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Gaussian boson sampling for perfect matchings of arbitrary graphs
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A famously hard graph problem with a broad range of applications is computing the number of perfect
matchings, that is, the number of unique and complete pairings of the vertices of a graph. We propose a method
to estimate the number of perfect matchings of undirected graphs based on the relation between Gaussian boson
sampling and graph theory. The probability of measuring zero or one photons in each output mode is directly
related to the hafnian of the adjacency matrix, and thus to the number of perfect matchings of a graph. We present
encodings of the adjacency matrix of a graph into a Gaussian state and show strategies to boost the sampling
success probability for the studied graphs. With our method, a Gaussian boson sampling device can be used to
estimate the number of perfect matchings significantly faster and with lower-energy consumption compared to a
classical computer.
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I. INTRODUCTION

Graphs appear in a variety of situations, ranging from
computer science and the physical sciences to economics and
social sciences [1–3]. For example, graphs model the flow
of computation in an algorithm, the structure of a molecule,
or the molecular graph of a photosynthetic light-harvesting
organism [4], the supply chain of an online retailer, or the
network of people on social media. Graphs consist of vertices
representing people, atoms, or warehouses, and edges repre-
senting connections between the vertices. Solving problems on
graphs can help identifying highly connected influencers in a
social network, improving the efficiency of solar cells [5], or
reducing the time until a customer receives an online order.

Common computational problems on graphs involve find-
ing subgraphs with defined properties such as high connectivity
(cliques), routing problems such as the traveling salesman
problem, network flow problems, or the coloring of graphs [6].
Many graph problems are easy to solve, that is the algorithms
that solve them run in time that is at most a polynomial in the
number of vertices and edges. For example, the shortest path in
a graph or the maximum matching in a graph can be solved in
polynomial time. Other problems are famously hard to solve
[7], with algorithms running in a time that is exponential in
the number of vertices and/or edges. Examples include the
NP-complete clique and traveling salesman problems.

Quantum algorithms promise to solve certain problems
much faster than classical algorithms [8]. Recently, it was
discovered that the output probability distribution of photons
from a multiport whose input is a Gaussian squeezed state [9]
depends on the hafnian of a sampling matrix. The method,
called Gaussian boson sampling, is a natural generalization
of the original photonic boson sampling [10], and its modi-
fications [11–14], where single photons or vacuum are input
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states of a linear interferometer. The hafnian was introduced
in the context of interacting quantum field theory [15] and
belongs to the class of matrix functions together with the
permanent, Pfaffian, or determinant [16]. Unlike the latter two
functions, the permanent and the hafnian are believed to be hard
to calculate since they belong to the #P-complete complexity
class and both functions (the permanent in particular) have
been studied in detail [17–24]. The class #P involves counting
problems such as how many solutions exist to a given problem
in the class NP.

The hafnian plays an important role in physics and chem-
istry. For example, the partition function of the Ising model
is related to the hafnian of some graph [25–27], therefore,
the partition function, as well as other important physical
quantities, can be obtained by estimating the hafnian. Applica-
tions of hafnian are also found in chemistry: examples include
simulating the vibronic spectra of molecues [12], discovering
the Kekulé structure [28,29], and Hosoya index [30].

In this work, we connect Gaussian boson sampling to
graph theory in order to tackle graph problems that involve
the number of perfect matchings [31,32]. This connection
is based on the fact that the number of perfect matchings
of an undirected graph equals to the hafnian of the graph’s
adjacency matrix. We propose an efficient way to embed
an arbitrary adjacency matrix into a valid Gaussian state.
The desired Gaussian state can be generated by injecting
thermal states or vacuum states into a circuit consisting of
single-mode squeezers and a multiport. The information of the
required input states, single-mode squeezers and the multiport
is completely determined by the adjacency matrix. Thus, the
whole procedure is programmable and is straightforward to
implement, and therefore can allow the estimation of the
number of perfect matchings in arbitrary graphs. Promisingly,
by appropriate rescaling of the problem and linearly increasing
the size of the circuit we can substantially improve the sampling
success probability. We demonstrate our methods for the spe-
cial cases of complete graphs and one-edge-removed complete
graphs.
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FIG. 1. (a) Complete graph of four vertices. (b) Three perfect
matchings of the four-vertex complete graph.

This paper is organized as follows. Section II summarizes
the main results. We first discuss embedding an adjacency
matrix into a mixed or pure Gaussian state, and connect the haf-
nian of the adjacency matrix to the measurement probability.
We then discuss the hardness of estimating the hafnian using
Gaussian boson sampling and propose strategies to amplify the
measurement probability. We finally discuss a complete graph
example to illustrate the validity of the method. We conclude
in Sec. III.

II. RESULTS

A. Gaussian boson sampling and hafnian

As shown in [9], the output probability distribution of
photons from the multiport with a Gaussian input state is
related to the hafnian. In particular, the authors showed that the
probability of the photon-number distribution, with no more
than one photon in each output mode, is related to the hafnian
of the submatrices of a matrix A, derived from the Gaussian
covariance matrices σA. For an arbitrary M-mode Gaussian
state, A is related to σA via [9]

A = X2M [I2M − (σA + I2M/2)−1], (1)

where I2M is the identity matrix and X2M is defined as X2M =[ 0 IM

IM 0

]
. In more detail, assume that n = ⊗M

j |nj 〉〈nj | rep-
resents a certain measurement pattern of photons, where nj is
the photon number in the j th mode. In the case nj = {0, 1},
the measurement probability is given by [9]

Pr(n̄) = 1

n̄!
√

det σQ

haf AS, (2)

where n̄ = n1!n2! . . . nM !, σQ ≡ σA + I2M/2, and AS is the
submatrix of A determined by the position of the output modes
registering single photons. In particular, finding the probability
of detecting a single photon in every output mode corresponds
to estimating the hafnian of the full matrix A.

A perfect matching of a graph is when every vertex of
the graph is matched up with a single unique other vertex.
Often, there are multiple ways of perfectly matching vertices,
as demonstrated for a small example in Fig. 1. Estimating the
number of such perfect matchings is known to be difficult
for a classical computer as the size of the graph increases
[22,33]. It is also known that the number of perfect matchings is
equal to the hafnian of a graph’s adjacency matrix. Motivated
from Eq. (2), we ask whether it is possible to estimate the
number of perfect matchings via measuring the probability of
the photon-number distribution.

The key result of this work is to map general graphs to the
optical setup of Gaussian boson sampling. We start first with

inverting Eq. (1) as

σA = (I2M − X2MA)−1 − I2M

2
. (3)

Given this relation, a naive idea is to consider A as the
adjacency matrix of a graph and insert it into Eq. (3) to find
the corresponding covariance matrix. Unfortunately, this fails
because a general adjacency matrix does not map to a valid
covariance matrix through Eq. (3). An adjacency matrix is
a real symmetric matrix and has entries either zero or one.
The hafnian of a large size adjacency matrix is usually a
large number, e.g., a complete graph with 2M vertices has
(2M − 1)!! perfect matchings. Intuitively, Eq. (2) does not
hold if A is simply regarded as an adjacency matrix because
the probability is a number smaller than one. To make things
reasonable, one has to rescale the adjacency matrix by a small
number.

We develop a systematic method to map an arbitrary
adjacency matrix of an undirected graph to a valid covariance
matrix of a Gaussian state (see Appendix A for details). We
associate the number of perfect matchings with the proba-
bility of a photon-number distribution. A covariance matrix
is by its nature a Hermitian and positive-definite matrix, and
satisfies the uncertainty principle [34]. Following these three
constraints, we vary an arbitrary adjacency matrix such that it
maps to a valid covariance matrix.

