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Generation and stabilization of entangled coherent states for the vibrational modes of a trapped ion
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We propose a scheme for preparation of entangled coherent states for the motion of an ion in a two-dimensional
anisotropic trap. In the scheme, the ion is driven by four laser beams along different directions in the ion trap
plane, resulting in carrier excitation and couplings between the internal and external degrees of freedom. When
the total quantum number of the vibrational modes initially has a definite parity, the competition between
the unitary dynamics and spontaneous emission will force the system to evolve to a steady state, where the
vibrational modes are in a two-mode cat state. We show that the method can be extended to realization of
entangled coherent states for three vibrational modes of an ion in a three-dimensional anisotropic trap.
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I. INTRODUCTION

The superposition principle, distinguishing between the
quantum and classical worlds, lies at the heart of quantum
mechanics. Superimposing two state components gives rise
to new nonclassical effects due to the quantum interference
between these components. This is well exemplified by su-
perpositions of macroscopically distinguishable states, known
as Schrödinger cat states [1]. In quantum optics, cat states
are defined as superpositions of two distinct quantum states
closest to classical ones—coherent states with different phases
or amplitudes. Though formed by quasiclassical states, cat
states can exhibit strongly nonclassical behaviors, i.e., nega-
tivity of the quasiprobability distribution in phase space [2].
These superposition states are central to exploration of the
fuzzy quantum-classical boundary and useful for the redun-
dant encoding required for quantum error correction [3–6].
Such states have been experimentally generated in various
systems, including cavity quantum electrodynamics (QED)
[2,7], superconducting circuits [8–13], and ion traps [14–16].

Application of the superposition principle to compos-
ite systems will give rise to a more striking quantum
phenomenon, i.e., entanglement, originally introduced by
Einstein et al. to question the completeness of quantum
mechanics. Among various entangled states, entangled co-
herent states of two harmonic oscillators [17], also referred
to as two-mode cat states [18], are strikingly interesting.
The entanglement between quasiclassical state components
leads to interesting nonclassical properties, such as two-mode
squeezing, violations of Cauchy-Schwarz inequality, quantum
interference features in four-dimensional phase space, and vi-
olations of Bell inequalities. Apart from fundamental interest,
these entangled states have practical applications in quantum
information processing [19] and quantum metrology [20].
Schemes have been proposed for producing such states for
two mesoscopic fields through reservoir engineering in cavity
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QED [21,22] and circuit QED [23]. Recently, these states have
been produced in a circuit [24], where the microwave fields
stored in two three-dimensional cavities were entangled by
dispersively coupling them to a superconducting qubit.

Ion traps represent another qualified candidate for quantum
state engineering and quantum information processing. The
prominent properties of this system are that the damping of
the vibrational modes is extremely weak, and these bosonic
modes can be controllably coupled to the electronic state via
laser driving. In addition to the Schrödinger cat states [14–16],
squeezed states [25], Fock states [25], and superpositions of
Fock states [26] have been experimentally produced for one
vibrational mode of a trapped ion. Entanglement consisting
of zero- and one-phonon states has also been observed for
two vibrational modes, each belonging to one pair of trapped
ions [27]. On the other hand, proposals have been suggested
for generating various entangled states for two vibrational
degrees of freedom of a trapped ion, including pair coherent
states [28], superpositions of pair coherent states [29], SU(1,1)
intelligent states [30], two-mode squeezed pair coherent states
[31], entangled coherent states [32,33], and arbitrary super-
positions of two-mode Fock states [34–38]. The schemes
proposed in Refs. [32] and [33] rely on measurement of the
ionic internal state to conditionally project the vibrations to
the desired state after suitable laser driving, while those of
Refs. [34–38] allow for deterministic generation of arbitrary
entangled states in the Fock state basis through step-by-step
procedures, following which any entangled coherent state
can be approximately realized by approaching its Fock state
expansion, with the number of required operations increas-
ing with the average quantum number of each mode. We
here propose an unconditional scheme for generating such
states of the two vibrational modes of an ion confined in a
two-dimensional anisotropic harmonic trap. In our scheme,
the ion is driven by four lasers of different frequencies on
the xy plane. With suitable setting of the parameters and
directions of these lasers, the system steady state is given by
the product of the electronic ground state with a vibrational
two-mode cat state if the two vibrational modes initially have

