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Although the three-body Rydberg antiblockade regime (RABR) can produce Rabi oscillation between the
Rydberg collective excited state and the collective ground state, it is still hard to use the RABR to construct the
three-qubit quantum logic gate in one step since the effective Hamiltonian is always accompanied by undesired
Stark shifts. In order to overcome this difficulty, an additional laser is introduced to eliminate the Stark shifts
in the ground-state subspace. And the initial RABR condition is modified to eliminate the remaining undesired
Stark shifts in the collective-excitation subspace. The modified RABR is then generalized to the n (n > 3)-qubit
case. Based on the proposed regime, one-step schemes to construct three- and n-qubit quantum controlled-
PHASE gates are proposed without the requirement of atomic addressability. The asymmetric Rydberg-Rydberg
interaction, which is more practical for Rydberg atoms, is also discussed and proven to be feasible for the
modified RABR and quantum controlled-PHASE gate in theory. A full-Hamiltonian-based master equation is
used to evaluate the performance and some experimental parameters are also considered.
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I. INTRODUCTION

Neutral atoms have garnered much interest in the quan-
tum information field due to advances in their experimen-
tal operation, especially in trapping and cooling. Rydberg
atoms, neutral atoms that are excited to high-lying Rydberg
states, exhibit large dipole moments when they are close
enough [1,2]. This large-dipole-moment-induced interaction
is called the Rydberg-Rydberg interaction (RRI). The RRI
has been directly measured in experiments [3]. One of the
interesting phenomena caused by RRI is Rydberg blockade,
i.e., a frequency-matched classical laser field cannot excite
both atoms at the same time [4,5] if the line width of
the excitation is significantly narrower than the energy shift
caused by the RRI, which has been observed in experiments
between two Rydberg atoms located about 10 μm [6] apart
through sequential driving and 4 μm [7] apart by collective
driving, respectively. Via the contactless RRI, the photonic
nonlinear dynamics is obtained in experiments [8]. Besides,
the conditional dynamics of two Rydberg atoms can be easily
achieved via RRI-induced energy shift [9], phase shift [10],
blockade [11–18], Rydberg dressing [19–23], generalized
Rabi frequency [24], or two-atom dark state [25]. Some of
the above schemes are based on Förster-resonance-induced
dipole-dipole interactions, which have been well studied for
Rb-Rb and Cs-Cs with different atomic species [26].

In addition to the two-qubit conditional dynamics,
multiple-qubit quantum logic gates, which perform a logic
operation on a single target qubit depending on the state
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of the remaining control qubits, are also meaningful for
the quantum algorithm [27–30] and quantum error correc-
tion [31,32]. The multiple-qubit logic gate can be decomposed
into single- and two-qubit gates [29,33,34]. However, with an
increasing number of qubits, the required number of single-
and two-qubit quantum gates increases dramatically, which
means that construction of the multiple-qubit gate directly is
worth studying [35]. Based on the Rydberg blockade several
schemes are proposed to construct multiple-qubit Rydberg
quantum logic gates via exciting atoms into different Ry-
dberg states [36], considering asymmetric Rydberg interac-
tions [37,38], and sequent-driving-based Rydberg collective
excitation [39]. With atomic addressability technology these
schemes can maintain high fidelities through many operation
steps.

Different from Rydberg blockade, a Rydberg antiblockade
regime (RABR), which allows more than one Rydberg atom to
be excited, was initially predicted by Ates et al. in an ultracold
Rydberg gas [40] via a two-step excitation process. Then the
predicated phenomenon was observed by Amthor et al. in
experiments [41]. In addition, Pohl et al. found that, for three
Rydberg atoms, the system would undergo the RABR once
the dark state containing three excited Rydberg states was
populated [42]. Following the work in Ref. [42], Qian et al.
showed that the two-atom RABR can occur when they are
interacting with a zero-area phase-jump pulse [43]. Then Zuo
et al. [44] and Lee et al. [45] gave a strict condition for achiev-
ing effective Rabi oscillation between the collective Rydberg
excited state and the ground state, in which detuning of the
laser coupling was used to compensate the RRI energy [44–
46]. Nevertheless, construction of the quantum gate was still
not easy because undesired Stark shifts emerge [47,48]. On
the other hand, Carr and Saffman proposed an interesting
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scheme [49] to prepare entanglement via combination of the
dissipative dynamics and the RABR, which pioneered a new
method for preparation of the quantum entangled state in Ry-
dberg atoms, and this was followed by a series of works [50].

In this paper, first, the conventional two-body RABR [44–
50] is generalized to the three-body case via high-order
perturbation theory. Then an additional laser is introduced
to eliminate the undesired Stark shifts in the ground-state
subspace. And the remaining undesired Stark shifts in the
high-excitation subspace can also be entirely eliminated by
modifying the RABR condition without adding any extra con-
trols. The modified RABR is then generalized to the n (n >

3)-body case, based on which the multiple-qubit quantum
controlled-PHASE gate is constructed in theory. In contrast
to the other Rydberg multiple-qubit quantum logic gate, the
present one can be implemented in one step and has no
requirement regarding atom addressability for the symmetric
RRI.

The rest of the paper is organized as follows. In Sec. II,
the basic model, including the energy level and laser driving
of the Rydberg atom (Sec. II A) and the many-body RABR
(Sec. II B), is illustrated and analyzed. In Sec. III, the many-
body RABR is modified and used to construct the controlled-
PHASE gate. In addition, the asymmetric RRI and other
practical situations are also discussed. The conclusion is given
in Sec. IV.