B. Sampling mixed Gaussian covariance matrices

Here, we discuss the conditions under which we can map
a graph adjacency matrix A to a mixed Gaussian covariance
matrix. A 2M × 2M adjacency matrix A can be written in a
block form, with four M × M submatrices A11, A12, A21, and
A22. If these submatrices satisfy the following conditions (1)
A11 = A22 and A12 = A21, (2) A11 commutes with A12, (3) A12

is positive definite, then cA maps to a valid covariance matrix
σcA via Eq. (3), where c is a rescaling parameter satisfying 0 <

c < 1/λ1 and λ1 is the maximal eigenvalue of A. Generally,
σcA is an M-mode mixed Gaussian covariance matrix. This
can be seen from its symplectic eigenvalues [35] (see also
Appendix D), given by

νk = 1

2

√
(1 + chk )2 − c2f 2

k

(1 − chk )2 − c2f 2
k

� 1

2
, k = 1, 2, . . . , M (4)

where fk and hk are eigenvalues of A11 and A12, respectively.
Note that fk ± hk are eigenvalues of the adjacency matrix A.
A Gaussian state is pure if νk = 1

2 for all k [35]. From Eq. (4),
this happens when all eigenvalues of A12 are zero, namely,
A12 = 0.

Preparing a general mixed Gaussian state is not usually
an easy task. According to Williamson’s theorem [36], a
covariance matrix can be put into a diagonal form by a
symplectic transformation. The symplectic transformation can
be further decomposed into a product of an orthogonal matrix
K , a direct sum of M single-mode squeezing matrices, and
another orthogonal matrix L. This implies a mixed Gaussian
state can be generated by injecting single-mode thermal states
(or vacuum) into an M-mode linear optics network L, passing
through M single-mode squeezers and then another linear
optics network K .
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FIG. 2. (M + N )-mode circuit that generates M-mode mixed
Gaussian covariance matrices σcA. N input thermal states are gen-
erated by tracing out the other N modes of N two-mode squeezed
vacuum states with squeezing parameters ξk . Then, N single-mode
squeezers squeeze the thermal states and the other (M − N ) single-
mode squeezers with squeezing parameters rk squeeze the vacua.
Photon-number detectors measure the state after the linear optics
network K .

We observe that to produce the covariance matrix σcA, the
orthogonal matrix L can be set to an identity. Therefore, the
state before entering the linear optics network K is a product
of squeezed thermal states or squeezed vacuum states. The
thermal state is completely characterized by the symplectic
eigenvalues νk [Eq. (4)], which is dependent on the property
of the adjacency matrix A and the rescaling number c. The
squeezing parameters rk of M single-mode squeezers are
also determined by the adjacency matrix and c from e4rk =
(1+c|fk |)2−c2h2

k

(1−c|fk |)2−c2h2
k

. A single-mode thermal state can be purified
with another thermal state, forming a pure two-mode squeezed
state. The two-mode squeezing parameter ξk is related to the
symplectic eigenvalue νk via 2νk = cosh [2ξk]. Suppose that
A12 has N nonzero eigenvalues, then N of the M input modes
should be injected by thermal states and others by vacuum
states. To purify the N thermal states, we introduce N two-
mode squeezers which squeeze the vacuum. The (M + N )-
mode circuit that can produce a M-mode mixed Gaussian state
is shown in Fig. 2.

If we already prepared the state σcA via the circuit in Fig. 2,
we then detect all output modes and evaluate the probability
of detecting a single photon in every output mode in order to
sample the full adjacency matrix. The probability is related to
the hafnian of the adjacency matrix A by

PrcA(1, . . . , 1︸ ︷︷ ︸
M

)

=
M∏

k=1

√
[1 − c(fk + hk )][1 + c(fk − hk )] cM haf A. (5)

Therefore, we can obtain the hafnian of A once we know the
probability.

C. Sampling pure Gaussian covariance matrices

Generally, an adjacency matrix does not satisfy the three
conditions discussed in Sec. II B and thus does not map to a

FIG. 3. 2M-mode canonical circuit that generates pure Gaussian
covariance matrices σcA⊕2 . 2M single-mode squeezed states are
injected into a linear optics networkK to produce the target covariance
matrix. The squeezing parameters rk (rk could be zero and corresponds
to a vacuum input) are completely determined by the eigenvalues of
the adjacency matrix A and the rescaling parameter c. In the output,
2M photon-number detectors count the photon number and evaluate
the probability of measuring a single photon in every output mode.

mixed Gaussian covariance matrix. The strategy to overcome
this difficulty is to embed A into a bigger adjacency matrix
which can be mapped to a valid covariance matrix. While there
are many ways to do that, one straightforward way is to take
two copies of the desired adjacency matrix A and consider a
new adjacency matrix A⊕2 = A ⊕ A instead. In this case, the
new adjacency matrix satisfies the three conditions in Sec. II B
and more importantly it maps to a pure Gaussian covariance
matrix σcA⊕2 (see Appendix A). A pure Gaussian covariance
matrix is easier to prepare than a mixed one. The price we
have to pay is to double the number of modes, which means
the circuit would be twice as large.

As a special case of the decomposition shown in Fig. 2,
a pure Gaussian covariance matrix can be produced by
injecting single-mode squeezed states (or vacuum) into a
linear optics network. The squeezing parameter rk of the
kth input single-mode squeezed state is determined by the
eigenvalues of the adjacency matrix A and the rescaling
parameter c as e2rk = (1 + c|λk|)/(1 − c|λk|), where λk are
the eigenvalues of the adjacency matrix A. Therefore, given
an adjacency matrix we can immediately determine the input
squeezed states and the linear optics network according to the
Euler decomposition, as shown in Fig. 3. We then detect the
output state and evaluate the probability of measuring a single
photon in each output mode. The hafnian of the adjacency
matrix A is related to the probability via

PrcA⊕2 (1, . . . , 1︸ ︷︷ ︸
2M

) =
2M∏
k=1

√
1 − c2λ2

k c2M haf2 A . (6)

D. Scalability

The magnitude of the sampling probability determines
the hardness of performing the experiment, e.g., a lower
probability will take a longer time to collect the data. We find
that the sampling probability depends on the eigenvalues of
the adjacency matrix, as well as the rescaling parameter c (see
Appendix B). In general, c is smaller than one so the probability
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exponentially decreases as the size of the adjacency matrix
increases. To have an optimal probability, one has to increase
the value of c. However, c is restricted by 0 < c < 1/λ1, so
the best one can do is to make c as close as possible to 1/λ1.
The value of c is critical in terms of how tractable the problem
becomes due to the exponential scaling. Such an effect is not
unexpected. We probably cannot hope for an efficient quantum
algorithm to count the number of perfect matchings for all
graphs as a function of the graph size and connectedness.
However, the way it manifests itself is intriguing.

The largest graph eigenvalue appears to be determining
the hardness of sampling the corresponding covariance matrix
(see the conjecture in Appendix C). Note that spectral graph
theory [37] is a rich field and the largest eigenvalue of the
graph’s adjacency matrix can play an important role [38].
Based on these insights, we can further “hack” the adjacency
matrix by (i) decreasing the maximal eigenvalue such that the
matrix’s hafnian remains the same, or (ii) back-calculating
the hafnian from multiple equivalent sampling probabilities.
A more exhaustive list of possible improvements will be the
subject of future work.

