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Imbalance entanglement: Symmetry decomposition of negativity
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In the presence of symmetry, entanglement measures of quantum many-body states can be decomposed into
contributions from distinct symmetry sectors. Here we investigate the decomposability of negativity, a measure
of entanglement between two parts of a generally open system in a mixed state. While the entanglement entropy
of a subsystem within a closed system can be resolved according to its total preserved charge, we find that
negativity of two subsystems may be decomposed into contributions associated with their charge imbalance.
We show that this charge-imbalance decomposition of the negativity may be measured by employing existing
techniques based on creation and manipulation of many-body twin or triple states in cold atomic setups. Next,
using a geometrical construction in terms of an Aharonov-Bohm-like flux inserted in a Riemann geometry, we
compute this decomposed negativity in critical one-dimensional systems described by conformal field theory. We
show that it shares the same distribution as the charge-imbalance between the two subsystems. We numerically
confirm our field theory results via exact calculations for noninteracting particles based on a double-Gaussian
representation of the partially transposed density matrix.
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I. INTRODUCTION AND RESULTS

Negativity provides a measure of quantum entanglement
between two subsystems A1 and A2 in a generally mixed
state [1–10]. This state can be achieved when the full system
(A1 ∪ A2) ∪ B is in a pure state, after tracing out B, treated as
the environment. In this case the usual von Neumann entropy
of either A1 or A2 is not a measure of quantum entanglement
and instead other measures have to be defined such as the
negativity. The latter involves the nonstandard operation of
a partial transposition on the density matrix ρA �→ ρ

T2
A . A

density matrix ρA is unentangled if ρA =∑i w
(i)

ρ
(i)
A1

⊗ ρ
(i)
A2

,

where
∑

i w
(i) = 1 and ρA1 and ρA2 are positive-semidefinite

density matrices of the two subsystems; after performing a
partial transposition with respect to the subsystem A2 on
an unentangled density matrix ρ

T2
A =∑i w

(i)
ρ

(i)
A1

⊗ (ρ (i)
A2

)T, it
remains positive. One thus concludes that the presence of any
negative eigenvalue in the spectrum {λ} of ρ

T2
A , referred to as

the negativity spectrum, must indicate entanglement between
the two subsystems [1]. One hence defines the entanglement
negativity as

N ≡ 1

2

(
Tr
∣∣ρT2

A

∣∣− 1
) =

∑
λ<0

|λ| (1)

such that nonvanishing negativity implies entanglement. Re-
lated entanglement measures are the Rényi negativities

Rn ≡ Tr
{(

ρ
T2
A

)n} =
∑

λ

λn, N = lim
n→1/2

1

2
(R2n − 1). (2)

Knowledge of Rényi negativities may be used, via various
techniques, to find either the entanglement negativity [11] or
the entire negativity spectrum [4].

Over recent years there has been growing interest in the
negativity of many-body systems. Key progress was achieved
using field theory methods specifically focusing on critical sys-
tems [4,12–16], supplemented by numerical techniques [4,17].
Interesting aspects of negativity were also discussed in sym-
metric many-qubit Dicke states [18–20], in topological gapped
phases [21–23], and in disordered systems [24,25]. Owing to
the nonstandard operation of partial transposition, obtaining
the negativity spectrum is challenging even for free-fermion
systems [16,26].

In this paper we study a general symmetry decomposition of
the negativity. Recently, it has been shown that entanglement
entropy admits a charge decomposition which can be both com-
puted and measured [27–29]. This is based on a block-diagonal
form of the density matrix in the presence of symmetries and
allows one to identify contributions of entanglement entropy
from individual charge sectors. It is natural to ask whether
negativity admits a similar symmetry decomposition. This is
nontrivial due to the involved operation of partial transposition
on the density matrix.

We find that instead of a decomposition according to the
total charge, negativity admits a resolution by the charge
imbalance in the two subsystems. This holds whenever
there is a conserved extensive quantity Ô in the joint Hilbert
space of the system A = A1 ∪ A2 and the environment B, i.e.,
Ô(A1∪A2 )∪B = Ô1 + Ô2 + ÔB . We show that the negativity
spectrum is then partitioned, {λi} =⋃Q{λiQ}, by the eigen-
values of an imbalance operator Q̂ ∼ Ô1 − Ô2; see Eq. (8) for
the precise definition. Examples for such extensive quantities
may be the particle number N̂(A1∪A2 )∪B = N̂1 + N̂2 + N̂B or
magnetization Ŝz

(A1∪A2 )∪B = Ŝz
1 + Ŝz

2 + Ŝz
B .