II. BASIC MODEL

A. Energy level and laser driving

As shown in Fig. 1, we consider several trapped identical
Rydberg atoms interacting with two laser pulses. The relevant
energy level of the Rydberg atoms is shown in Fig. 1(c). The
Rydberg state |R〉 is coupled to state |1〉 dispersively with blue
detuning −� and Rabi frequency �, and the auxiliary state
|a〉 is coupled to state |1〉 dispersively with red detuning δ and
Rabi frequency ω.

In the interaction picture, the Hamiltonian of the n-atom
system is Ĥ = Ĥa + Ĥv , where

Ĥa =
n∑

j=1

�

2
|1〉j 〈R|ei�t + ω

2
|a〉j 〈1|eiδt + H.c. (1)

(a)

2 3

1
(b) (c)

1

2
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FIG. 1. Schematic of the many-body RABR and the multiple-
qubit controlled-PHASE gate. (a) Three-qubit case. (b) Four-qubit
case. (c) Energy level and the corresponding laser couplings for each
Rydberg atom. |0〉 and |1〉 are two ground states that were used to
encode the quantum information. |R〉 denotes the high-lying Rydberg
state, and |a〉 denotes the ordinary auxiliary state. � (ω) is the Rabi
frequency of the transition |1〉 ↔ |R(a)〉 with the detuning −�(δ).
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FIG. 2. Energy level diagram and dynamic processes of the
Hamiltonian relevant to � as well as RRIs (a) and ω (b) in the
three-atom basis. The states cannot be excited to the high-excitation
subspace except for |111〉, due to the antiblockade regime. Nev-
ertheless, Stark shifts would be obtained for these states due to
the second-order perturbation theory. E denotes the energy of the
Rydberg state in a single atom;V denotes the RRI strength. � and
δ are laser detunings.

denotes the interactions between laser pulses and Rydberg
atoms and

Ĥv =
n−1∑
j=1

n∑
k=2

Vjk|RR〉jk〈RR| (j < k) (2)

denotes the RRI terms. In order to facilitate the analysis,
without loss of generality, we set Vjk = V for different atoms.
For clearness, we first describe how to achieve the RABR
based on a laser with Rabi frequency � and then show how
to construct the quantum logic gate via the modified RABR,
which relies on the transition from |1〉 to |a〉 induced by an
auxiliary laser with Rabi frequency ω.

B. Rydberg antiblockade regime

1. Illustration of the dynamic process

In Fig. 2(a), we plot the energy level diagram of all
the three-atom bases coupled to the the ground-state sub-
space (|000〉 is not considered since it is decoupled from the
excitation process). Before discussing the n-body RABR, we
first explain the dynamics process in Fig. 2(a) according to the
different-excitation-number subspace as follows.

i. For the single-excitation subspace (the three-atom basis
which contains one Rydberg state), the energy of the laser is
E + � and that of the atomic transition from the zero- to the
single-excitation subspace is E [see Fig. 2(a)]. It is obvious
that the laser is detuned by �. We set the energy of the ground
state (zero-excitation) subspace to 0 for simplicity.

ii. For the two-excitation subspace (the three-atom basis
which contains two Rydberg states), the energy of the three-
atom states is 2E + V , which is shifted by the amount V due to
the RRI. And the total energy of the two lasers is 2(E + �). In
this case, the laser is detuned with the state transition process
from the zero- to the two-excitation subspace by the amount
2� − V .
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iii. For the three-excitation subspace (the three-atom basis
which contains three Rydberg states), the total energy of the
laser is 3(E + �) [see Fig. 2(a)]. And the energy of state
|RRR〉 is 3E + C2

3V [see Fig. 2(a)], in which 3E originates
from the excited energy levels and C2

3V is induced by the
two-body RRIs (here 3 denotes three atoms and 2 means that
RRI is the two-body interaction). In this case, the laser is
detuned with the state transition process from |111〉 to the
three-excitation state |RRR〉 by the amount 3� − C2

3V .
To explain why the energy shifts in the two- and three-

excitation subspaces are V and C2
3V , respectively, we rewrite

the RRI Hamiltonian in the three-atom basis as

Ĥv = V |R〉1〈R| ⊗ |R〉2〈R| ⊗ Î3 + V |R〉1〈R| ⊗ Î2

⊗|R〉3〈R| + V | ⊗ Î1 ⊗ |R〉2〈R| ⊗ |R〉3〈R|

≡ V

6∑
k=1

Ôk + C2
3V |RRR〉〈RRR|, (3)

in which Ôk denotes the kth operator of the set
{|RR0〉〈RR0|, |RR1〉〈RR1|, |R0R〉〈R0R|, |R1R〉〈R1R|,
|0RR〉〈0RR|, |1RR〉〈1RR|}. The terms V

∑6
k=1 Ôk and

C2
3V |RRR〉〈RRR| in Eq. (3) correspond to the two- and

three-excitation subspaces, respectively, as shown in Fig. 2(a).

2. N-body Rydberg antiblockade regime

The basic mechanism behind Rydberg blockade is that the
Rydberg energy level is shifted due to the RRI. Thus, the key
to achieve antiblockade is to use dispersive lasers to com-
pensate the energy shift. In other words, strictly equivalent
relations should be built between the laser energy and the
atomic transition energy after considering the RRI.

For the three-body case, as mentioned above, the effec-
tive detuning between the laser driving and the state tran-
sition from the single- to the three-excitation subspace is
3� − C2

3V . Thus, if one sets 3� − C2
3V = 0, i.e., � = V ,

the transition process |111〉 → |RRR〉 will be resonant [see
Fig. 2(a)].