The first strategy is to add or subtract a diagonal matrix to the
adjacency matrixA, e.g., A → A + d I, which does not change
the hafnian since self-loops are irrelevant for the number of
perfect matchings. This modification may result in a negative
matrix and, correspondingly, we need to modify the constraint
of c to be 0 < c < 1/|λ1| (see Appendix C for details).

The second strategy is to extend the adjacency matrix A

of size 2M and create a bigger adjacency matrix A of size
2nM , where n is an integer (see Appendix E for details). A
is chosen such that it has many submatrices that are equal
to the adjacency matrix A. Since each of these submatrices
is related to the hafnian of the adjacency matrix A, we can
sum up all the probabilities corresponding to sampling one of
these submatrices. The amplification of the total probability is
achieved. The price we have to pay is an increase in the number
of modes n times.

E. Example: Complete graphs

To illustrate the method we have developed, consider a con-
crete example: estimating the number of perfect matchings of a
complete graph by sampling the probability of photon-number
distribution. Note that the number of perfect matchings in
complete graphs is given by an analytical expression. However,
in this section we consider the case of complete graphs to
illustrate our methods for scalabilty. Furthermore, in Appendix
E 2, we give an explicit example of a noncomplete graph. For a
complete graph with 2M vertices, denoted as K2M , all vertices
are connected to each other and all entries of its adjacency
matrix AK2M

are one except the diagonal elements. The number
of perfect matchings is known to be (2M − 1)!!. We estimate
the magnitude of the probability and the hardness of sampling.

According to the conditions discussed in Sec. II B, the
adjacency matrix of a complete graph maps to a mixed
covariance matrix. It is then straightforward to calculate the
probability by using Eq. (5) and the number of perfect match-
ings. The rescaling parameter c can be chosen to maximize
the probability. We can also modify the adjacency matrix by
subtracting a diagonal matrix to reduce the absolute value of

FIG. 4. The probability of photon measurement for the complete
graph on 20 vertices as a function of the rescaling parameter c, defined
by AK20 → cAK20 , where AK20 is the graph’s adjacency matrix. The
black curve corresponds to original adjacency matrix and the dashed
orange curve corresponds to modifying the adjacency matrix as
AK20 → AK20 − 6 I20.

the maximal eigenvalue. The results for a 20-vertex complete
graph are shown in Fig. 4. Modifying the adjacency matrix
significantly increases the probability.

We can also take two copies of the adjacency matrix AK2M

and sample a 2M-mode pure Gaussian covariance matrix.
However, we found that this is not optimal for complete
graphs. In fact, we can extend K2M to a bigger complete
graph K2nM . We take two copies of AK2nM

, subtract a diagonal
matrix to AK2nM

⊕ AK2nM
, and then sample a 2nM-mode pure

covariance matrix. To relate to the hafnian of K2M , we have
to consider the probability of measuring single photons in
2M modes and zero photons in the other modes. The total
probability increases because we have

(2nM

2M

)
ways of selecting

2M modes from 2nM modes. The price we have to pay is to
increase the size of the circuit.

We find that the maximal squeezing that is required
to achieve maximal measurement probability as a func-
tion of the size of a complete graph is given by

FIG. 5. The maximum squeezing that is required to achieve the
maximal measurement probability as a function of graph size 2M . We
assume that a complete graph K2M is embedded in a bigger complete
graph K2nM with n = 16. Optimal rescaling factors are chosen to
obtain the maximum probability.
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FIG. 6. The maximum measurement probability as a function of
the amount of squeezing for different graph sizes 2M . Here, we
assume that a complete graph K2M is embedded in a bigger complete
graph K2nM with n = 16. Optimal rescaling factors are chosen to
obtain the maximum probability.

10 log10 [
√

(2m+1)(n+1)+√
2m(n+1)−1√

(2m+1)(n+1)−√
2m(n+1)−1

] dB. Figure 5 shows an

example for n = 16. It can be seen that even for a relatively
small-size graph, the amount of squeezing is demanding. From
an experimental perspective, it is interesting to know how much
probability one can achieve for a limited amount of squeezing.
Figure 6 shows the measurement probability as a function of
the squeezing for a given complete graph. It can be seen that for
a moderate amount of squeezing, e.g., 10 dB, the probability
can go up to about 10−5 for a complete graph with 40 vertices,
and therefore can be sampled in a very short time. Currently,
one has access to gigahertz detectors, which means sampling
at a rate of 104 per second, where the longer the sampling time
the higher the accuracy one can achieve.

Surprisingly, we find that the discussed strategies can
significantly increase the sampling probability for an extremely
large complete graph (for a complete graph with one edge

FIG. 7. The probability of photon measurement for the complete
graph of 5000 vertices. Here, c is the rescaling parameter for the
adjacency matrix and d is the scaling factor for subtracting the identity
matrix from the adjacency matrix (see also Appendix E). These
rescalings correspond to the same graph in terms of perfect matchings
but make the probability of detection more favorable. The vertical axis
shows the probability.

removed as well). Figure 7 shows an example for a complete
graph on 5000 vertices. The maximal probability can go up to
about 4×10−5. The number of modes required to achieve this
high probability is 320 000 (n = 64). Such a large circuit is
challenging for current technologies: the maximal squeezing
that is required to achieve the maximal probability is about
42.94 dB while the current record for squeezing is below 15 dB
[39,40]. However, without this procedure the sampling of a
well-connected graph with more than 100 vertices would be
hopelessly unlikely.

III. CONCLUSION

In this work, we have shown how to use a quantum device
of squeezed states, optical interferometer, and photon-counting
measurements to estimate an important, and classically hard
to compute, property of arbitrary graphs. Based on the relation
between Gaussian boson sampling and graph theory, we
developed a systematic and programmable method to map
an arbitrary adjacency matrix of an undirected graph to a
continuous-variable Gaussian state. The number of perfect
matchings of the graph can be directly estimated by sampling
the photon-number distribution of the Gaussian state. The
resources (input states and circuit) required to produce the
desired Gaussian state are completely determined by the adja-
cency matrix and its variants. Although the sampling probabil-
ity decreases exponentially as the size of the graph increases,
we have shown strategies to boost it for the studied graphs to
reasonably high values by a suitable rescaling of the adjacency
matrix and by linearly increasing the size of the circuit.

Estimating the number of perfect matchings of a large
general graph is difficult for a classical computer. As a conse-
quence of the problem of counting the perfect matchings being
in the complexity class #P, we expect the time to reach an exact
solution to be exponential in the size of the graph on any phys-
ical device. We note that the computational hardness of boson
sampling was conjectured via an embedding of Gaussian ran-
dom matrices into larger random unitary ensembles [10]. We
conjecture that there exist graphs that correspond to important
applications such as logistics, social networks, or chemistry
and that show a quantum speedup. While exponential speedups
could be possible for certain graphs, we expect that a special
purpose quantum device offers a direct route to estimate the
number of perfect matchings with better practical performance
than a general purpose classical computer. Thus, the method
we have developed may be used to achieve such a task faster
and with lower energy consumption using a relatively small
photonic device instead of a massive supercomputer.
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APPENDIX A: MAP AN ADJACENCY MATRIX
TO A COVARIANCE MATRIX

The hafnian of a matrix is defined as follows:
Definition 1. Let A = (aij ) be a 2M × 2M matrix and let

ς denote a partition of the set (1, . . . , 2M ) into unordered
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disjoint pairs. There are (2M − 1)!! different such partitions.
Then,

haf A =
∑

ς

M∏
i=1

aς (2i−1)ς (2i) (A1)

is the short hafnian.
Remark. The nomenclature comes from [41]. The definition

coincides for symmetric 0-1 matrices and the prescription
from [9] yields the short hafnian. Following [9], the hafnian
can be obtained by sampling the output probability distribution
of photons coming out from the multiport whose input is a
Gaussian squeezed state. The relation between the covariance
matrix σA and the sampling matrix A is given by Eq. (1).
Here, the covariance matrix is defined in the operator basis
ξ = (a1, . . . , aM, a