This finding is particularly appealing in view of its exper-
imental feasibility. Based on a proposal [30,31] which had
been experimentally implemented [32] to measure the Rényi
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FIG. 1. Schematic block structure of density matrices in the basis
of |N1N2〉 with blocks labeled by Q = N1 − N

T2
2 . (a) A density matrix

ρA has a block structure with respect to NA = N1 + N2 as shown
by the thick lines. (b) Following a partial transposition, ρ

T2
A has a

block structure determined by Q = N1 − N
T2
2 as shown by the thick

lines. The partial transposition is indicated by the arrows in (a) and
relates the blocks according to Eq. (12); for a specific example of
these matrices see Eqs. (3) and (5).

entanglement entropies of many-body states in cold atoms, a
recent work [11] showed that the same experimental protocol
can be simply generalized to measure the Rényi negativity.
Here we demonstrate that a similar protocol naturally allows
one to measure separately the contributions to negativity from
each symmetry sector.

The imbalance decomposition of negativity is also compat-
ible with the elegant field theory methods that were applied to
compute the total negativity of critical one-dimensional (1D)
systems [12–16]. These computations are based on the replica
trick approach, connecting the Rényi negativities with the par-
tition function of the theory on an n-sheeted Riemann surface
connected via crisscross escalators (see Fig. 3). Interestingly,
a proper insertion of an Aharonov-Bohm-like flux into this
n-sheeted Riemann surface [28,33–36] can be used to obtain
universal predictions for the imbalance-resolved negativity.
We show that these contributions share the same distribution
as that of the charge difference between subsystems A1 and
A2. We numerically test our field theory calculations for free
fermions [26] by mapping the partial transposed density matrix
to a sum of two Gaussian density matrices.

The plan of the paper is as follows. In Sec. II we begin
by motivating our work by a simple example. As illustrated
in Fig. 1, while number conservation is reflected by a block-
diagonal structure of the density matrix, the operation of partial
transposition mixes up these blocks; however, a new block
structure is seen to emerge in terms of the imbalance operator
Q. We proceed by a general definition of the imbalance
operator and the associated decomposition of the negativity.
In Sec. III we present an experimental protocol that enables
measurements of the resolved Rényi negativities [Rn]Q. In
Sec. IV we focus on critical 1D systems and generalize
conformal field theory (CFT) methods to derive a general
result for the partition of the entanglement negativity. We then
test our field theory results by performing an exact numerical
calculation for a free system. Finally, a summary is provided
in Sec. V.

II. IMBALANCE ENTANGLEMENT

In this section we provide a general definition of the
symmetry resolution of entanglement negativity, referred to
as imbalance entanglement. The key delicate issue to be ad-
dressed is the operation of partial transposition of the density
matrix, which is best demonstrated by a simple example.

A. Intuitive example

In order to illustrate how symmetry is reflected in
a block structure of the density matrix after partial
transposition, it is beneficial to begin with the simplest
example. Consider a single particle located in one out of
three boxes A1, A2, and B. It is described by a pure state
|�〉 = α|100〉 + β|010〉 + γ |001〉. The reduced density
matrix for subsystem A = A1 ∪ A2 is ρA = TrB |�〉〈�| =
|γ |2|00〉〈00| + (α|10〉 + β|01〉)(α∗〈10| + β∗〈01|), whose
matrix representation is given by

ρA =

⎛
⎜⎜⎝

|γ |2 0 0 0
0 |β|2 α∗β 0
0 β∗α |α|2 0
0 0 0 0

⎞
⎟⎟⎠, (3)

in the basis of {|00〉, |01〉, |10〉, |11〉}. This matrix has a
block-diagonal structure with respect to the total occupation
NA = N1 + N2,

ρA
∼= (|γ |2)NA=0 ⊕

(|β|2 α∗β
β∗α |α|2

)
NA=1

⊕ (0)NA=2. (4)

Let us turn our attention to the partially transposed density
matrix ρ

T2
A . It is obtained by transposing only the states of

subsystem A2 i.e., |N1N2〉〈N ′
1N

′
2| �→ |N1N

′
2〉〈N ′

1N2|. This is
equivalent to transposing the submatrices of ρA,

ρ
T2
A =

⎛
⎜⎜⎝

|γ |2 0 0 α∗β
0 |β|2 0 0
0 0 |α|2 0

β∗α 0 0 0

⎞
⎟⎟⎠. (5)

The negativity spectrum for ρ
T2
A is easily found to be

{|α|2, 1
2 |γ |2 ±

√
1
4 |γ |4 + |αβ|2, |β|2} and contains only one

negative eigenvalue N = | 1
2 |γ |2 −

√
1
4 |γ |4 + |αβ|2|. Impor-

tantly, one may notice that ρ
T2
A has a block-matrix structure.