For the n-body case, the energy of the n-excitation state is
nE + C2

nV , while the total energy of the laser is nE + n�.
Therefore, if the condition

C2
nV − n� = 0 (4)

is satisfied, the laser driving process will be resonant with the
atomic transition process from the ground-state subspace to
the n-excitation subspace. Therefore, Eq. (4) is the n-body
RABR condition.

III. ONE-STEP CONSTRUCTION OF THE
CONTROLLED-PHASE GATE

A. Dynamical description

Suppose the dispersive condition � � �/2 is satisfied; un-
der the three-body RABR the initial states in the computation
subspace cannot be excited to the high-excitation subspace
except |111〉. The corresponding dynamic processes associ-
ated with � and RRI are shown in Fig. 2(a) and illustrated in
Sec. II B 1.

To get the three-qubit controlled-PHASE gate, the system
Hamiltonian with the concise form Ĥ = λ(|111〉〈RRR| +
H.c.) is completely feasible, in which λ is the effective
coupling strength. However, from the dynamic process shown
in Fig. 2(a) and the Appendix, one can get the effective
Hamiltonian related to � and RRI as

Ĥ�
eff = 3�3

4�2
(|111〉〈RRR| + H.c.)

+ 3�2

4�
|RRR〉〈RRR| +

∑
j

(m�2/4�)Ŝj , (5)

where (�2/4�)Ŝ denotes the Stark shift of three-atom states
in the ground-state subspace and m denotes the number of
|1〉 in the three-atom basis made up of Ŝj . The Stark shifts
complicate the system’s unitary dynamics and interfere with
the desired transition process between |111〉 and |RRR〉.
Thus, we are most interested in completely eliminating Ŝ .

B. Modified Rydberg antiblockade regime

1. Three-body case

To eliminate Ŝ , we introduce an additional laser that
couples |1〉 to the ordinarily auxiliary state |a〉 with Rabi
frequency ω and detuning δ. If the dispersive condition δ �
ω/2 is satisfied, |1〉 cannot be excited to auxiliary state |a〉,
while Stark shifts will be generated. Under the condition |� +
δ| � |�ω/(4�̄)| with 1/�̄ = (−1/� + 1/δ)/2, the Raman
process |R〉 ↔ |a〉 mediated by |1〉 is inhibited. Thus, we
can consider the effective Hamiltonians induced by � and ω

independently.
Based on the second-order perturbation theory, one can get

the effective Hamiltonian relevant to ω as [see Fig. 2(b) and
the Appendix]:

Ĥ ω
eff = −

∑
j

(mω2/4δ)Ŝj . (6)

If the condition

�2/� = ω2/δ (7)

is satisfied, Eq. (6) and the last term in Eq. (5) cancel each
other out. Then the effective Hamiltonian of the whole system
will be

Ĥeff = 3�3

4�2
(|111〉〈RRR| + H.c.) + 3�2

4�
|RRR〉〈RRR|.

(8)
Equation (8) is still not efficient to construct a three-qubit
quantum logic gate since there is still one Stark-shift term in
the three-excitation subspace.

As mentioned above, the RRI terms V |RR〉12〈RR| +
V |RR〉13〈RR| + V |RR〉23〈RR| generate 3V |RRR〉〈RRR|
under the three-atom basis. Therefore, if the RRI strength V in
the initial Hamiltonian is decreased by the amount �2/(4�),
i.e.,

V = � − �2/4�, (9)

032306-3



S. L. SU, H. Z. SHEN, ERJUN LIANG, AND SHOU ZHANG PHYSICAL REVIEW A 98, 032306 (2018)

the effective Hamiltonian, Eq. (8), will add an extra term,
−3�2/4�|RRR〉〈RRR|, and further be simplified to

Ĥeff = 3�3

4�2
(|111〉〈RRR| + H.c.), (10)

based on which the three-qubit quantum controlled-
PHASE gate Û = eiπ |111〉〈111| can be achieved at time t =
4π�2/(3�3) in one step.

2. N-body case

The three-body RABR can be extended to the n (n > 3)-
body case and further be used to construct an n-qubit (n >

3) quantum controlled-PHASE gate through high-order per-
turbation theory. Through simple but extended calculations
similar to that in the Appendix, one can get the n-qubit
effective Hamiltonian,

Ĥeff = An
n�

n

2n�n−1

(| 11 . . . 1︸ ︷︷ ︸
n

〉〈RR . . . R︸ ︷︷ ︸
n

| + H.c.
)

+ A1
n�

2

4�
| RR . . . R︸ ︷︷ ︸

n

〉〈RR . . . R︸ ︷︷ ︸
n

|, (11)

with the n-body RABR condition � = C2
nV/n and the con-

dition in Eq. (7). In Eq. (11), �n/(2n�n−1) is generated by
the nth-order perturbation theory and An

n is the result of the
permutation and combination of all possible transition paths
from |11 . . . 1〉 to |RR . . . R〉. �2/4� is produced by the
second-order perturbation theory when |RR . . . R〉 couples to
the n − 1 Rydberg-excitation subspace, and A1

n denotes the
number of all possible coupling paths. Then one can get the
effective Hamiltonian

Ĥeff = An
n�

n

2n�n−1

(| 11 . . . 1︸ ︷︷ ︸
n

〉〈RR . . . R︸ ︷︷ ︸
n

| + H.c.
)
, (12)

with the modified n-body RABR condition

V = n�/C2
n − A1

n�
2/(4C2

n�). (13)

The first term on the right-hand side of Eq. (13) denotes
the conventional n-body RABR in Eq. (4), and the second
term on the right-hand side of Eq. (13) is introduced to
eliminate the last term in Eq. (11). C2

n is the number of two-
body RRI terms among n Rydberg atoms that contributes to
|RR . . . R〉〈RR . . . R|. With Eq. (12), the n-qubit controlled-
PHASE gate Û = eiπ |11...1〉〈11...1| can be constructed at time
t = 2nπ�n−1/(An

n�
n) in one step.