†
1, . . . , a

†
M ):

σA(i, j ) ≡ 1

2
〈{ξi, ξ

†
j }〉, (A2)

where {. . . , . . .} stands for the anticommutator and we assume
no displacements. The basis ξ will be called the Heisenberg
basis in this paper. Another operator basis used here will be
called quadrature basis defined as ξ̃ = (x1, p1, . . . , xM, pM ).
The two bases are related by [35]

aj = 1√
2

(xj + ipj ), (A3a)

a
†
j = 1√

2
(xj − ipj ). (A3b)

In the quadrature basis, the covariance matrix σ̃A is
defined as

σ̃A(i, j ) ≡ 1
2 〈{ξ̃i , ξ̃

†
j }〉. (A4)

A symplectic operation in both the quadrature and Heisen-
berg basis preserves the symplectic form [35]

� =
M⊕

j=1

ωj ≡
M⊕

j=1

[
0 1

−1 0

]
. (A5)

Our particular interest is in developing a procedure to calculate
the hafnian of an arbitrary adjacency matrix A by mapping it
to a valid covariance matrix and then sampling the photon-
number distribution. However, unless by a chance, a general A

does not map to a physical Gaussian covariance matrix by (3)
since a covariance matrix in the Heisenberg basis has to be
Hermitian (it is real if the adjacency matrix is real), positive-
definite, and satisfies the uncertainty principle [34], namely,

σA + 1
2Z2M � 0, (A6)

where Z2M is defined in the Heisenberg basis as

Z2M =
[
IM 0
0 −IM

]
. (A7)

We show in the following what conditions A has to be
satisfied to guarantee a valid covariance matrix.

Lemma 1. Let the block form of a 2M × 2M real symmet-
ric matrix A be

A =
[
A11 A12

A21 A22

]
. (A8)

Then, I2M − X2MA is symmetric if the square submatrices Aij

of dimension M satisfy A12 = A21 and A22 = A�
11.

Proof. By imposing symmetry on

X2MA =
[
A21 A22

A11 A12

]
we immediately find the submatrix equalities. The difference
of two symmetric matrices is symmetric. �

Corollary 1. Let A be symmetric and satisfy the conditions
of Lemma 1. Then, [X2M,A] = 0.

Proof. As X2MA is symmetric as in Lemma 1, note that if
a product of two symmetric matrices is symmetric then they
commute. �

Theorem 1. Let A be a 2M × 2M real symmetric matrix
and assume that X2MA is also symmetric. Then, σA > 0 iff the
eigenvalues λk of A satisfy |λk| < 1, ∀ k.

Remark. One can show that (I2M − X2MA)−1 is symmetric
if I2M − X2MA is, and therefore σA is symmetric (and Hermi-
tian) from (1). In Lemma 1 we show which A’s it holds for, but
it is still a rather special condition on an adjacency matrix A. In
the following, we will show how to overcome these limitations.

Proof. By writing the second identity matrix in (1) as

I2M = (I2M − X2MA)(I2M − X2MA)−1

= (I2M − X2MA)−1(I2M − X2MA),

we can express σA as

σA = 1
2 (I2M + X2MA)(I2M − X2MA)−1

= 1
2 (I2M − X2MA)−1(I2M + X2MA). (A9)

It is known [42] that two matrices are simultaneously diag-
onalizable iff they commute. From Corollary 1, X2M and A

commute, therefore, they can be diagonalized simultaneously
by an orthogonal matrix and the eigenvalues of X2MA, labeled
as λX

k , are the products of eigenvalues of X2M and A. Since
the eigenvalues of X2M are either +1 or −1, the eigenvalues
of X2MA satisfy |λX

k | = |λk|.
From (A9), the orthogonal matrix that diagonalizes X2MA

also diagonalizes σA, giving eigenvalues

λσ
k = 1

2

(
1 + λX

k

1 − λX
k

)
. (A10)

Therefore, λσ
k > 0 iff |λX

k | < 1, namely, σA > 0 iff |λk| <

1, ∀ k. �
Definition 2. A matrix A = (aij ) is non-negative if

∀ i, j aij � 0.
Theorem 2 (Perron-Frobenius [42]). Let A be non-negative

and irreducible and let λ1 be the largest eigenvalue of A. Then,
λ1 is positive and λ1 � |λj |, ∀ j .

Proposition 1. Let submatrices A11 and A12 in (A8) be
symmetric and let λ1 be the largest eigenvalue of A. Then,
σcA > 0 for 0 < c < 1/λ1.

Proof. From Theorem 2 and the assumption 0 < c < 1/λ1,
the maximum eigenvalue of cA is positive and smaller than
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one, and eigenvalues λ′
k = c|λk| of cA satisfy 0 < λ′

k < 1,∀k.
According to Theorem 1, we have σcA > 0. �

Let A be the adjacency matrix of an undirected graph [6].
Then, in general, we do not get a valid covariance matrix
from Eq. (1). If X2MA is symmetric we can use Proposition 1
and rescale A �→ cA such that σcA > 0. Although a Hermitian
and positive-definite σcA does not guarantee a valid covariance
matrix, we will see in the following that σcA does represent a
covariance matrix for some of the adjacency matrices A.

Lemma 2. Let A11 and A12 commute, then σcA is a valid
covariance matrix if A12 � 0.

Proof. If A11 and A12 commute, there exists an orthogonal
matrix S that diagonalizes A11 and A12 simultaneously,

SA11S
� = diag [f1, f2, . . . , fM ], (A11a)

SA12S
� = diag [h1, h2, . . . , hM ], (A11b)

where fk and hk are the eigenvalues of A11 and A12, respec-
tively. Then, we find

(S ⊕ S) A (S� ⊕ S�) =
[⊕M

k=1 fk

⊕M
k=1 hk⊕M

k=1 hk

⊕M
k=1 fk

]
(A12)

and it is obvious that fk ± hk are eigenvalues of A. From (3),
the transformation of σcA is

(S ⊕ S) σcA (S� ⊕ S�)

=
⎡
⎣ 1

2

⊕M
k=1

1−c2h2
k+c2f 2

k

(1−chk )2−c2f 2
k

⊕M
k=1

cfk

(1−chk )2−c2f 2
k⊕M

k=1
cfk

(1−chk )2−c2f 2
k

1
2

⊕M
k=1

1−c2h2
k+c2f 2

k

(1−chk )2−c2f 2
k

⎤
⎦.

(A13)

The eigenvalues of σcA can be calculated as

spec σcA = 1

2

[
1 + c(hk + fk )

1 − c(hk + fk )
,

1 + c(hk − fk )

1 − c(hk − fk )

]
(A14)

for k = 1, 2, . . . , M . Note that Z2M is invariant,

(S ⊕ S) Z2M (S� ⊕ S�) = Z2M.

Therefore, we have

(S ⊕ S) (Z2MσcA) (S� ⊕ S�)

= Z2M (S ⊕ S) σcA (S� ⊕ S�)

=
⎡
⎣ 1

2

⊕M
k=1

1−c2h2
k+c2f 2

k

(1−chk )2−c2f 2
k

⊕M
k=1

cfk

(1−chk )2−c2f 2
k

−⊕M
k=1

cfk

(1−chk )2−c2f 2
k

− 1
2

⊕M
k=1

1−c2h2
k+c2f 2

k

(1−chk )2−c2f 2
k

⎤
⎦.