We label the blocks according to the occupation imbalance
Q = N1 − N2 of their diagonal elements,

ρ
T2
A

∼= ( |α|2)Q=1 ⊕
(|γ |2 α∗β

β∗α 0

)
Q=0

⊕ (|β|2)Q=−1. (6)

Here N1 − N2 = 1 corresponds to {|10〉}, N1 − N2 = 0 cor-
responds to {|00〉, |11〉}, and N1 − N2 = −1 corresponds to
{|01〉}. This decomposition partitions the negativity spectrum

{|α|2} ∪ { 1
2 |γ |2 ±

√
1
4 |γ |4 + |α|2|β|2} ∪ {|β|2}. As we hence-

forth show, this partitioning of the negativity spectrum goes
beyond this example and is applicable to the general case.
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B. General definition

One may define an imbalance partition with respect to
any extensive operator Ô(A1∪A2 )∪B = Ô1 + Ô2 + ÔB . For sim-
plicity we focus on the case of a conserved total particle
number N̂(A1∪A2 )∪B = N̂1 + N̂2 + N̂B . Let us explore the con-
sequences of this conservation law. It is reflected in the
relation [ρA, N̂A] = 0 satisfied by the reduced density matrix
ρA = TrBρ (e.g., a thermal state ρA ∝ e−βĤ ). Partially trans-
posing this commutation relation yields[

ρ
T2
A , N̂1 − N̂

T2
2

] = 0. (7)

This commutativity elicits a block-matrix decomposition

ρ
T2
A =

⊕
Q

[
ρ

T2
A

]
Q
, Q̂ ≡ N̂1 − N̂

T2
2 , (8)

where Q are the eigenvalues of Q̂. It is easily verified
that this resolution is basis independent, i.e., that the spec-
trum of [ρT2

A ]Q is invariant to local basis transformations
Ô �→ (Û †

1 Û
†
2 )Ô(Û1 Û2 ) for all transformations Ûα acting only

in regions Aα . The negativity spectrum {λi} of [ρT2
A ] may thus

be decomposed {λi} =⋃Q{λiQ} into spectra {λiQ} of [ρT2
A ]Q

such that the overall entanglement negativity is resolved into
contributions from distinct imbalance sectors

Tr
∣∣ρT2

A

∣∣ =∑
Q

Tr
{
P̂Q

∣∣ρT2
A

∣∣} =
∑
Q

Tr
∣∣[ρT2

A

]
Q

∣∣, (9)

where P̂Q is the projector to the subspace of eigenvalue Q of
the operator Q̂. Similarly, the Rényi negativity is decomposed
as Rn =∑Q[Rn]Q, where

[Rn]Q ≡ Tr
{
P̂Q

(
ρ

T2
A

)n} = Tr
{([

ρ
T2
A

]
Q

)n}
. (10)

Generalizing the example from the preceding section, we
write the density matrix as

ρA =
∑

{N},{i}
|N1〉i1 |N2〉i2 [ρA]

i1,i2;i ′1,i
′
2

N1,N2;N ′
1,N

′
2
〈N ′

1|i
′
1〈N ′

2|i
′
2 , (11)

where {|Nα〉1, |Nα〉2, . . . } span the Hilbert space of Aα with
particle number Nα (α ∈ {A1, A2}). Charge conservation im-
plies that ρA commutes with N̂1 + N̂2. This leads to a block
structure of ρA with N1 + N2 = N ′

1 + N ′
2. This block structure

of the density matrix is illustrated in the Fig. 1(a). We now
wish to see which of these blocks contribute to each imbalance
sector.

The block structure of ρA with N1 + N2 = N ′
1 + N ′

2 al-
lows us to identify Q = N1 − N ′

2 = N2 − N ′
1 and assign a

specific value of Q to each block, as marked inside the
squares (N1, N2; N ′

1, N
′
2 blocks) in Fig. 1(a). For exam-

ple, the coherence term β∗α in Sec. II A corresponds to
|N1N2〉〈N ′

1N
′
2| = |10〉〈01| and hence to Q = 0.

