can achieve a NAQC is
Bell nonlocal. But the converse is not true, e.g., if v1,2,3 ∈
[−√

6/3,−1/
√

2), we have M (ρBell ) > 1 and Cna
l1

(ρBell ) �√
6. With all this, we arrived at the inclusion relation N ⊂

B. The level surfaces of Cna
l1

(ρBell ) = √
6 can be found in

Fig. 1(c).
Second, we consider ρ̃ sitting at the edges of T with

general 	r and 	s. We take the edge AB as an example (see
Fig. 2); the cases for the other edges are similar. Along this
edge, we have v1 = v3 and v2 = −1, then one can determine
analytically the constraints imposed by ρ̃ � 0 on the involved
parameters as r1,3 = s1,3 = 0, r2 = −s2, and s2

2 � 1 − v2
1 (see

Appendix A). Thus we have

Cna
l1

(ρ̃) = 1 + |v1| +
√

v2
1 + s2

2 . (11)

It is always not larger than
√

6 in the region of |v1| �
√

6 − 2.
On the other hand, the states located at the edge AB other than
its midpoint are Bell nonlocal. Hence, the inclusion relation
N ⊂ B holds for all ρ̃ located at the edges of T .

Next, we consider ρ̃ associated with v1,2,3 = v0 = −1/
√

2.
As Cna

l1
is an increasing function of |si | (i = 1, 2, 3), one only

needs to determine the maximal |si | for which ρ̃ � 0. Without
loss of generality, we assume s3 = w0s1 and s2 = w1s1, then
a detailed analysis shows that the resulting maximum NAQC
states belong to the set of ρ̃ with r3 = w0r1 and r2 = w1r1.
Under this condition, one can obtain analytically the eigen-
values εk of ρ̃. Then from εk � 0 (∀k) one can obtain

|s1 + r1| � c1 = 1 + v0√
1 + w2

0 + w2
1

,

|s1 − r1| � c2 =
√

1 − 2v0 − 3v2
0

1 + w2
0 + w2

1

.

(12)

For state ρ̃ with fixed v0, w0, and w1, Cna
l1

takes its maxi-
mum when the above inequalities become equalities. That is,
when

s1 = ± 1
2 (c1 + c2), r1 = ± 1

2 (c1 − c2), (13)

then by further maximizing the resulting Cna
l1

over w0 and w1,
we obtain Cna

l1,max � 2.4405 at the critical points w0,1 = ±1
(we have also checked the validity of this result with 107

randomly generated ρ̃ for which v1,2,3 = −1/
√

2, and no
violation was observed). As this maximum is smaller than

√
6,

any ρ̃ with v0 = −1/
√

2 cannot achieve a NAQC.
To proceed, we introduce a polyhedron P with the set

of its vertices near the vertex A being given by (v0, v0, v0),
(−1, γ, γ ), (γ,−1, γ ), (γ, γ,−1), and its other vertices can
be obtained by using their symmetry with respect to the point
O (see Fig. 2). One can show that when |γ | <

√
2 − 1, the

surface SA is always inside P (see Appendix B). Finally,
as Cna

l1,max � 2.4405 at the point (v0, v0, v0), we choose γ =
2 − √

6 for which Cna
l1

is also smaller than
√

6 at the other
three points of P near vertex A [see Eq. (11)], then as any
physical state with 	v inside P can be written as a convex
combination of states with 	v at the vertices of P , we complete
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0 for which (a) Cna
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= √

6 and (b) Cna
re = Cm

re vs
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and 	r = (r1, w0r1, w1r1), with s1 and r1 being given in Eq. (13), and
vc

0 is plotted in the region of v0 < 0.

the proof of the inclusion relation N ⊂ B for general ρ̃ by
using the convexity of NAQC.