(A15)

We then can find the symplectic eigenvalues of σcA (the
eigenvalues of |Z2MσcA|) as

νk = 1

2

√
(1 + chk )2 − c2f 2

k

(1 − chk )2 − c2f 2
k

. (A16)

Hence, hk � 0 in order to satisfy νk � 1
2 . �

Remark. The covariance matrix is pure only when all
eigenvalues of A12 are zero, which means A12 = 0 and A is in
a block-diagonal form. In the case when some eigenvalues of
A12 are positive, the Gaussian state is mixed.

When σcA is a valid covariance matrix, we recover haf A

from haf [cA] via Lemma 3.
Lemma 3. Let c ∈ R. Then, haf [cA] = cM haf A where

dim A = 2M .
Proof. Follows directly from Eq. (A1). �
The analysis can be extended to non-negative matrices. At

first, this may be a surprising move as the adjacency matrix
of an undirected graph has no negative entries. But as long
as the hafnian of such a matrix coincides with the hafnian
of the desired adjacency matrix (or can be used to find it in
an efficient way) and the corresponding covariance matrix is
more advantageous (that will be the case) we can consider
it. We will discuss such modifications in Appendix C, but in
general we will assume that the requirements on the modified
A in Lemma 1, Corollary 1, and Theorem 1 are satisfied.
But, since we allowed A to be negative, its eigenvalues may
become negative and Proposition 1 must be strengthened. This
is because it cannot rely on Perron-Frobenius theorem. But, the
modification is just cosmetic. As before, we get 0 < c < 1/λ1

in Proposition 1 but now λ1 is the maximal absolute eigenvalue
of X2MA, which on the other hand, equals to the maximal
absolute value of the eigenvalues of A. This is because the
multiplication by X2M at most changes the signs of some of
the eigenvalues of A.

Even if the covariance matrix is positive-definite and
Hermitian or symmetric, it may not be a valid Gaussian
covariance matrix. Every covariance matrix has to satisfy the
uncertainty inequality [34] which translates into the symplectic
eigenvalues being greater than one half [see Eq. (A6)]. Remark-
ably, we can take care of this issue by doubling the dimension of
the adjacency matrix and the corresponding covariance matrix
turns out to be a pure state. As we will see, this procedure is
a panacea of a sort: so far, we considered only cases where
X2MA is symmetric. If it is not the case, and this can routinely
happen for legitimate adjacency matrices or its modification in
the sense of the previous paragraph, the doubling prescription
makes the covariance matrix pure as well. Therefore, it works
for all adjacency matrices. If X2M and A do not commute,
then again 0 < c < 1/λ1 holds and λ1 is the maximal absolute
eigenvalue of X2MA but it may not be directly related to the
eigenvalues of A.

Lemma 4. Let (V1, E1) and (V2, E2) denote graphs
with adjacency matrices A1, A2. Then, haf [A1 ⊕ A2] =
haf A1 haf A2.

Proof. The adjacency matrix of (V1, E1) ∪ (V2, E2) is A1 ⊕
A2. Count the number of perfect matchings for both of them.
As they are independent, the total number of perfect matchings
of A is their product. �

Hence, the proposal is to take two copies of the de-
sired adjacency matrix A and consider A⊕2 = A ⊕ A instead.
We not only get the needed block-diagonal form [9] but
also A⊕2

12 = A⊕2
21 and A⊕2

22 = (A⊕2
11 )� are satisfied. By fur-

ther using Proposition 1 and multiplying by 0 < c < 1/λ1,
we get a valid covariance matrix σcA⊕2 . Since dim σcA⊕2 =
4M , it is a state given by the canonical 2M-mode cir-
cuit (2M single-mode squeezers followed by a multi-
port), thus merely doubling the number of modes for any
M .

Lemma 5. Let A be an adjacency matrix of a graph. The
covariance matrix σcA⊕2 constructed from c(A ⊕ A) represents
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a pure Gaussian state if c is positive and smaller than the
maximal eigenvalue of A.

Proof. The conclusion directly follows from the proof of
Lemma 2. �

Since the state is pure, σcA⊕2 can be decomposed as

σcA⊕2 = RσinR
�. (A17)

Here, σin written in the quadrature basis represents an in-
put pure covariance matrix of M-independent single-mode
squeezed states:

σin = diag

[
1

2

(
1 + c|λ1|
1 − c|λ1|

)
,

1

2

(
1 − c|λ1|
1 + c|λ1|

)
, . . . ,

1

2

(
1 + c|λ2M |
1 − c|λ2M |

)
,

1

2

(
1 − c|λ2M |
1 + c|λ2M |

)]
. (A18)

The amount of squeezing in each mode can be determined by

e2rk = 1 + c|λk|
1 − c|λk| , (A19)

where rk is the squeezing parameter in the kth mode. Note
that if λk = 0, then rk = 0, corresponding to a vacuum state.
When c → 1/λ1, the maximum squeezing parameter r1 →
∞, corresponding to an infinitely squeezed state. R is an
orthogonal symplectic matrix and can be implemented as a
multimode passive interferometer. Therefore, a pure Gaussian
state with covariance matrix σcA⊕2 can be generated by an array
of single-mode squeezed states or vacuum states followed by
a sequence of beam splitters and phases shifts.

APPENDIX B: SAMPLING THE GAUSSIAN
COVARIANCE MATRIX

1. Pure Gaussian covariance matrices

Our main goal in this paper is to estimate the hafnian of
an arbitrary adjacency matrix by sampling the photon-number
distribution of a certain Gaussian state. The procedure to
calculate the hafnian of an adjacency matrix is as follows:
(a) find a corresponding covariance matrix of c(A ⊕ A), (b)
construct an optical circuit to generate the Gaussian state,
(c) sample the output photons and find the probability of the
pattern with single photon in each output mode, (d) derive the
hafnian via the relation

PrcA⊕2 (1, . . . , 1︸ ︷︷ ︸
2M

) =
2M∏
k=1

√
1 − c2λ2

k haf [c(A ⊕ A)]

=
2M∏
k=1

√
1 − c2λ2

k c2M haf2 A, (B1)

namely, the hafnian is

haf A = c−M
√

PrcA⊕2 (1, . . . , 1)
2M∏
k=1

(
1 − c2λ2

k

)−1/4
, (B2)

where we have used the fact that n̄! = 1 and det σQ can
be easily calculated using the eigenvalues of the covariance
matrix.

2. Mixed Gaussian covariance matrices

According to Lemma 2, there exists a nontrivial class of
adjacency matrices A whose covariance matrix σcA represents
a legitimate Gaussian mixed state. From (A14), it is easy to
find the eigenvalues of σQ = σcA + I2M/2,

spec σQ =
[

1

1 − c(fk + hk )
,

1

1 + c(fk − hk )

]
, (B3)

for k = 1, 2, . . . , M . Therefore, the determinant of σQ is

det σQ =
M∏

k=1

1

[1 − c(fk + hk )][1 + c(fk − hk )]
. (B4)

By using Eq. (2), the probability of measuring one photon in
each output mode is

PrcA(1, . . . , 1︸ ︷︷ ︸
M

)

=
M∏

k=1

√
[1 − c(fk + hk )][1 + c(fk − hk )] cM haf A.

(B5)

APPENDIX C: SCALABILITY HACKS

The largest graph eigenvalue seems to be determining the
hardness of sampling the corresponding covariance matrix. We
are thus led to the following hypothesis:

Conjecture. The largest eigenvalue of an adjacency ma-
trix A determines the hardness (time complexity) of estimating
the hafnian of A encoded in an optical circuit.