2469-9926/2018/98(3)/032311(6) 032311-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.032311&domain=pdf&date_stamp=2018-09-10
https://doi.org/10.1103/PhysRevA.98.032311


ZHONG, HUANG, YANG, SHEN, AND ZHENG PHYSICAL REVIEW A 98, 032311 (2018)

a definite joint parity. Unlike the previous schemes [32–38],
our scheme requires neither the projective measurement of the
ionic electronic state nor a sequence of operations achieved by
frequently tuning the parameters of the driving laser. Another
distinct feature of our scheme is that it not only allows for the
generation of entangled coherent states, but also can be used
to stabilize these states.

The paper is organized as follows. In Sec. II, we present the
theoretical model, in which the internal state of a trapped ion
is coupled to its vibrational modes along two mutually per-
pendicular directions by laser driving. The unitary dynamics
associated with this coupling, together with the decaying of
the internal state, forces the system to evolve to the steady
state, where the two vibrational modes are in a two-mode
cat state. In Sec. III, we present numerical simulations of
the fidelities of the vibrational states to the desired cat states
with the dissipation of the vibrational modes being included,
confirming the validity of our scheme. We also display the
Wigner functions of the vibrational modes in the steady state,
which show good agreement with the ideal cat states. In
Sec. IV, we show that the scheme can be generalized to drive
three vibrational modes of an ion confined in an anisotropic
three-dimensional harmonic trap into a three-mode cat state.
A summary appears in Sec. V.

II. THEORETICAL MODEL

We consider an ion trapped in an anisotropic harmonic
potential, where the vibrational frequencies along the x and
y axes are νx and νy , respectively. The transition between the
electronic ground state |g〉 and one excited state |e〉 are driven
by four laser beams of frequencies ω0 − 2ωx , ω0 − 2ωy ,
ω0 − ωx − ωy , and ω0, where ω0 is the transition frequency

between |g〉 and |e〉. The first two are aligned along the x and
y axes, while the other two are at angles of π/4 and −π/4 to
the x axis, respectively. In the rotating-wave approximation,
the Hamiltonian for this system is given by (setting h̄ = 1)

H = ωxa
†a + ωyb

†b + ω0Sz + [λE+(x, y, t )S+ + H.c.],

(1)

where a† (b†) and a (b) are the creation and annihilation
operators for the vibrational modes along the x and y axes and
of frequencies ωx and ωy , respectively, S+, S−, and Sz are the
raising, lowering, and inversion operators for the electronic
dipole transition, and λ is the transition frequency and dipole
matrix element. E+(x, t ) is the positive part of the classical
driving fields,

E+(x, t ) = E1e
−i[(ω0−2ωx )t−k1x+φ1]

+E2e
−i[(ω0−2ωy )t−k2y+φ2]

+E3e
−i[(ω0−ωx−ωy )t−k3(x+y)/

√
2+φ3]

+E0e
−i[ω0t−k0(x−y)/

√
2+φ0], (2)

where En, φn, and kn (n = 0, 1, 2, 3) are the amplitudes,
phases, and wave vectors of the nth driving field, respectively.
The position operators x and y can be expressed by x =√

1/(2ωxM )(a + a†) and y = √
1/(2ωyM )(b + b†), with M

being the mass of the trapped ion.
In the resolved sideband limit the vibrational frequencies

ωx and ωy are much larger than other characteristic frequen-
cies of the problem. Then the interactions of the ion with
lasers can be treated using the nonlinear Jaynes-Cummings
model [39]. In this case the Hamiltonian for such a system, in
the interaction picture, is given by

Hi =
∞∑

j=0

{
e−η2

x/2 (iηx )2j+2

j !(j + 2)!
�1e

−iφ1a†j aj+2 + e−η2
y/2 (iηy )2j+2

j !(j + 2)!
�2e

−iφ2b†j bj+2 +
∞∑
l=0

e−(η2
x+η2

y )/4 ·

×
[

(iηx/
√

2)2j+1

j !(j + 1)!