In fact, for ρ̃ at the line AO with fixed w0 and w1, one
can obtain the critical vc

0 at which Cna
l1

= √
6. As Cna

l1
and vc

0
considered here are invariant under the substitution w0 ↔ w1,
we show in Fig. 3(a) an exemplified plot of the w0 dependence
of vc

0 with fixed w1 = 0 and 1. It first increases to a peak value
at w0 = 1, then decreases gradually with the increase of |ω0|.
By optimizing over w0 and w1, one can further obtain the re-
gion of vc

0 ∈ (−0.7519,−0.7142), where the lower and upper
bounds correspond to w0,1 = 0 and w0,1 = ±1, respectively.
Clearly, the point (vc

0, v
c
0, v

c
0 ) is always outside the surface S .

B. Relative entropy of NAQC

In this subsection, we consider NAQC measured by the rel-
ative entropy. First, for Bell-diagonal states, the corresponding
NAQC can be obtained as [39]

Cna
re (ρBell ) = 3 −

∑
i

H

(
1 + vi

2

)
. (14)

Then by imposing Cna
re (ρBell ) > Cm

re with the assumption
|v1| � |v2| � |v3|, one can obtain

H

(
1 + v1

2

)
<

3 − Cm
re

3
, H

(
1 + v2

2

)
<

3 − Cm
re

2
, (15)

which yields M (ρBell ) > 1. Moreover, we have M (ρBell ) >

1 and Cna
re (ρBell ) < Cm

re for v1,2,3 ∈ (−0.9140,−1/
√

2). So
N ⊂ B holds for ρBell. The corresponding level surfaces were
shown in Fig. 1(d). Clearly, the region of NAQC states shrinks
compared with that captured by the l1 norm.

For ρ̃ sitting at the edges of T with general 	r and 	s, we take
the edge AB as an example. Based on the results of Sec. III A,

one can obtain

Cna
re = 2 + H

(
1 + s2

2

)
− 2H

⎛
⎝1 +

√
v2

1 + s2
2

2

⎞
⎠, (16)

then it is direct to show that Cna
re is always smaller than Cm

re for
|v1| < −b0 � 0.3813. So the inclusion relation N ⊂ B holds
for any ρ̃ at the edges of T .

Based on the above preliminaries, we now consider ρ̃ at
the surface SA (the cases for the other parts of S are similar).
We will show that for these ρ̃ the inequality Cna

re < Cm
re holds.

Then by further employing the convexity of NAQC and the
fact that {ρ̃} is a convex set, one can complete the proof
of N ⊂ B. In fact, due to the structure of SA [see Eq. (9)],
it suffices to prove that we always have Cna

re < Cm
re at the

boundary of SA.
First, we introduce the polygon line EFG over

(−1, b0, b0), (a0, a0, 1 + 2a0), and (b0,−1, b0). One can
prove that there is no intersection of this line and the boundary
of SA at the facet ABC when a0 � −0.7082 (Appendix B).
Moreover, along the line AO ′, ρ̃ � 0 yields r1,2 = −s1,2 and
r3 = s3 (Appendix A), then one can obtain that at the point F

with a0 = −0.7082, Cna
re maximized over 	r and 	s is of about

1.4956. As Cna
re is also smaller than Cm

re at the points E and G

[see Eq. (16)], we have Cna
re < Cm

re for any ρ̃ at this boundary.
Second, if we make the substitutions v0 = −0.7082 and

γ = b0 to the vertices of P , then one can show that the bound-
ary of SA inside T is also inside P (see Appendix B). For ρ̃ at
the point (v0, v0, v0), our numerical results showed that with
fixed v0, w0, and w1, Cna

re also takes its maximum when s1 and
r1 are given by Eq. (13). Then by further maximizing it over
w0 and w1, we obtain Cna

re,max � 2.0041 at w0,1 = ±1. As Cna
re

is also smaller than Cm
re for ρ̃ at the vertices of P with γ = b0

[see Eq. (16)], we have Cna
re < Cm

re for any ρ̃ at this boundary.
Similar to the l1 norm of NAQC, one can obtain vc

0
at which Cna

re = Cm
re with fixed w0 and w1. It is vc

0 ∈
(−0.8278,−0.8266), where the lower and upper bounds are
obtained with w0,1 = 0 and w0,1 = ±1, respectively. As is
shown in Fig. 3, vc

0 for the two NAQCs exhibits qualitatively
the same w0 dependence.