Based on these insights, we can further “hack” the adjacency
matrix to decrease the maximal eigenvalue such that its hafnian
remains the same or can be efficiently back-calculated but
the sampling probability can be obtained more efficiently. For
example, if we construct

A′ = A + diag [d1, . . . , d2M ] (C1)

such that di = di+M then for any A and di ∈ R we get haf A =
haf A′. This follows from the irrelevance of the self-loops for
the number of perfect matchings or directly from Definition 1.
Another possibility is based on the following claim.

Lemma 6. Let A = (aij ) be a symmetric matrix of an even
dimension and let B = (bij ) have the same entries and size as
A except for the kth row and column where ∀ i, j , bkj = nakj

and bik = naik . Then,

haf B = n haf A. (C2)

Proof. From the definition of hafnian (A1), we see that the
kth row appears in each product exactly once. The same holds
for the kth column. �

Remark. Note that the way of calculating the hafnian of A

from [9] we use here is slightly different from (A1). Instead,
the partial derivatives result in a product of (aiς (i) + aς (i)i )/2
which becomes (A1) for a symmetric A. This is why we
required both the kth row and column to be multiplied by n

in Lemma 6.
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FIG. 8. Sampling a pure state: probability of measurement of one
photon in each output mode as a function of the rescaling parameter
c. The black line corresponds to the original adjacency matrix A and
the orange dashed line corresponds to A′ in (C5).

1. Four-vertices complete graph

We illustrate how to obtain the hafnian from the measure-
ment statistics for K4: the complete graph on four vertices. Its
adjacency matrix reads as

A =

⎡
⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎦. (C3)

Since M = 2, we get from (B1)

PrcA⊕2 (1, 1, 1, 1) = (1 − 9c2)1/2 (1 − c2)3/2c4 haf2 A. (C4)

Here, c is a free parameter, so we can choose it to maximize
the measuring probability. Once we know the probability
PrcA⊕2 (1, 1, 1, 1) by sampling the Gaussian covariance matrix
σcA⊕2 , we can obtain the hafnian of the four vertices complete
graph K4 via Eq. (C4).

Here, we would like to consider a slightly different problem:
how to optimize the measuring probability for a given graph.
For a complete graph K4 we know the hafnian is haf A = 3.
By substituting the hafnian into (C4), we find the probability
is a function of c, which we plot as a black line in Fig. 8. We
can see that there exists a particular c between 0 and 1

3 that
maximizes the probability, and the probability goes to zero
if c → 0 or c → 1

3 . The c → 0 limit corresponds to vacuum
input, the probability evidently goes to zero. The c → 1

3 limit
corresponds to infinite squeezing in one of the input modes,
therefore, the probability of measuring low particle number
also tends to be zero.

We can add or subtract an arbitrary diagonal matrix to
the adjacency matrix to decrease the maximal eigenvalue
without changing the hafnian. As a result of a numerical
optimization considering all the constraints on a Gaussian
covariance matrix, we get the highest probability of measuring
the hafnian for

A′ =

⎡
⎢⎣

−2/3 1 1 1
1 −2/3 1 1
1 1 −2/3 1
1 1 1 −2/3

⎤
⎥⎦. (C5)

FIG. 9. Sampling a mixed state: probability of measuring one
photon in each output mode without doubling the modes. The black
line corresponds to the original adjacency matrix A [Eq. (C3)], while
the orange dashed line corresponds to (C5).

Given spec A′ = ( 7
3 ,− 5

3 ,− 5
3 ,− 5

3 ), then σcA′⊕2 is a valid
Gaussian covariance matrix provided 0 < c < 3

7 . The prob-
ability of measuring one photon in each output mode becomes

PrcA′⊕2 (1, 1, 1, 1) = 1
81 (49c2 − 9)1/2(25c2 − 9)3/2c4 haf2 A.

(C6)

The probability as a function of c is plotted as an orange dashed
line in Fig. 8. Similarly, we find that there exists a c between 0
and 3

7 that maximizes the probability. Indeed, the maximum
probability is greater than the maximum probability corre-
sponding to the original adjacency matrix A. This illustrates
the power of adding a diagonal matrix to the original A.

To see how advantageous a sampling of a mixed state is, we
use Eq. (B5) and find

PrcA(1, 1) = (1 − c)
√

(1 − 3c)(1 + c) c2 haf A. (C7)

By sampling the optimized covariance matrix σcA′ for A′ again
given by (C5) we find

PrcA′ (1, 1) = 1
9 (3 − 5c)

√
(3 − 7c)(3 + 5c) c2 haf A. (C8)

Figure 9 compares sampling probability of these two methods.
Compared to a pure state sampling method in Fig. 8, the
probability of the desired detection event is about 30% higher.
We have not found any advantage by using Lemma 6.

2. Twenty-vertices complete graph

Let K20 be the complete graph on 20 vertices. It is known
that #PM (K20) = 654729075. Highly connected graphs on
many vertices are demanding for a classical computer if the
number of perfect matchings is counted by brute force. For a
graph of size 20 it is still possible to count the perfect matchings
in seconds [22]. How does our quantum-based approach
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perform? The adjacency matrix gives rise to a mixed 10-mode
Gaussian covariance matrix (M = 10). From Eq. (B5), we find

PrcA(1, . . . , 1) = (1 − c)5(1 + c)9/2
√

1 − 19c c10 haf AK20 ,

(C9a)

PrcA′ (1, . . . , 1)= (1−7c)5(1 + 7c)9/2
√

1 − 13c c10 haf AK20 .

(C9b)

The first expression is based on the adjacency matrix for
K20 and the second one is A′ whose diagonal elements were
optimized. The single-photon probabilities are depicted in

Fig. 4 and we see a dramatic increase in the probability of
detection of the desired pattern. Hence, with a reasonably fast
quantum sources and detectors we could sample the circuit and
gather the necessary statistics within seconds.

APPENDIX D: A PROOF-OF-PRINCIPLE EXPERIMENT

In this Appendix, we study how to construct a circuit and
what input states are required to generate the covariance matrix
corresponding to a given adjacency matrix. To illustrate the
essential steps without involving complicated technical details,
we study a concrete example of the complete graph on four
vertices. We find the eigenvalues of A from (C3) to be spec A =
(3,−1,−1,−1) and so λ1 = 3. The covariance matrix in the
Heisenberg basis is found to be

σcA =

⎡
⎢⎢⎢⎢⎢⎣

− 3c3+c2+c−1
2(c−1)(3c2+2c−1)

c
−3c2−2c+1

2c2

3c3−c2−3c+1
c

−3c2−2c+1
c

−3c2−2c+1 − 3c3+c2+c−1
2(c−1)(3c2+2c−1)

c
−3c2−2c+1

2c2

3c3−c2−3c+1
2c2

3c3−c2−3c+1
c

−3c2−2c+1 − 3c3+c2+c−1
2(c−1)(3c2+2c−1)

c
−3c2−2c+1

c
−3c2−2c+1

2c2

3c3−c2−3c+1
c

−3c2−2c+1 − 3c3+c2+c−1
2(c−1)(3c2+2c−1)

⎤
⎥⎥⎥⎥⎥⎦. (D1)

The corresponding symplectic eigenvalues are

ν1,2 = 1

2
, ν3,4 = 1

2

√(
1 + 3c

1 − 3c

)(
1 + c

1 − c

)
. (D2)