Although the schemes for realizing the n-qubit (n ≥ 3)
controlled-PHASE gate that have been proposed [36–38] in-
dividually address Rydberg atoms, the existence of the present
scheme is still necessary since (i) it can be implemented
in one step regardless of the qubit number of the quantum
controlled-PHASE gate, (ii) it has no requirement for atomic
addressability under the symmetric RRI, and (iii) it is based
on the modified many-body RABR.

C. Analysis and discussion of the gate

1. Dynamics consistency

The effective dynamics, based on which we choose the sys-
tem parameters, is achieved by the perturbation theory. Thus
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FIG. 3. Fidelities of the quantum controlled-PHASE gate plotted
with the full [Eqs. (1) plus (2)] and effective [Eq. (12)] Hamiltonians.
(a) Three-qubit case. (b) Four-qubit case. In (a), the dot-dashed
green line denotes the effective-Hamiltonian-based result, and the
solid saffron yellow line denotes the full-Hamiltonian-based result.
In (b), the dashed red line denotes the effective-Hamiltonian-based
result, and the solid blue line denotes the full-Hamiltonian-based re-
sult. The initial state is set as

∑n

i=1 ⊗(|0〉 + |1〉)i/
√

2. The final states
given by the ideal and practical controlled-PHASE gate, respectively,
are used to plot the fidelity. The parameters are chosen as n = 3,
�/� = 12, ω/� = 3.25, and γ = 0 in (a) and n = 4, �/� = 10.6,
ω/� = 3.8, and γ = 0 in (b).

the feasibility and validity of the effective dynamics should
be analyzed. In Figs. 3(a) and 3(b), we plot the evolution
fidelities of three- and four-qubit quantum controlled-PHASE
gates under effective and full Hamiltonians, respectively. The
results show that the full and effective dynamics bear a higher
level of consistency.

2. Average fidelity

One can use the mean value of fidelities corresponding to
several groups of random initial states to define the average
fidelity

F = 1

k

k∑
m=1

[
Tr

√√
ρ̂ ideal

m ρ̂m(t )
√

ρ̂ ideal
m

]2

, (14)

where ρm(t ) denotes the practical output density matrix cor-
responding to the random mth input state, and ρ̂ ideal

m is the cor-
responding matrix obtained from the ideal controlled-PHASE
gate. Alternatively, we define another average fidelity [47],

F = 1

2π

∫ 2π

0
dη〈ψideal|ρ̂(t )|ψideal〉, (15)

in which η is the parameter of the initial state. ρ̂(t ) is the
practically final density matrix obtained by solving the master
equation. |ψideal〉 is the final state obtained by the ideal quan-
tum controlled-PHASE gate.

In Figs. 4(a) and 4(b), we use the random-initial-state
method defined in Eq. (14) and the integral method defined in
Eq. (15) to evaluate the fidelities, respectively. Figure 4 shows
that the scheme may have a fidelity of more than 0.98 since
γ /� ∼ 10−4 is not hard to achieve in experiments due to the
long lifetime of the Rydberg energy level [51].
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FIG. 4. Average fidelities of the three-qubit controlled-PHASE
gate versus γ . (a) Random-initial-state method. (b) Integral
method. For simplicity, we set |ψ〉1 = sin η(|000〉 + |001〉 +
|010〉 + |011〉 + |100〉 + |101〉 + |110〉)/

√
7 + cos η|111〉, |ψ〉2 =

sin η(|000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |101〉)/
√

6 + cos
η(|110〉 + |111〉)/

√
2, |ψ〉3 = sin η(|000〉 + |001〉 + |010〉 + |011〉

+ |100〉)/
√

5 + cos η(|101〉 + |110〉 + |111〉)/
√

3, and |ψ〉4 =
sin η(|000〉 + |001〉 + |010〉 + |011〉)/2 + cos η(|100〉 + |101〉 +
|110〉 + |111〉)/2. The parameters are chosen as �/� = 12, ω/� =
3.25; γ /� ranges from 10−4 to 10−2. δ is chosen based on
Eq. (7).

3. Asymmetric Rydberg interaction

Here, we consider how to construct a controlled-PHASE
gate under asymmetric RRI, which extends the scheme to a

more general case. We take the three-qubit case as an example
to illustrate the process.