Now consider the partially transposed density matrix. The
blocks of the original density matrix that contribute to [ρT2

A ]Q
for a given Q are[

ρ
T2
A

]{i}
N1,N1−Q;N2+Q,N2

= [ρA]{i}N1,N2;N2+Q,N1−Q. (12)

As can be seen in Fig. 1(b), these blocks reorganize
into a diagonal-block structure labeled by Q after par-
tial transposition. Staring at diagonal blocks of ρA, i.e.,

(N1, N2) = (N ′
1, N

′
2), we see that Q ↔ N1 − N2 is just the

charge imbalance between the two subsystems, motivating the
term “imbalance decomposition” [note, though, that the den-
sity matrix also contains nondiagonal blocks where (N1, N2) �=
(N ′

1, N
′
2) and that the blocks that contribute to the Q imbalance

sectors are precisely those in Eq. (12)].

III. PROTOCOL FOR EXPERIMENTAL DETECTION

In the preceding section we identified the imbalance op-
erator Q according to which the partially transposed density
matrix admits a block-diagonal form, allowing us to decom-
pose the negativity spectrum. In this section we show that
a measurement of the individual imbalance contributions to
the Rényi negativities can be performed within an existing
experimental setup. For this purpose we adopt protocols which
have been recently implemented in an experiment measuring
entanglement entropy [32]. Specifically, in order to measure
the resolved Rényi negativity [Rn]Q we will build on a
recently proposed protocol [11] based on Ref. [31], designed
specifically to measure the total Rényi negativity Rn.

We begin this section by presenting the basic idea of
the protocol for measuring entanglement entropy and then
progressively show how the entanglement entropy and the neg-
ativity can be measured and partitioned according to symmetry
sectors. The impatient reader interested directly in the protocol
may skip to Sec. III E.

A. Key idea and the shift operator

The starting point for the entanglement measurement pro-
tocols under consideration is a preparation of n copies of
the many-body system. If, for instance, the original Hilbert
space under consideration corresponds to that of a 1D chain
as depicted in Fig. 2(a), then one extends the Hilbert space
into a product of n such Hilbert spaces describing n identical
chains as described in Fig. 2(b). In this space one wishes to
prepare the n-copy state ρ⊗n

A of the original state ρA. This can
be achieved [32] using optical lattices in cold-atom systems,
where one simulates the same Hamiltonian on the n initially
decoupled identical chains.

One then defines an operator in the extended Hilbert space,
shifting between the quantum states of the copies in region A.
It is simpler to restrict our attention to region A from now on
in this section. Explicitly, we denote a basis of states on the
n-copy Hilbert space of region A by |ψ1, ψ2, . . . , ψn〉 and the
shift operator Ŝ is defined via

Ŝ|ψ1, ψ2, . . . , ψn〉 = |ψn,ψ1, . . . , ψn−1〉. (13)

The key relation used in the protocol is that the Rényi entropies
Sn satisfy

Sn ≡ Tr
{
ρn

A

} = Tr
{
Ŝρ⊗n

A

}
, (14)

i.e., the expectation value of the shift operator in the n-copy
state equals the desired Rényi entropy [31]. As described
in detail in the next section, the protocol proceeds by a
proper manipulation of the n-copy system via a transformation
between the copies [see Fig. 2(c)], followed by site-resolved
measurements [see Fig. 2(d)]. The combination of the latter
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FIG. 2. Depiction of the experimental protocol to measure the
imbalance-resolved Rényi negativity. (a) The system is triparti-
tioned into regions A1, A2, and B. (b) n copies of the system are
prepared. (c) A copy-space Fourier transform is performed on a
region containing A1 and A2. (d) The Nk

A1
and Nk

A2
are measured

in regions A1 and A2 (k = 1, . . . , n), and q = 1
n

∑
k (Nk

A1
− Nk

A2
)

and rn = exp{∑k
2πi

n
k(Nk

A1
− Nk

A2
)} of Eq. (34) are calculated. The

contribution of imbalance sector Q to the Rényi negativity is then
given by the average over δQ,q × rn.

two is designed precisely to implement a measurement of the
expectation value of the shift operator in the n-copy state.