This implies the Gaussian state represented by σcA is a mixed state [35]. To obtain a pure state, we follow Lemma 5 and construct
a covariance matrix σcA⊕2 for c(A ⊕ A) in the Heisenberg basis using Eq. (1):

σcA⊕2 = 1

(1 − c2)(1 − 9c2)

[
C D

D C

]
, (D3)

where C and D are 4×4 matrices:

C =

⎡
⎢⎢⎢⎢⎢⎣

1−4c2−9c4

2 2c2 2c2 2c2

2c2 1−4c2−9c4

2 2c2 2c2

2c2 2c2 1−4c2−9c4

2 2c2

2c2 2c2 2c2 1−4c2−9c4

2

⎤
⎥⎥⎥⎥⎥⎦, D =

⎡
⎢⎢⎢⎣

6c3 c(1 − 3c2) c(1 − 3c2) c(1 − 3c2)

c(1 − 3c2) 6c3 c(1 − 3c2) c(1 − 3c2)

c(1 − 3c2) c(1 − 3c2) 6c3 c(1 − 3c2)

c(1 − 3c2) c(1 − 3c2) c(1 − 3c2) 6c3

⎤
⎥⎥⎥⎦. (D4)

The symplectic eigenvalues of σcA⊕2 are νk = 1
2 for all k, showing that the state is pure. By ordinary diagonalization we obtain

KσcA⊕2K� = diag

[
1 + 3c

2(1 − 3c)
,

1 − 3c

2(3c + 1)
,

1 + c

2(1 − c)
,

1 − c

2(1 + c)
,

1 + c

2(1 − c)
,

1 − c

2(1 + c)
,

1 + c

2(1 − c)
,

1 − c

2(1 + c)

]
. (D5)

We are going to find the corresponding canonical circuit generating the covariance matrix σcA⊕2 . Eigenspectrum (D5) is an
array squeezing parameters for four single-mode squeezers and the parameter c tunes how many photons are injected to the
multiport K that follows. By virtue of diagonalization, the eigenspectrum is in the quadrature basis. But the properties of the
multiport, namely, how to be able to decompose it to elementary beam splitters and phase shifts, are best seen in the Heisenberg
basis. By transforming it we get, as expected [9], K = T ⊕ T , where

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2 − i

2√
2

1
2 − i

2√
2

1
2 − i

2√
2

1
2 − i

2√
2

− 1
2 + i

2 0 0 1
2 − i

2

− 1
2 − i

2√
3

0 1−i√
3

− 1
2 − i

2√
3

− 1
2 − i

2√
6

(
1
2 − i

2

)√
3
2 − 1

2 − i
2√

6
− 1

2 − i
2√

6

⎤
⎥⎥⎥⎥⎥⎥⎦. (D6)

By decomposing T into an array of six beam splitters and some phase shifts according to [43], we find

T = B23(−θ6)B34(−θ5)�B12(θ4)B23(θ3)B34(θ2)B12(θ1), (D7)
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where

(θi ) =
(

−2 tan−1 1

3
,−π

2
,−2 tan−1

√
5,−2 tan−1

√
3

2
,−π,−π

3

)
(D8)

and � = e−iπ/4 diag [1, 1,−1, 1]. The phase operator � can
be further moved left or right if the sign of some θi’s is swapped.

The outlined procedure of doubling the dimension of A

(or, equivalently, doubling the number of modes of the circuit)
will work for any A as a result of Lemma 5. Aside from
the obvious downside of a slightly bigger circuit, the main
disadvantage is an increase in complexity of finding the
hafnian of A as discussed in the previous section. Hence,
if σcA represents a valid Gaussian covariance matrix like in
the case of (C3) for 0 < c < 1

3 , it is highly advantageous to
prepare the corresponding circuit instead of (D5) and (D6).
Since A is not block diagonal, σA is not canonical and we
need the following results to be able to derive the circuit
generating it.

Theorem 3 (Williamson [36]). Let σ be a positive-definite
real matrix of dimension 2M . Then, there exists a symplectic
matrix S such that

S�σS =
M⊕
i=1

νiI2. (D9)

The right-hand side of Eq. (D9) is inevitably in the quadra-
ture basis. A special case of the real Schur decomposition is
stated as follows [44,45]:

Theorem 4. For every real antisymmetric matrix M there
exists an orthogonal matrix Q such that

QMQ� = M̃, (D10)

where

M̃ =
⊕
i=1

[
0 κi

−κi 0

]

is called a normal antisymmetric form and κi ∈ R.
Once we find the diagonalizing symplectic matrix we

invert (D9) by writing

σ = S−�σinS
−1, (D11)

where σin is the input thermal state. The circuit is completed
by the symplectic singular value decomposition (SVD) of S

[46–48]. In more detail, let Sp(2M,R) denote the group
of (real) symplectic matrices. As a result of the SVD,
a symplectic matrix S ∈ Sp(2M,R) can be expressed as
S = K�L�, where � � 0 and K,L ∈ K (2M ) are elements
of the orthogonal symplectic group K (2M ) = SO(2M ) ∩
Sp(2M,R) [46,48]. The SVD is not unique and it may happen
that the matrices K,L are orthogonal but not symplectic. To
obtain it in the desirable form, we rewrite the SVD of S as the
left polar decomposition: S = (K�K�)(KL�) = PO, where
P = (SS�)1/2 is real positive-definite, symmetric, and O is
orthogonal. Moreover, P and O are symplectic [49] and �

is a diagonal matrix containing the eigenvalues of P . Hence,
the desired circuit to generate σ from σin is K�−1L�, where
K,L� are multiports and �−1 is an array of single-mode
squeezers.

Note, however, that σA is in the Heisenberg basis. By
transforming it to the quadrature basis and multiplying by 2
we define

σ ′ = 2

⎡
⎢⎢⎢⎢⎣

3c2+1
−6c2−4c+2 0 2c

−3c2−2c+1 0

0 c+1
2−2c

0 0
2c

−3c2−2c+1 0 3c2+1
−6c2−4c+2 0

0 0 0 c+1
2−2c

⎤
⎥⎥⎥⎥⎦. (D12)

To find S from Eq. (D9), using the notation of Eq. (D11), we
follow the standard procedure (see, e.g., [50]) and write

S = (σ ′/2)−1/2Qσ
1/2
in , (D13)

where Q is an orthogonal matrix needed to transform the anti-
symmetric matrix σ ′−1/2�σ ′−1/2 into a normal antisymmetric
form according to Theorem 4. Given S, we apply the SVD and
recover the symplectic circuit in the quadrature basis. We find

Q =

⎡
⎢⎢⎢⎣

0 − 1√
2

0 1√
2

1√
2

0 − 1√
2

0

0 1√
2

0 1√
2

− 1√
2

0 − 1√
2

0

⎤
⎥⎥⎥⎦ (D14)

which is indeed orthogonal and

S = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −
√

1+c
1−c

0 4

√
(1+c)(1−3c)
(1−c)(1+3c)√

1−c
c+1 0 − 4

√
(1−c)(1+3c)
(1+c)(1−3c) 0

0
√

c+1
1−c

0 4

√
(1+c)(1−3c)
(1−c)(1+3c)

−
√

1−c
c+1 0 − 4

√
(1−c)(1+3c)
(1+c)(1−3c) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(D15)

where we check that S is symplectic and diagonalizes σ

according to Theorem 3 leading to

S�σS = diag

[
1

2
,

1

2
,

1

2

√(
1 + 3c

1 − 3c

)(
1 + c

1 − c

)
,

1

2

√(
1 + 3c

1 − 3c

)(
1 + c

1 − c

)]
(D16)

written in the quadrature basis in agreement with (D2). The
SVD of S then yields

K =

⎡
⎢⎢⎢⎣

0 1√
2

0 − 1√
2

− 1√
2

0 1√
2

0

0 1√
2

0 1√
2

− 1√
2

0 − 1√
2

0

⎤
⎥⎥⎥⎦,

L� =

⎡
⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎦, (D17)
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FIG. 10. The circuit to generate the covariance matrix in Eq. (D1).