Before ending this section, we would like to mention here
that although for the set of Bell-diagonal states, one detects
a wider region of NAQC states by using the l1 norm as a
measure of coherence than that by using the relative entropy
(see Fig. 1), this is not always the case. A typical example is
that for ρ̃ at the edge AB of T with |v1,3| ∈ (0.3813,

√
6 − 2),

one may have Cna
l1

<
√

6 and Cna
re > Cm

re.

IV. AN EXPLICIT APPLICATION OF NAQC

As it is a proven fact that all Bell nonlocal states are useful
for quantum teleportation [43], the hierarchy we obtained
implies that any NAQC state ρ̃ can serve as a quantum channel
for quantum teleportation. That is, it always gives rise to the
average fidelity Fav > 2/3. In fact, Fav achievable with the
channel state ρ̃ is given by [43]

Fav (ρ̃) = 1

2
+ 1

6

∑
i

|vi |. (17)
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Using this equation and the results of Sec. III, one can obtain
that for any NAQC state ρ̃ captured by Cna

l1
(ρ̃ ), we always

have Fav >
√

6/3, while for any NAQC state ρ̃ captured by
Cna

re (ρ̃), we always have Fav � 0.7938. Both the two critical
values are larger than 2/3, so any NAQC state ρ̃ can serve as
a quantum channel for nonclassical teleportation.

If we focus only on the class of NAQC Bell-diagonal
states, the average fidelity Fav can be further improved. More
specifically, Eqs. (10) and (14) imply that Fav > (3 + √

6)/6
for any NAQC state ρBell captured by Cna

l1
(ρBell ), and Fav �

0.9501 for any NAQC state ρBell captured by Cna
re (ρBell ).

V. SUMMARY AND DISCUSSION

In summary, we have explored the interrelations of NAQC
achievable in a two-qubit state under local measurements and
BN detected by violation of the Bell-CHSH inequality. There
are two different scenarios of NAQC being considered: one is
characterized by the l1 norm of coherence, and another one
is characterized by the relative entropy of coherence. For both
scenarios, we showed geometrically that the inclusion relation
N ⊂ B holds for the class of states ρ̃ that have diagonal
correlation matrix T . This extends the known hierarchy in
quantum correlation, viz., BN, steerability, entanglement, and
quantum discord to include NAQC.

One may also be concerned whether the obtained hierarchy
holds for ρ with nondiagonal T . As such ρ is locally unitary
equivalent to ρ̃, that is, ρ = UABρ̃U

†
AB with UAB = UA ⊗ UB ,

the proof can be completed by showing that for any ρ̃ with
M (ρ̃) � 1, we have Cna

α (UABρ̃U
†
AB ) � Cm

α for all unitaries
UAB . But due to the large number of state parameters involved,
it is difficult to give such a strict proof. For special cases,
a strict proof may be available, e.g., for the locally unitary
equivalent class of ρ̃ with |	v|2 + 2|	s|2 � 2, we are sure that
Cna

l1
�

√
6, while for the locally unitary equivalent class of

ρBell, we are sure that Cna
re � Cm

re (see Appendix C). Moreover,
for ρ̃ with reduced number of parameters, we performed
numerical calculations with 107 equally distributed local uni-
taries generated according to the Haar measure [44,45], and
found that Cna

α is always smaller than Cm
α (see Appendix C).

These results presented strong evidence that the hierarchy
may hold for any two-qubit state, though a strict proof is still
needed.