B. Measuring Rényi entropy

Before turning to negativity, it is convenient to introduce
notation and show that the protocol just described indeed can
measure the expectation value of the shift operator and hence
the Rényi entropy. Consider a general bosonic state in the
occupation basis

| �m1, �m2, . . . , �mn〉 =
n∏

k=1

∏
i∈A

(
[â†]ki

)mk
i√

mk
i !

|0〉. (15)

Here the index k runs over the n copies and i runs over all
sites in region A. We then perform a Fourier transform in the
(k = 1, . . . , n)-copy space

F̂ [â†]ki F̂
† = 1√

n

n∑

=1

ωk
[â†]
i , (16)

where ω = e2πi/n, such that

F̂ | �m1, . . . , �mn〉 =
∏
k,i

(
1√
n

∑

 ωk
[â†]
i

)mk
i√

mk
i !

|0〉. (17)

Let us look at the operator

Û ≡ ω
∑n

k=1 kN̂k

, (18)

where N̂k =∑i∈A[â†]ki [â]ki is the total particle number opera-
tor in region A in the kth copy. It satisfies Û [â†]ki = ωk[â†]ki Û .
Using this relation, when acting on the Fourier transformed
state this operator gives

Û F̂ | �m1, �m2, . . . , �mn〉

=
∏
k,i

1√
mk

i !

(
1√
n

∑



ω(k+1)
[â†]
i

)mk
i

|0〉

=
∏
k,i

1√
mk

i !

(
1√
n

∑



ωk
[â†]
i

)mk−1
i

|0〉

= F̂ | �mn, �m1, . . . , �mn−1〉 = F̂ Ŝ| �m1, . . . , �mn〉. (19)

In exchanging the order of creation operators we have used the
bosonic commutation relations. Since this equation holds for
all states | �m1, �m2, . . . , �mn〉, one has

F̂ †Û F̂ = Ŝ. (20)

This operator identity implies that measurements of
Û = ω

∑n
k=1 kN̂k

on the Fourier transformed system yields the
expectation value of Ŝ, hence, by Eq. (14), if the system is in
an n-copy state, this gives the Rényi entropy Sn = Tr{ρn

A}.
In other words, defining the set of commuting occupancies

of region A of the various copies after the Fourier transform
by {Ñ}, where ˆ̃Nk = F̂ †N̂kF̂ , the experiment simply performs
a measurement in this new occupation basis and computes a
function f ({Ñ}) of the outcomes {Ñ} given by

f ({Ñ}) ≡ ω
∑n

k=1 kÑk

. (21)

Operationally, the operational identity (20) is equivalent to

f̂ ({Ñ}) = ω
∑

k k ˆ̃Nk = Ŝ. Thus, we can describe the experimen-
tal protocol via

Tr
{
ρ⊗n

A f̂ ({Ñ})
} = Tr

{
ρ⊗n

A Ŝ
}
. (22)

The left-hand side describes the measurement performed in the
{Ñk} basis and the right-hand side is the desired quantity.

We note that the choice of a function f ({Ñ}) is not unique.
Since the matrix element of the shift operator vanishes except
if N1 = N2 = · · · = Nn, one can replace the function f with
ω
∑n

k=1(k+m)Ñk

, and its average in the n-copy state is invariant
with respect to the integer m. In fact, one can use this invariance
as an experimental test of the operation of the protocol. In the
experiment [32] for n = 2, for example, this amounts to the
possibility to measure the parity either in copy 1 or in copy 2,
which must yield the same average result.

C. Measuring charge-resolved Rényi entropy

Using this notation, it becomes simple to demonstrate the
protocol for measuring the charge-resolved Rényi entropy [28].
In the presence of a conserved number of particles NA, the
general density matrix can be written, using the same notation
as in Eq. (11),

ρA =
∑
N

∑
i,i ′

|N〉i[ρA]ii
′

N 〈N |i ′ . (23)
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Here |N〉i and |N〉i ′ are different states having the
same total number of particles N . Therefore, the n-
copy density matrix can be written, using a superindex
|N〉 ≡ |N1, N2, . . . , Nn〉i1,i2,...,in , as

ρ⊗n
A =

∑
N,N′

[ρA]N,N′ |N〉〈N′|, (24)

where Nk = N ′k (k = 1, . . . , n). We are now interested in
measuring the contribution of the charge NA = N block of
the density matrix [ρA]N =∑i,i ′ |N〉i[ρA]ii