As shown in Fig. 1(a), suppose the RRI strengths between
atom j and atom k, Vjk , do not equal each other. The energy of
the three-excitation state |RRR〉 is then changed from 3E +
C2

3V to 3E + V12 + V13 + V23 [similar to the analytic process
used to get Eq. (3)]. To simplify the perturbation-theory-based
effective dynamics, we set the Rabi frequencies (�) relevant
to the process |1〉 → |R〉 of all the atoms the same, while the
corresponding detuning is �i for the ith atom. Consequently,
the total energy of the laser is 3E + ∑3

i=1 �i . Then, if the
condition

3E + V12 + V13 + V23 −
(

3E +
3∑

i=1

�i

)
= 0 (16)

is satisfied, the three-body RABR is achieved for asymmetric
RRIs. Similarly to the process used to get Eq. (5), under the
large-detuning condition, one can get the effective Hamilto-
nian relevant to � as [52]

Ĥ�
eff = �eff (|111〉〈RRR| + H.c.) + P̂1 + P̂2, (17)

in which

�eff = �3

8

[
�1 + �2

�1�2(V13 + V23 − �3)
+ �1 + �3

�1�3(V12 + V23 − �2)
+ �2 + �3

�2�3(V12 + V13 − �1)

]
, (18)

P̂1 = �2

4

(
1

V13 + V23 − �3
+ 1

V12 + V23 − �2
+ 1

V12 + V13 − �1

)
|RRR〉〈RRR|, (19)

and

P̂2 = �2/(4�1)|100〉〈100| + �2/(4�2)|010〉〈010| + �2/(4�3)|001〉〈001| + [�2/(4�2) + �2/(4�3)]|011〉〈011|
+ [�2/(4�1) + �2/(4�2)]|110〉〈110| + [�2/(4�1) + �2/(4�3)]|101〉〈101|. (20)

The term P̂2 in Eq. (17) can be eliminated by considering the auxiliary transition |1〉 → |a〉. Differently from the symmetric-
RRI-based scheme, for the auxiliary transition we set the detuning of the ith atom to δi , while the Rabi frequencies ω for different
atoms are the same. Then, under the large-detuning condition, the effective Hamiltonian relevant to ω is

Ĥ ω
eff = −ω2/(4δ1)|100〉〈100| − ω2/(4δ2)|010〉〈010| − ω2/(4δ3)|001〉〈001| − [ω2/(4δ2) + ω2/(4δ3)]|011〉〈011|

− [ω2/(4δ1) + ω2/(4δ2)]|110〉〈110| − [ω2/(4δ1) + ω2/(4δ3)]|101〉〈101|. (21)

It is easy to see that if

�2/(4�j ) = ω2/(4δj ) (22)

is satisfied, the full effective Hamiltonian is changed to

Ĥeff = Ĥ�
eff + Ĥ ω

eff = �eff (|111〉〈RRR| + H.c.) + P̂1. (23)

P̂1 can also be eliminated by modifying the antiblockade
condition, (16); before this we set �1 = V23, �2 = V13, �3 =
V12 without loss of generality. [It should be noted that there
are many choices for the relations between RRI and detuning
that fulfill Eq. (16); we just use this set of parameters to verify

the feasibility of the scheme.] To eliminate P̂1, we reset

V12 = �3 − �2

4(V13 + V23 − �3)
,

V23 = �1 − �2

4(V12 + V13 − �1)
,

V13 = �2 − �2

4(V12 + V23 − �2)
. (24)

One can see clearly how the added terms in Eq. (24) cancel
P̂1 if the RRIs are rewritten in the three-atom basis.
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FIG. 5. Fidelities of the three-qubit controlled-PHASE gate in
one evolution period with two groups of asymmetric Rydberg param-
eters. The initial and final states are the same as those in Fig. 3 and the
full Hamiltonian is used for numerical simulation. The parameters
are chosen as V12/� = 10, ω/� = 3.25. �i and δi are chosen based
on Eqs. (24) and (22), respectively.

Then the effective Hamiltonian of the whole system is
changed to

Ĥeff = �eff (|111〉〈RRR| + H.c.), (25)

which can be used to construct the quantum controlled-
PHASE gate in one step. In Fig. 5, the fidelities of the scheme
with two groups of asymmetric RRIs are plotted in one evo-
lution period, which means the scheme can be implemented
over a wider range of systematic parameters on the premise
that the atomic addressability is provided.

4. Experimental considerations

Experimentally, a two-photon process to excite the ground
state to the Rydberg state has been demonstrated in
Refs. [6,7,12,53]; π polarized 780- and 480-nm beams are
tuned for resonant excitation from the ground state, 5s1/2, F =
2, to the Rydberg state, 97d5/2, mj = 5/2, with an effective
Rabi frequency �/2π = 0.67 MHz, and the atomic decay rate
of the Rydberg state is about 2π × 1 kHz. The calculated
RRI strength for Rydberg atoms separated by 10.2 μm is
about B/2π = 9.3 MHz. In Ref. [53], �p is set to 2π × 2
GHz, while in Ref. [12] it is 2π × 1.1 GHz. Thus, on one
hand, the effective Rabi frequency can be varied by changing
the detunings of the intermediate state �p. On the other
hand, very recently, coherent optical excitation to Rydberg
states with an adjustable effective � (�max = 2π × 10 MHz)
has also been demonstrated [54] through tuning of the Rabi
frequency of the process that couples the ground state to the
intermediate state.

Besides, a single-photon process is also realized for the
Rydberg dressing scheme [55], which couples directly from
the ground state, 6s1/2, F = 4, to the Rydberg level, 64p3/2,
of 133Cs atoms through use of a 319-nm laser.