(iηy/
√

2)2l+1

l!(l + 1)!
�3e

−iφ3a†j aj+1b†lbl+1 + (iηx/
√

2)2j

(j !)2

(−iηy/
√

2)2l

(l!)2
�0e

−iφ0a†j ajb†lbl+1

]}
S+ + H.c.,

(3)

where �n = λEn are the Rabi frequencies of the respec-
tive lasers, and ηx = k0/

√
2ωxM and ηy = k0/

√
2ωyM are

the Lamb-Dicke parameters associated with the vibrational
modes along the x and y axes, respectively. We here set
k1 � k2 � k3 � k0.

We consider the behavior of the ion in the Lamb-Dicke
regime, ηx, ηy � 1. In this limit we can discard the terms with
j > 0 or l > 0. Then the Hamiltonian can be simplified to

Hi =
[
−η2

x

2
e−η2

x/2�1e
−iφ1a2 − η2

y

2
e−η2

y/2�2e
−iφ2b2

+ e−(η2
x+η2

y )/4
(
−ηxηy

2
�3e

−iφ3ab+�0e
−iφ0

)]
S++H.c.

(4)

The phase difference φn − φm is equal to the relative phase
between the nth and mth driving fields, and the ratio between
the Rabi frequencies �n and �m depends on the ratio be-
tween the amplitudes of these two fields. Therefore, we can
choose the relative phases and amplitudes of the lasers appro-
priately so that

φ1 = φ2 = φ3 = φ0,

η2
xe

−η2
x/2�1 = η2

ye
−η2

y/2�2 = ηxηy

2
e−(η2

x+η2
y )/4�3 = 2λ, (5)

and then we obtain

Hi = [−λ(a + b)2 + ε]e−iφ0S+ + H.c., (6)

where

ε = e−(η2
x+η2

y )/4�0. (7)
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The evolution of the vibrational modes is independent of the
phase factor e−iφ0 in Eq. (6), which can be set to be 1 in the
calculation of the motional state.

The damping of the vibrational modes is so weak that it
can be disregarded and thus the electronic damping is the
main decaying process [28–31,40,41]. Then the evolution of
the whole system is described by the master equation for the
master operator ρ,

dρ

dt
= −i[Hi, ρ] + �

2
(2S−ρS+ − S+S−ρ − ρS+S−), (8)

where � is the spontaneous decay rate of the excited state of
the ion. In the long time limit, the system will reach the steady
state, satisfying

dρs

dt
= 0. (9)

In the steady state, the ion will be populated in the ground
electronic state |g〉 due to the spontaneous emission. As a con-
sequence, the steady-state solution of the master equation (8)
can be rewritten as

ρs = |g〉〈g| ⊗ |ψ〉〈ψ |, (10)

where |ψ〉 stands for the correlated state of the motions in the
x and y axes. Since the dissipative term has no effect on the
electronic ground state, the condition for the system to reach
the steady state is [Hi, ρs] = 0. This leads to

λ(a + b)2|ψ〉 = ε|ψ〉. (11)

Any combination of the two-mode coherent states |α1〉a|α2〉b
and |−α1〉a|−α2〉b satisfies this equation, where |α1〉a and
|α2〉b are the coherent states for the vibrational modes along
the x and y axes, respectively, with α1 + α2 = √

ε/λ. The
values of α1 and α2 depend on the initial state of the vi-
brational modes. When they are initially in an eigenstate of
the parity operator � = (−1)(a†+b† )(a+b), the two modes re-
main symmetric during the evolution and the two-mode state
components in the steady state are |α〉a|α〉b and |−α〉a|−α〉b,
with α = 1