Moreover, one may argue that NAQC can be recognized as
a quantum correlation. It is stronger than BN in the sense that
the NAQC states form a subset of the Bell nonlocal states. But
it is asymmetric, that is, in general Cna

α defined with the local
measurements on A does not equal that defined with the local
measurements on B. This property is the same to steerability
and quantum discord. The NAQC is also not locally unitary
invariant. Its value may be changed by performing local
unitary transformation to the mutually unbiased bases. To
avoid this perplexity, one can define

C̃na
α (ρ) = 1

2
max

{UA⊗UB }

∑
i,j,a

i �=j

p(a|σi,UA
)C

σj,UB
α

(
ρB|σa

i,UA

)
, (18)
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FIG. 4. The x dependence of Q̃l1 (ρ1). Here, we choose x ∈
[0, 0.5] as Q̃l1 (ρ1) is symmetric with respect to x = 0.5 for ρ1. The
inset shows the x dependence of � = Q̃l1 (ρ1) − Ql1 (ρ1).

with σi,UA
= UAσiU

†
A, and likewise for σj,UB

. As BN is locally
unitary invariant, we have Ñ ⊂ B provided N ⊂ B, where Ñ
is the set of NAQC states captured by C̃na

α (ρ) > Cm
α .

Finally, in light of those measures of steerability based
on the maximal violation of various steering inequalities and
the similar measure of Bell nonlocality [9,10], it is natural to
quantify the degree of NAQC in a bipartite state ρ by

Q̃α (ρ) = max

{
0,

C̃na
α (ρ) − Cm

α

C̃na
α,max − Cm

α

}
, (19)

where C̃na
α,max = maxρ C̃na

α (ρ), and the factor C̃na
α,max − Cm

α

was introduced for normalizing Q̃α (ρ). For two-qubit states,
we have C̃na

α,max = 3 (α = l1 or re), which are obtained for

the Bell states |�±〉 = (|00〉 ± |11〉)/
√

2 and |�±〉 = (|01〉 ±
|10〉)/

√
2. Moreover, we have used the fact that Cm

α cannot
be increased by any unitary transformation in the above
definition.

Of course, one may propose to define the NAQC-based
correlation measure [denoted Ql1 (ρ)] by replacing C̃na

α (ρ) in
Eq. (19) with Cna

α (ρ). But if so, Ql1 (ρ) will not be locally
unitary invariant, thus making it violate the widely accepted
property of a quantum correlation measure (e.g., Bell nonlo-
cality, steerability, entanglement, and quantum discord) which
should be locally unitary invariant.

As an example, we calculated numerically the NAQC-
based correlation measure of the following state:

ρ1 = x|�+〉〈�+| + (1 − x)|�−〉〈�−|, x ∈ [0, 1], (20)

for which Q̃l1 (ρ1) is symmetric with respect to x = 0.5.
As was shown in Fig. 4, Q̃l1 (ρ1) > Ql1 (ρ1) in the region
of 0 � x � 0.141. In particular, we have Q̃l1 (ρ1) > 0 and
Ql1 (ρ1) = 0 when 0.138 � x � 0.141, that is, Q̃l1 captures
a wider region of NAQC states than Ql1 .
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APPENDIX A: CONSTRAINTS IMPOSED ON THE
PARAMETERS OF ρ̃

At the edge AB of T , we have v1 = v3 and v2 = −1. Then
the positive semidefiniteness of ρ̃ requires

ρ̃11ρ̃44 − |ρ̃14|2 = −(r3 + s3)2 � 0,

ρ̃22ρ̃33 − |ρ̃23|2 = −(r3 − s3)2 � 0,
(A1)

from which one can obtain r3 = s3 = 0.
Moreover, all the ith-order principal minors of ρ̃ should

be non-negative. Under the constraint r3 = s3 = 0 obtained
above, the second- and third-order leading principal minors
D2,3 and the principal minor �3 (determinant of the matrix
obtained by removing from ρ̃ its third row and third column)
are

D2 = 1 − v2
1 − s2

1 − s2
2 ,

D3 = (v1 − 1)[(r1 + s1)2 + (r2 + s2)2],

�3 = −(v1 + 1)[(r1 − s1)2 + (r2 + s2)2],

(A2)

which, together with Eq. (A1), yields the following require-
ments:

r1,3 = s1,3 = 0, r2 = −s2, s2
2 � 1 − v2

1 . (A3)