Following the experiments in Refs. [12] and [53], for
our model the energy level configuration can be chosen as
|0〉 ≡ |5s1/2, F = 1, m = 0〉, |1〉 ≡ |5s1/2, F = 2, m = 0〉,
and |R〉 ≡ |97d5/2,mj = 5/2〉. If the atomic distance is set
as 7.128 13 μm, the RRI strength will be V/2π = 79.8417
MHz. After varying the 790-nm laser power to five times
higher than that in Ref. [12] and setting �p/2π = 0.55 GHz,
�/2π = 6.7 MHz is achieved. Besides, the resonant two-
photon process should be adjusted to the dispersive process

0.95

0.96

0.97

0.98

0

0

0

0
1.0

0.5

1.0

(a)

(b)

(c)

FIG. 6. Fidelity of the quantum controlled-PHASE gate with
variation of parameters for symmetric RRI. All coordinate values are
percentages. For (b) and (c), 100 groups of parameters that satisfy
the Gauss distribution are considered for one deviation point of the
parameters. Here we use one specific initial state,

∑3
i=1 ⊗[(|0〉 +

|1〉)i/
√

2], and the corresponding final state to simulate the fidelity.
The parameters are chosen as �/� = 12, ω/� = 3.25, and γ /� =
10−4. δ is chosen based on Eq. (7).

with detuning � = (V + √
V 2 + 4�2)/2 ∼= 12�. Since state

|a〉 is not in the computation subspace, we here use only
the conditions relevant to ω and do not give the exact level
configuration of |a〉 temporarily. The decay rate of |a〉 is
supposed to be a magnitude greater than that of the |R〉
state, and ω = 3.25� is used. Then, for the three-qubit case,
F = 0.9603 (integral method) and F ran = 0.9679 (random-
initial-state method) are achieved, respectively. In addition,
the single-photon process is feasible for our scheme.

5. Robustness to parameter variation

In the analysis above, we have assumed that the parameters
were invariant during the operation process. However, the
system instability and the operation inaccuracy may induce
tiny variations in the system parameters. To evaluate their
influence, we plot the fidelities versus the relative variation
of parameters �, ω, �, and V in Fig. 6. The results show
that the scheme has a good robustness to the variations of
parameters � and ω. Nevertheless, the variation of V and
� may have a certain influence since the RABR would be
destroyed. However, this influence could be minimized with
the use of the Rydberg dressing method [19–22] as well as
the introduction of a Doppler-free configuration that involves
counter-propagating lasers [19].

IV. CONCLUSION

In this paper, we first generalize the conventional two-body
RABR to the many-body case. Then undesired Stark shifts
in the many-body RABR are canceled out by (i) introducing
an additional laser and (ii) modifying the many-body RABR
condition. The well-designed many-body RABR is then used
to construct the multiple-qubit controlled-PHASE gate in one
step. We hope the proposed RABR and the multiple-qubit
controlled-PHASE gate will find some applications in future
Rydberg-atom-based quantum information processing tasks
with the development of quantum technology.
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APPENDIX: DERIVATION OF THE EFFECTIVE
HAMILTONIAN, (8)

1. Method 1

First, since the condition �ω/(4�̄) � |� + δ| with �̄ =
(2�δ)/(� − δ) is satisfied, the Raman transition process
between state |R〉 and state |a〉 is inhibited. Thus, the ef-
fective Hamiltonian induced by dispersive lasers with Rabi
frequencies � and ω can be considered independently. One
can rewrite the terms in Hamiltonian (1) relevant to �

with the three-atom basis as Ĥa� = Ĥa�1 + Ĥa�2 + Ĥa�3,
in which

Ĥa�1 = �

2
ei�t (|100〉〈R00| + |101〉〈R01| + |110〉〈R10|

+ |111〉〈R11| + |010〉〈0R0| + |011〉〈0R1|

+ |110〉〈1R0| + |111〉〈1R1| + |001〉〈00R|

+ |011〉〈01R| + |101〉〈10R| + |111〉〈11R|) + H.c.,

Ĥa�2 = �

2
ei�t (|10R〉〈R0R| + |11R〉〈R1R| + |1R0〉〈RR0|

+ |1R1〉〈RR1| + |01R〉〈0RR| + |11R〉〈1RR|

+ |R10〉〈RR0| + |R11〉〈RR1| + |0R1〉〈0RR|

+ |1R1〉〈1RR| + |R01〉〈R0R| + |R11〉〈R1R|)

+ H.c.,

Ĥa�3 = �

2
ei�t (|1RR〉 + |R1R〉 + |RR1〉)〈RRR| + H.c.

(A1)

Similarly, one can also rewrite Ĥv = Ĥv1 + Ĥv2, where

Ĥv1 = V (|RR0〉〈RR0| + |R0R〉〈R0R| + |0RR〉〈0RR|

+ |RR1〉〈RR1| + |R1R〉〈R1R| + |1RR〉〈1RR|),

Ĥv2 = 3V |RRR〉〈RRR|. (A2)

Before deriving the effective Hamiltonian, we move the
Hamiltonian to the rotation frame with respect to Û =

e−i(Ĥv+Ĥ0 )t , in which

Ĥ0 = �(|RR0〉〈RR0| + |R0R〉〈R0R| + |0RR〉〈0RR|
+ |RR1〉〈RR1| + |R1R〉〈R1R| + |1RR〉〈1RR|).