2

√
ε/λ. We note the operator � commutes with the

system Hamiltonian, so that the parity is conserved during
the process. When the parity is initially even, the vibrational
modes will finally evolve to the even two-mode cat state,

|ψ+〉 = N+(|α〉a|α〉b + |−α〉a|−α〉b ), (12)

where N+ = (2 + 2e−4|α|2 )
−1/2

. On the other hand, for the
odd parity, the steady state corresponds to the two-mode odd
cat state,

|ψ−〉 = N−(|α〉a|α〉b − |−α〉a|−α〉b ), (13)

where N− = (2 − 2e−4|α|2 )
−1/2

. We note that the system
steady state remains unchanged when the dephasing of the
electronic degree of freedom is included in the master equa-
tion. This is due to the fact that this degree of freedom is
finally in the ground state and not affected by dephasing.

III. NUMERICAL SIMULATIONS

To verify the validity of the proposed scheme, we perform
a numerical simulation of the fidelity of the system steady
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FIG. 1. (a) Fidelity of the generated vibrational state to the
expected state as a function of λt with the initial state |g〉|0〉a|0〉b.
The generated vibrational state is calculated by numerically solving
Eq. (14), with the parameters ηx = 0.15, ηy = 0.1, ε = 16λ, � =
100λ, and γa = γb = 0.0005λ. The corresponding expected state
is N+(|α〉a |α〉b + | − α〉a| − α〉b ) with α = 2. The black-solid and
red-dashed lines represent the results with and without consideration
of the dominant higher-order terms of the Hamiltonian, respectively.
(b) Fidelity of the generated vibrational state to the expected state as a
function of λt with the initial state |g〉(|1〉a|0〉b + |0〉a|1〉b )/

√
2. The

corresponding expected state is N−(|α〉a |α〉b − |−α〉a|−α〉b ) with
α = 2. The unit of this figure is λ.

state with respect to the target state. We first suppose that
the target state is an even two-mode cat state |ψ+〉 with
α = 2. To generate such a state, we assume that the two
vibrational modes are initially in the vacuum state |0〉a|0〉b,
and the internal degree of freedom is initially in the ground
state |g〉. With the coupling between the vibrational modes
and the reservoir being included, the master equation is

dρ

dt
= −i[Hi, ρ] + �

2
(2S−ρS+ − S+S−ρ − ρS+S−)

+ γa

2
(2aρa† − a†aρ − ρa†a)

+ γb

2
(2bρb† − b†bρ − ρb†b), (14)

where γa and γb are the decaying rates of the two vibrational
modes, respectively. We set ηx = 0.15, ηy = 0.1, ε = 16λ,
� = 100λ, and γa = γb = 0.0005λ. To verify the validity of
the Lamb-Dicke approximation, here we retain the domi-
nant higher-order terms (j + l = 1) in Eq. (3), so that the
Hamiltonian is

Hi =
[
−λ

(
1 − η2

x

3
a†a

)
a2 − λ

(
1 − η2

y

3
b†b

)
b2

− 2λ

(
1 − η2

x

4
a†a − η2

y

4
b†b

)
ab

+ ε

(
1 − η2

x

2
a†a − η2

y

2
b†b

)]
e−iφ0S+ + H.c. (15)

Figure 1(a) shows the fidelity (black-solid line), defined as
F = 〈ψ+|ρa,b|ψ+〉, as a function of the evolution time, where
ρa,b is the reduced density operator of the two vibrational
modes, obtained by tracing the total system density operator
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FIG. 2. (a) Plane cut of the two-mode Wigner function W (β, χ )
along the Im(β)-Im(χ ) axes for the ideal cat state N+(|α〉a|α〉b +
|−α〉a|−α〉b ) with α = 2. (b) Plane cut of W (β, χ ) along the Im(β)-
Im(χ ) axes obtained by numerically solving Eq. (8) with the initial
state |g〉|0〉a|0〉b. The parameters are the same as those in Fig. 1,
and the dominant higher-order terms in the Hamiltonian are included.
The unit of this figure is λ.