Similarly, one can obtain constraints imposed on the pa-
rameters of ρ̃ at the other edges of T . They are

AC: r2,3 = s2,3 = 0, r1 = −s1, s2
1 � 1 − v2

3,

AD: r1,2 = s1,2 = 0, r3 = −s3, s2
3 � 1 − v2

2,

CD: r1,3 = s1,3 = 0, r2 = s2, s2
2 � 1 − v2

1,

BD: r2,3 = s2,3 = 0, r1 = s1, s2
1 � 1 − v2

3,

BC: r1,2 = s1,2 = 0, r3 = s3, s2
3 � 1 − v2

2 .

(A4)

For ρ̃ associated with 	v at the line AO ′, we have v1,2 =
a0 and v3 = 1 + 2a0 (−1 � a0 � 0), then a similar derivation
gives

r1,2 = −s1,2, r3 = s3 ∈ [−1 − a0, 1 + a0],

|s1| � min

{
1 + 1

2
a0,

1

2
(1 − a0)

}
,

s2
1 + s2

2 � −4a0(1 + a0).

(A5)

APPENDIX B: INTERSECTION OF TWO SURFACES

Due to the symmetry, one only needs to consider the
intersections of the level surface SA described by Eq. (9)
and the facet of P with the vertices (v0, v0, v0), (−1, γ, γ ),
(γ,−1, γ ). The plane equation for this facet is

av1 + av2 + cv3 + 1 = 0, (B1)

where

a = v0 − γ

v0(1 + γ )
, c = − 1

v0
− 2a. (B2)

Without loss of generality, we fix (i, j, k) = (1, 2, 3) in
Eq. (9). Then by plugging v1 = sin θ and v2 = cos θ into
Eq. (A1), we obtain

v3 = (v0 − γ )(sin θ + cos θ ) + v0(1 + γ )

1 + 2v0 − γ
, (B3)

and for given v0 and γ , one can check whether there are inter-
sections for the two surfaces by checking whether v3 obtained
in Eq. (B3) belongs to the region [max{sin θ, cos θ}, 1 +
sin θ + cos θ ]. If there exists such v3, then there are intersec-
tion of SA and P . Otherwise, SA is totally inside or outside
of P .

One can also determine whether there are intersections of
SA and P by plugging Eq. (9) into Eq. (A1), and checking the
resulting sgn(av1 + av2 + cv3 + 1). The surface SA is inside
P if it is always non-negative. In fact, here one only needs to
check the points at the boundary of SA.

Based on the above methods, it is direct to show that
when v0 = −1/

√
2 and |γ | <

√
2 − 1, the level surface SA

is always inside P . When v0 � −0.7082 and γ = b0, the
boundary of SA inside the tetrahedron T is also inside the
polyhedron P .

Similarly, by substituting v1 = sin θ , v2 = cos θ , and v3 =
1 + sin θ + cos θ into the equation of the straight line FG (see
Fig. 2), one can obtain

(1 + a0) sin θ + (b0 − a0) cos θ = a0(1 + b0). (B4)

For given a0 and b0, if there are solutions for Eq. (B4) in the
region of θ ∈ [π, 1.5π ], there are intersections of FG and
the boundary of SA described by v3 = 1 + sin θ + cos θ . In
this way, one can check that when b0 � −0.3813 and a0 �
−0.7082, there are no intersections of FG and the boundary
of SA.