(A3)

Thus, the full Hamiltonian can be reexpressed as Ĥ = Ĥa�1 +
Ĥ ′

a�2 + Ĥ ′
a�3 − Ĥ0 with

Ĥ ′
a�2 = �

2
e−i�t (|10R〉〈R0R| + |11R〉〈R1R| + |1R0〉〈RR0|

+ |1R1〉〈RR1| + |01R〉〈0RR| + |11R〉〈1RR|

+ |R10〉〈RR0| + |R11〉〈RR1| + |0R1〉〈0RR|

+ |1R1〉〈1RR|+|R01〉〈R0R|+|R11〉〈R1R|)+H.c.,

Ĥ ′
a�3 = �

2
(|1RR〉 + |R1R〉 + |RR1〉)〈RRR| + H.c. (A4)

We use P̂ (′)(±�)a�j (j = 1, 2, 3) to denote the terms of Ĥ
(′)
a�j

associated with (�/2)e±i�t . Thus, the effective Hamiltonian
among zero-, single-, and two-excitation subspaces can be
achieved as [56]

Ĥ
(0−2)
eff = �2

4�
{[P̂ (�)a�1, P̂ (−�)a�1 + P̂ ′(−�)a�2]

+ [P̂ ′(�)a�2, P̂ (−�)a�1 + P̂ ′(−�)a�2]}

= Ĥ
(0−2)
eff,part + �2

2�

[
(|101〉〈R0R| + |110〉〈RR0|

+ |011〉〈0RR|) + |111〉(〈RR1| + 〈R1R|

+ 〈1RR|) + H.c.
]
, (A5)

where

Ĥ
(0−2)
eff,part = �2

4�
{|100〉〈100| + |010〉〈010| + |001〉〈001|

+ 2(|110〉〈110| + |101〉〈101| + |011〉〈011|)

+ 3|111〉〈111| − [|R00〉〈R00| + |0R0〉〈0R0|

+ |00R〉〈00R| + 2(|R01〉〈R01| + |R10〉〈R10|

+ |0R1〉〈0R1| + |1R0〉〈1R0| + |01R〉〈01R|

+ |10R〉〈10R|)

+ 3(|R11〉〈R11| + |1R1〉〈1R1| + |11R〉〈11R|)]
+ 2(|RR0〉〈RR0| + |RR1〉〈RR1| + |R0R〉〈R0R|

+ |R1R〉〈R1R| + |0RR〉〈0RR| + |1RR〉〈1RR|)}.
Now, the whole Hamiltonian relevant to � and RRI is Ĥ =
Ĥ

(0−2)
eff + Ĥ ′

a�3 − Ĥ0. We now move the whole Hamiltonian
to the rotation frame with respect to Û = eiĤ0t and get Ĥ =
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Ĥ
(0−2)′
eff + Ĥ ′′

a�3, in which

Ĥ
(0−2)′
eff = Ĥ

(0−2)
eff,part + �2

2�
[(|101〉〈R0R| + |110〉〈RR0|

+ |011〉〈0RR|)ei�t + |111〉(〈RR1| + 〈R1R|

+ 〈1RR|)ei�t + H.c.],

Ĥ ′′
a�3 = �

2
e−i�t (|1RR〉 + |R1R〉 + |RR1〉)〈RRR| + H.c.

(A6)

Traditionally, the dispersive coupling terms in the effective
Hamiltonian should be discarded. Nevertheless, here we keep
these terms temporarily to see whether they can induce some
effective coupling under the higher-order perturbation theory.
We use P̂ ′(±�)(0−2)

eff and P̂ ′′(±�)a�3 to denote the terms of
Ĥ

(0−2)′
eff associated with �2/(4�)e±i�t and the terms of Ĥ ′′

a�3
associated with �/2e±i�t , respectively. Eventually, one can
get the effective Hamiltonian as

Ĥeff = Ĥ
(0−2)
eff,part + �4

4�3

{[
P̂ ′(�)(0−2)

eff , P̂ ′(−�)(0−2)
eff

]}
+ �3

4�2

{[
P̂ ′(�)(0−2)

eff , P̂ ′′(−�)a�3
]

+ [
P̂ ′′(�)a�3, P̂

′(−�)(0−2)
eff

]}
+ �2

4�
{[P̂ ′′(�)a�3, P̂

′′(−�)a�3]}

= Ĥ
(0−2)
eff,part+

�4

4�3
[|011〉〈011|+|101〉〈101|+|110〉〈110|

+ 3|111〉〈111| − (|0RR〉〈0RR| + |R0R〉〈R0R|

+ |RR0〉〈RR0| + |1RR〉〈1RR| + |R1R〉〈R1R|

+ |RR1〉〈RR1|)] + 3�3

4�2
(|111〉〈RRR| + H.c.)

+ �2

4�
(|1RR〉〈1RR| + |R1R〉〈R1R|

+ |RR1〉〈RR1| + 3|RRR〉〈RRR|). (A7)

By observing and analyzing the effective Hamiltonian, (A7),
one can safely discard terms which include single- and
two-Rydberg excitations since they are not included in the
initial states and also do not couple with the zero- and
three-excitation subspaces. In addition, the higher-order terms

∼�4/�3 can be discarded, in contrast to the terms ∼�2/�

and �3/�2. Then Eq. (A7) is simplified to

Ĥeff = �2

4�
[|100〉〈100| + |010〉〈010| + |001〉〈001|

+ 2(|110〉〈110| + |101〉〈101| + |011〉〈011|)
+ 3(|111〉〈111| + |RRR〉〈RRR|)]

+ 3�3

4�2
(|111〉〈RRR| + H.c.). (A8)

Similarly to the above process, one can get the effective
Hamiltonian relevant to ω as

Ĥeff = −ω2

4δ
[|100〉〈100| + |010〉〈010| + |001〉〈001|

+ 2(|110〉〈110| + |101〉〈101| + |011〉〈011|)
+ 3|111〉〈111|]. (A9)

Combining Eqs. (A8) and (A9), if the condition �2/� =
ω2/δ is satisfied, one can get the effective Hamiltonian of the
whole system, as shown in Eq. (8).