over the internal degree of freedom. The numerical result
shows that the system approaches the steady state when λt �
6.5; at this time the fidelity is F � 0.977. In Fig. 1(b), we
display numerical simulation of the evolution of the fidelity
for the obtained vibrational state to the ideal odd cat state |ψ−〉
with the initial state |g〉(|1〉a|0〉b + |0〉a|1〉b )/

√
2, where |1〉a

and |1〉b denote the one-phonon Fock state for modes a and
b, respectively. In this case the corresponding fidelity is about
F � 0.986 at time λt � 3.5. Compared to the cases without
taking the higher-order terms into consideration (red-dashed
lines), the steady-state fidelities are decreased by only about
0.25%, confirming the validity of the approximation.

To further demonstrate the production of the desired entan-
glement in each steady state, we calculate the corresponding
joint Wigner function of the two bosonic modes, defined
as the joint quasiprobability distribution for these modes in
four-dimensional phase space,

W (β, χ ) = 4

π2
〈Da (β )(−1)a

†aD†
a (β )Db(χ )(−1)b

†bD
†
b(χ )〉,

(16)

where Da (β ) = eβa†−β∗a and Db(χ ) = eχb†−χ∗b are displace-
ment operators for the vibrational modes along the x and y

axes, respectively, with β and χ being complex parameters
which define the coordinates in the joint phase space [24].
The dominant higher-order terms in the Hamiltonian are in-
cluded in the calculation of W (β, χ ). The plane cut of the
Wigner function along the Im(β)-Im(χ ) axes for the ideal
even two-mode cat state with α = 2 is shown in Fig. 2(a),
while that for the steady state obtained with the initial state
|g〉|0〉a|0〉b and the above-mentioned parameters at time λt =
7 is shown in Fig. 2(b). The fringes with alternating positive
and negative values on the Im(β)-Im(χ ) plane cut are the
signatures of quantum interference between the two quasi-
classical components. The plane cuts of the Wigner functions
along the Im(β)-Im(χ ) axes for the ideal odd two-mode cat
state with α = 2 and for the steady state obtained with the
initial state |g〉(|1〉a|0〉b + |0〉a|1〉b )/

√
2 at time λt = 4 are

shown in Figs. 3(a) and 3(b), respectively. As expected, for
each initial state the plane cuts of the Wigner function along

FIG. 3. (a) Plane cut of W (β, χ ) along the Im(β)-Im(χ ) axes
for the ideal cat state N−(|α〉a|α〉b − |−α〉a|−α〉b ) with α = 2. (b)
Plane cut of W (β, χ ) along the Im(β)-Im(χ ) axes for the vibrational
modes obtained by simulating the master equation with the initial
state |g〉(|1〉a|0〉b + |0〉a |1〉b )/

√
2. The parameters are the same as

those in Fig. 1, and the dominant higher-order terms in the Hamilto-
nian are included. The unit of this figure is λ.

the Im(β)-Im(χ ) axes obtained from the steady state are in
good agreement with the result for the ideal cat state, and the
interference features associated with the two initial states are
complementary.

IV. GENERATION OF THREE-MODE CAT STATES

We now turn to the case that the ion is in a three-
dimensional anisotropic trap, with the vibrational frequencies
along the x, y, and z axes being ωx , ωy , and ωz, respec-
tively. The ion is driven by six laser beams of frequencies
ω0 − 2ωx , ω0 − 2ωy , ω0 − 2ωz, ω0 − ωx − ωy , ω0 − ωy −
ωz, ω0 − ωx − ωz, and ω0. The first three laser beams are
aligned along the x and y axes, the fourth is on the x-y plane
and at angle of π/4 to the x axis, the fifth is on the y-z plane
and at an angle of π/4 to the y axis, the sixth is on the x-z
plane and at angle of π/4 to the x axis, and the last one is on
the x-y plane and at an angle of −π/4 to the x axis. In the
rotating-wave approximation, the Hamiltonian for this system
is given by

E+(x, t ) = E1e
−i[(ω0−2ωx )t−k1x] + E2e

−i[(ω0−2ωy )t−k2y]