From (D18) we get r1 = ln
√

1+c

1−c
and r2 = ln ( (1+c)(1−3c)

(1−c)(1+3c) )
1/4

for the

squeezing parameters. The thermal state density matrix is �th =
2

2ν+1

∑∞
n=0 ( 2ν−1

2ν+1 )n|n〉〈n| with ν = 1
2

√
( 1+3c

1−3c
)( 1+c

1−c
). From K in (D17)

we obtain θ = π/2 and because L� is a mere swap we took it into
account by swapping the input modes.

and

�−1 = diag

[(
(1 + c)(1 − 3c)

(1 − c)(1 + 3c)

)1/4

,

(
(1 + c)(1 − 3c)

(1 − c)(1 + 3c)

)−1/4

,

√
1 + c

1 − c
,

√
1 − c

1 + c

]
. (D18)

The matrices are still in the quadrature basis and K and L�
are orthogonal and symplectic as desired. Then, the circuit can

be read off of these matrices in the Heisenberg basis and we
arrive at the simple circuit in Fig. 10.

APPENDIX E: SUBGRAPH SAMPLING

1. Complete graphs

Definition 3. An n-extended complete graph K
↑
2M on 2M

vertices is another, larger, complete graph K2nM such that
n ∈ Z>0.

Let KM = K2M ⊕ K2M be two copies of a complete graph
on 2M vertices. Then, K↑

M = KnM . The goal is to make the
extension large enough to find a sufficient number of copies
of the desired graph. Following Lemmas 3 and 4, we find
haf [cAKM

] = c2M [(2M − 1)!!]2 and then from Eq. (2) we get

Pr K↑
M =

(
2nM

2M

)
1

n̄!
√

det σ
Q,K

↑
M

c2M [(2M − 1)!!]2. (E1)

The binomial coefficient tells us how many measurement
patterns corresponding to the studied graph KM there are
in K

↑
M . In order to calculate the determinant, we have to find

the eigenvalues of the adjacency matrix cAK
↑
M

. Recall that

haf [cAK
↑
M

] = haf [c(AK
↑
M

− d I4nM )]

and we are looking for the eigenvalues of the more general
matrix on the right-hand side. We find

spec [c(AK
↑
M

− dI4nM )] = ([c(1 + d )]2nM−1
1 , [−c(1 + d )]2nM−1

1 ,±[c(2nM − 1 − d )]), (E2)

where the symbol (x)n1 stands for (x, . . . , x︸ ︷︷ ︸
n

). From Eq. (A18) and σ
Q,K

↑
M

= σK
↑
M

+ I4nM/2 we get

det σ
Q,K

↑
M

= ({−1 + c2[−(2nM − 1) + d]2}(−1 + c + cd )2nM−1(1 + c + cd )2nM−1)−1. (E3)

2. Complete graphs with one edge removed

Definition 4. Let Mm be a space of real matrices of size m. A mapping χn : Mm �→ Mnm is called n inflation, defined for any
A = (aij ) ∈ Mm as

χn(aij ) = aijJn, (E4)

where the right-hand side is a minor of size n × n and Jn is an all-ones square matrix of size n.
The hafnian of a general matrix is difficult to calculate. But, by carefully removing the edges of a complete graph, whose

hafnian is known, we can keep track of all the perfect matchings that are lost. The simplest case is one edge removed and by doing
so we discard (2M − 3)!! perfect matchings. We shall name such a graph R2M . Hence, haf R2M = (2M − 1)!! − (2M − 3)!! =
(2M − 3)!!(2M − 2). Due to the symmetry of complete graphs, we do not need to track the particular edge we got rid of in R2M .
Let its adjacency matrix be

AR2M
=

[
02 J2,2M−2

J2M−2,2 AK2M−2

]
. (E5)

Then, we define

A
R

↑
2M

=
[

χn(02) χn(J2,2M−2)
χn(J2M−2,2) A

K
↑
n(2M−2)

]
(E6)

which is another adjacency matrix of dimension 2nM and finally we introduce R
↑
M = R

↑
2M ⊕ R

↑
2M from which we will sample

submatrices corresponding to the investigated graphs R2M . To this end, we find

Pr R↑
M =

(
2n

2

)(
n(2M − 1)

2M − 2

)
1

n̄!
√

det σ
Q,R

↑
M

c2M [(2M − 3)!!(2M − 2)]2, (E7)
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where the first binomial coefficient “picks up” the right number of zeros (two zeros for any R2M ) and the second coefficient counts
the number of ways the rest of R2M is constructed. The remaining task is to calculate the determinant of AR

↑
M

and the following
Lemma will assist us.

Lemma 7. Let

W =
[

0k Jk,


J
,k AK


]
− d Ik+
 ≡

[
D B

B� A

]
. (E8)

Then,

spec W = ((−1 − d )
−1
1 , (−d )k−1

1 , 1/2(−1 − 2d + 
 ±
√

1 − 2
 + 
2 + 4
k)). (E9)

Proof. We calculate the characteristic polynomial of W :

det [W − λIk+
] = det [D − λIk − B(A − λI
)−1B�] det [A − λI
] = 0.

The second determinant reads as

det [A − λI
] = (
 − 1 − d − λ)(1 + d + λ)
−1. (E10)

For the first determinant we find

(A − λI
)−1 = 1

(−
 + 1 + d + λ)(1 + d + λ)
J
 + 
 − 2 − d − λ

(−
 + 1 + d + λ)(1 + d + λ)
I


and so

B(A − λI
)−1B� = − 


−
 + 1 + d + λ
Jk. (E11)

Therefore,

det [D − λIk − B(A − λI
)−1B�] = det

[



−
 + 1 + d + λ

(−(d + λ)(−
 + 1 + d + λ)



Ik + Jk

)]
. (E12)

By using det [αXk] = αk det Xk and det [βIk + Jk] = βk−1(β + k), we find

det [D − λIk − B(A − λI
)−1B�]

= (−d − λ)k−1(−
 + 1 + d + λ)k−1


k−1


k

(−
 + 1 + d + λ)k

(−(d + λ)(−
 + 1 + d + λ)



+ k

)
. (E13)

By combining it with (E10) we finally get

det [W − λIk+
] = (−d − λ)k−1

(−(d + λ)(−
 + 1 + d + λ)



+ k

)
(1 + d + λ)
−1 = 0 (E14)

and Eq. (E9) follows. �
To find the determinant in (E7) we deduce from (E9)

spec [cW ] = ([c(−1 − d )]
−1
1 , (−cd )k−1

1 , c/2(−1 − 2d + 
 ±
√

1 − 2
 + 
2 + 4
k)), (E15)

and from Eq. (A18) and σ
Q,R

↑
M

= σR
↑
M

+ I4nM/2 we finally find

det σ
Q,R

↑
M

= 16

(−1 + c2d2)k−1[−1 + c2(1 + d )2]
−1

× 1

[−4 + c2(−1 − 2d + 
 + √
1 − 2
 + 
2 + 4
k)2][−4 − c2(−1 − 2d + 
 − √

1 − 2
 + 
2 + 4
k)2]
, (E16)

where k = 2n and 
 = n(2M − 2).
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