2. Method 2

After performing the rotation operation with respect to
Û = e−iHvt , the total Hamiltonian relevant to � is Ĥ ′

a� =
Ĥa�1 + Ĥa�2 + Ĥa�3, in which

Ĥa�1 = �

2
ei�t (|100〉〈R00| + |101〉〈R01| + |110〉〈R10|

+ |111〉〈R11| + |010〉〈0R0| + |011〉〈0R1|
+ |110〉〈1R0| + |111〉〈1R1| + |001〉〈00R|
+ |011〉〈01R| + |101〉〈10R| + |111〉〈11R|) + H.c.,

Ĥa�2 = �

2
(|10R〉〈R0R| + |11R〉〈R1R| + |1R0〉〈RR0|

+ |1R1〉〈RR1| + |01R〉〈0RR| + |11R〉〈1RR|
+ |R10〉〈RR0| + |R11〉〈RR1| + |0R1〉〈0RR|
+ |1R1〉〈1RR| + |R01〉〈R0R| + |R11〉〈R1R|)
+ H.c.,

Ĥa�3 = �

2
e−i�t (|1RR〉 + |R1R〉 + |RR1〉)〈RRR| + H.c.,

(A10)

from which one can find that (i) the zero-excitation subspace
couples to the one-excitation subspace with detuning −�,
(ii) the three-excitation subspace couples to the two-excitation
subspace with the same detuning −�, and (iii) the one- and
two-excitation subspaces couple with each other resonantly.

Subsequently, based on the second-order perturbation theory, one can get

|100〉〈100|Ĥ ′
a�|R00〉〈R00|Ĥ ′

a�|100〉〈100|
�

= �2

4�
|100〉〈100|, |010〉〈010|Ĥ ′

a�|0R0〉〈0R0|Ĥ ′
a�|010〉〈010|

�
= �2

4�
|010〉〈010|,

|001〉〈001|Ĥ ′
a�|00R〉〈00R|Ĥ ′

a�|001〉〈001|
�

= �2

4�
|001〉〈001|. (A11)
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Besides, the Stark shifts relevant to |110〉 are calculated as

|110〉〈110|Ĥ ′
a�|R10〉〈R10|Ĥ ′

a�|110〉〈110|
�

+ |110〉〈110|Ĥ ′
a�|1R0〉〈1R0|Ĥ ′

a�|110〉〈110|
�

= �2

2�
|110〉〈110|,

|011〉〈011|Ĥ ′
a�|0R1〉〈0R1|Ĥ ′

a�|011〉〈011|
�

+ |011〉〈011|Ĥ ′
a�|01R〉〈01R|Ĥ ′

a�|011〉〈011|
�

= �2

2�
|011〉〈011|,

|101〉〈101|Ĥ ′
a�|R01〉〈R01|Ĥ ′

a�|101〉〈101|
�

+ |101〉〈101|Ĥ ′
a�|10R〉〈10R|Ĥ ′

a�|101〉〈101|
�

= �2

2�
|101〉〈101|. (A12)

Similarly, the Stark shifts relevant to |011〉 and |101〉 are also obtained as �2/(2�)|011〉〈011| and �2/(2�)|101〉〈101|,
respectively. And the Stark shift relevant to |111〉 is

|111〉〈111|Ĥ ′
a�|R11〉〈R11|Ĥ ′

a�|111〉〈111|
�

+ |111〉〈1R1|Ĥ ′
a�|1R1〉〈1R1|Ĥ ′

a�|111〉〈111|
�

+ |111〉〈11R|Ĥ ′
a�|11R〉〈11R|Ĥ ′

a�|111〉〈111|
�

= 3�2

4�
|111〉〈111|. (A13)

Similarly, one can get that the Stark shift related to state |RRR〉 is 3�2/(4�)|RRR〉〈RRR|. Based on the third-order perturbation
theory, one can get (The dynamics processes are shown in Fig. 2.)

|111〉〈111|Ĥ ′
a�|R11〉〈R11|Ĥ ′

a�|RR1〉〈RR1|Ĥ ′
a�|RRR〉〈RRR|

�2

+ |111〉〈111|Ĥ ′
a�|R11〉〈R11|Ĥ ′

a�|R1R〉〈R1R|Ĥ ′
a�|RRR〉〈RRR|

�2

+ |111〉〈111|Ĥ ′
a�|1R1〉〈1R1|Ĥ ′

a�|RR1〉〈RR1|Ĥ ′
a�|RRR〉〈RRR|

�2

+ |111〉〈111|Ĥ ′
a�|1R1〉〈1R1|Ĥ ′

a�|1RR〉〈1RR|Ĥ ′
a�|RRR〉〈RRR|

�2

+ |111〉〈111|Ĥ ′
a�|11R〉〈11R|Ĥ ′

a�|R1R〉〈R1R|Ĥ ′
a�|RRR〉〈RRR|

�2

+ |111〉〈111|Ĥ ′
a�|11R〉〈11R|Ĥ ′

a�|1RR〉〈1RR|Ĥ ′
a�|RRR〉〈RRR|

�2

+ H.c. = 3�3

4�2
|111〉〈RRR| + H.c. (A14)

After combining Eqs. (A11)–(A14), one can get the effective Hamiltonian, which is the same as that in Eq. (A8). In addition,
using this method, one can get that the effective Hamiltonian relevant to ω is the same as that in Eq. (A9). Thus, if the condition
�2/� = ω2/δ is satisfied, one can get the effective Hamiltonian of the whole system, Eq. (8).
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