APPENDIX C: NAQC OF GENERAL TWO-QUBIT STATES

Suppose UAB = UA ⊗ UB gives the map 	r �→ 	x, 	s �→ 	y,
and 	v �→ T = (tij ), then the transformed state of ρ̃ is
given by

ρ = 1

4

(
I4 + 	x · 	σ ⊗ I2 + I2 ⊗ 	y · 	σ +

3∑
i,j=1

tij σi ⊗ σj

)
,

(C1)
and we have the following equalities:

|	r| = |	x|, |	s| = |	y|, |	v|2 =
∑
ij

t2
ij . (C2)

By further using the mean inequality and the analytical
solution of Cna

l1
(ρ) given in Ref. [39], we obtain

Cna
l1

(UABρ̃U
†
AB ) �

√
3

2

(
|	v|2 +

∑
i

t2
ii

)
+ 6|	s|2,

�
√

3|	v|2 + 6|	s|2,
(C3)
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hence for the class of ρ̃ with |	v|2 + 2|	s|2 � 2, we are sure
that Cna

l1
(UABρ̃U

†
AB ) �

√
6. This class of ρ̃ includes (but is

not limited to) all ρ̃ with |	s|2 � 1/4 as we have |	v|2 � 3/2
for M (ρ̃) � 1.

For the relative entropy of NAQC, due to its complexity,
we consider only the case of ρBell, for which we have

Cna
re (UABρBellU

†
AB ) = 1

2

∑
i �=j

H

(
1 + tij

2

)

−
∑

i

H

⎛
⎝1 +

√∑
j t2

ij

2

⎞
⎠, (C4)

then by using |	v|2 � 3/2 when M (ρ̃) � 1, one can show that
the maximum of the right-hand side of Eq. (C4) is of about
1.1974, which is achieved when T = diag{v0, v0, v0}, with
v0 = −1/

√
2. Hence Cna

re (UABρBellU
†
AB ) < Cm

re for this class
of ρ̃.

For general ρ̃ inside the level surface S , it is hard even to
give a numerical simulation as the derivation of the constraints
imposed on 	r and 	s is also a difficult task. But if the number
of the involved parameters can be reduced, a numerical veri-
fication may also be possible. Several examples where such a
verification can be performed are as follows:

(1) For the class of ρ̃ at the vertex (0,−1, 0) of O (the cases
for the other vertices of O are similar), we have r1,3 = s1,3 =
0 and r2 = −s2, i.e., there is only one variable. We performed
numerical calculation with 107 equally distributed local uni-
taries generated according to the Haar measure [44,45], and

found that the maximal Cna
l1

and Cna
re achievable by optimizing

over UA ⊗ UB increase with the increase of |s2|. When |s2| =
1, their maximal values are

√
6 and Cm

re, respectively. The
corresponding optimal UABρ̃U

†
AB is of the form of Eq. (C1),

with

	x = −	y =
(

± 1√
3
,± 1√

3
,± 1√

3

)
, tij = −1

3
(∀i, j ).

(C5)

(2) For the class of ρ̃ associated with v1,2,3 = −1/
√

2
(the cases for vi = vj = −vk = 1/

√
2 are similar), the

parameter regions can be reduced via r2
3 + s2

3 � 1 − v2
1

and |r1,3 ± s1,3| � 1 ± v1. The numerical results show that
Cna

α (UABρ̃U
†
AB ) is still smaller than Cm

α (α = l1 or re). Specif-
ically, when w0,1 = ±1, s1 and r1 take the values of Eq. (13),
the NAQC of ρ̃ cannot be enhanced by UAB , i.e., Cna

l1
(ρ̃) �

2.4405 and Cna
re (ρ̃) � 2.0026 are already the maximum val-

ues.
(3) For the class of ρ̃ with v1,2 = −1/

√
2 and v3 = 1 − √

2
[an intersection of AO ′ and the curve of M (ρ̃) = 1], one
can obtain |	s|2 �

√
2 − 1 by using Eq. (A5). Hence |	v|2 +

2|	s|2 < 2, and Cna
l1

(UABρ̃U
†
AB ) cannot exceed

√
6 due to

Eq. (C3). For NAQC characterized by the relative entropy, we
performed numerical calculation with 103 equally distributed
ρ̃ of this class, while every ρ̃ is further optimized over 107

equally distributed local unitaries. From these calculation we
still have not found the case for which Cna

re (UABρ̃U
†
AB ) > Cm

re.
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