+E3e
−i[(ω0−2ωy )t−k3z]

+E4e
−i[(ω0−ωx−ωy )t−k4(x+y)/

√
2]

+E5e
−i[(ω0−ωy−ωz )t−k5(y+z)/

√
2]

+E6e
−i[(ω0−ωx−ωz )t−k6(x+z)/

√
2]

+E0e
−i[ω0t−k0(x−y)/

√
2]. (17)

We here have assumed that the phase for each laser beam is 0.
In the resolved sideband limit and in the Lamb-Dicke regime,
the effective Hamiltonian for the system is

Hi =
[

−η2
x

2
e−η2

x/2�1a
2 − η2

y

2
e−η2

y/2�2b
2

− η2
z

2
e−η2

z /2�3c
2 − ηxηy

2
e−(η2

x+η2
y )/4�4ab
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− ηyηz

2
e−(η2

y+η2
z )/4�5bc − ηxηz

2
e−(η2

x+η2
z )/4�6ac

+ e−(η2
x+η2

y )/4�0

]
S+ + H.c., (18)

where c is the annihilation operator for the vibrational mode
along the z axis. We choose the amplitudes of the lasers
appropriately so that

η2
xe

−η2
x/2�1 = η2

ye
−η2

y/2�2 = η2
ze

−η2
z /2�3 = λ,

ηxηye
−(η2

x+η2
y )/4�4 = ηyηze

−(η2
y+η2

z )/4�5

= ηxηze
−(η2

x+η2
z )/4�6 = 2λ, (19)

and then we obtain

Hi = [−λ(a + b + c)2 + ε]S+ + H.c. (20)

When the decaying of the electronic state is included, the
system dynamics is governed by the master equation of form
of Eq. (8). The system steady state is again of the form of
Eq. (10), where |ψ〉 satisfies

λ(a + b + c)2|ψ〉 = ε|ψ〉. (21)

When the vibrational modes are initially in an eigenstate of the
parity operator � = (−1)(a†+b†+c† )(a+b+c), |ψ〉 is a superposi-
tion of |α〉a|α〉b|α〉c and |−α〉a|−α〉b|−α〉c, with α = 1

3

√
ε/λ.

The relative superposition coefficient of the two components
in the steady state depends on the initial parity. When these
modes are initially in the vacuum state |0〉a|0〉b|0〉c, they will
finally evolve to the even three-mode cat state,

|ψ+〉 = N+(|α〉a|α〉b|α〉c + |−α〉a|−α〉b|−α〉c ), (22)

where N+ = (2 + 2e−8|α|2 )
−1/2

. On the other hand,
if the vibrational modes are initially in the state
(|1〉a|0〉b|0〉c + |0〉a|1〉b|0〉c + |0〉a|0〉b|1〉c )/

√
3, the steady

state corresponds to the three-mode odd cat state

|ψ−〉 = N−(|α〉a|α〉b|α〉c − |−α〉a|−α〉b|−α〉c ), (23)

where N− = (2 − 2e−8|α|2 )
−1/2

.

V. SUMMARY

In conclusion, we have proposed a scheme for producing
entangled coherent states of the vibrational modes of an ion
trapped in a two-dimensional anisotropic harmonic well. In
our scheme, the ion is driven by four laser beams, one of
which is used to directly couple the two electronic states,
while the others serve for coupling the electronic transition
with the vibrational modes. In the Lamb-Dicke limit and with
appropriate setting of the laser parameters, the combination
of the unitary dynamics and spontaneous emission will evolve
the system to a steady state given by the product of the
electronic ground state with a two-mode vibrational state.
When the two vibrational modes are initially in a Fock state,
their steady state corresponds to a cat state. Numerical simula-
tions confirm the validity of the proposed scheme. We further
show that the method can be generalized to realization of
three-mode cat states for an ion trapped in a two-dimensional
anisotropic harmonic well. We note the idea may also be
applied to generation and stabilization of entangled coherent
states for two cavity modes by coupling them to an atom or an
artificial atom.
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