′
N 〈N |i ′ to the Rényi

entropy [28]. This quantity [Sn]N = Tr{([ρA]N )n} equals the
expectation value of the shift operator in the n-copy state
obtained by [ρA]⊗n

N . This may be measured after the Fourier
transformation by calculating the function

fNA
({Ñ}) ≡ δNA, 1

n

∑n
k=1 Ñk × ω

∑n
k=1 kÑk

. (25)

To prove this statement we start with

Tr
{
ρ⊗n

A f̂NA
({Ñ})

} =
∑
N,N′

[ρA]N,N′ 〈N′|f̂NA
({Ñ})|N〉. (26)

Since the sum of the particle number is invariant under the
Fourier transformation

∑n
k=1 Ñk =∑n

k=1 Nk , Eq. (26) equals∑
N,N′

(
δNA, 1

n

∑
k Nk

)
[ρA]N,N′ 〈N′|ω

∑
k kÑk |N〉

=
∑
N,N′

(
δNA, 1

n

∑
k Nk

)
[ρA]N,N′ 〈N′|Ŝ|N〉, (27)

where the last equality uses Eq. (20). Crucially, the matrix
element of the shift operator vanishes except if N1 = N2 =
· · · = Nn, namely, it is proportional to

∏
k,k′ δNk,Nk′ . Thus, we

conclude that

Tr
{
ρ⊗n

A f̂NA
({Ñ})

} =
∑
N,N′

(∏
k

δNA,Nk

)
[ρA]N,N′ 〈N′|Ŝ|N〉

= Tr
{
[ρA]⊗n

NA
Ŝ
} = [Sn]NA

. (28)

D. Measuring negativity

Switching to the Rényi negativity, one defines a twisted shift
operator T̂ = ŜA1

Ŝ−1
A2

on the n-copy Hilbert space of region A

such that

T̂

∣∣∣∣∣
�m1

A1
, . . . , �mn

A1

�m1
A2

, . . . , �mn
A2

〉
=
∣∣∣∣∣
�mn

A1
, �m1

A1
, . . . , �mn−1

A1

�m2
A2

, . . . , �mn
A2

, �m1
A2

〉
. (29)

Here this basis specifies the occupations �m1
A1

, . . . , �mn
A1

on
the n copies of subsystem A1 as well as the occupations
�m1

A2
, . . . , �mn

A2
on the n copies of subsystem A2. In analogy

to Eq. (14), the Rényi negativity is given by the expectation
value of this shift operator in the n-copy state [11],

Rn = Tr
{(

ρ
T2
A

)n} = Tr
{
T̂ ρ⊗n

A

}
. (30)

To proceed with the measurement of the expectation value
of this shift operator in the n-copy state, we use the same
Fourier transform on all sites as in Eq. (16), but generalize
the definition of the Û operator in Eq. (18) to

Û ≡ ω
∑n

k=1 k

(
N̂k

A1
−N̂k

A2

)
. (31)

Here Nk
Aα

is the total particle number operator in subsystem Aα

of the kth copy, i.e., Nk
A1

=∑i∈A1
mk

i and Nk
A2

=∑i∈A2
mk

i .
Following the same steps as in Eq. (19), we readily obtain the
relation

T̂ = F̂ †ω
∑n

k=1 k(N̂k
A1

−N̂k
A2

)
F̂ . (32)

Thus, the physical protocol first consists of a unitary Hamilto-
nian evolution depicted in Fig. 2(c) which implements [31] the
Fourier transformation F̂ . Then, as in Fig. 2(d), we perform
a measurement of the total occupancies Nk

A1
and Nk

A2
in each

region A1 and A2 and in each copy, from which

f neg({N}) ≡ ω
∑n

k=1 k(Nk
A1

−Nk
A2

) (33)

can be computed, and averaged over many realizations to
obtain the total Rényi negativity.

E. Measuring imbalance-resolved negativity

We are now ready to provide a protocol to measure the
symmetry-resolved negativity. We begin with a step-by-step
description of the protocol, followed by an outline of the proof
which relies on the previous sections.

Our protocol to measure the Rényi negativity [Rn]Q for
bosons consists of the following steps (see Fig. 2).

(i) Prepare n copies of the desired system.
(ii) Decouple the sites within each copy and perform a

Fourier transform on every site between the copies. This is
achieved by a unitary Hamiltonian evolution which imple-
ments Eq. (16).

(iii) Perform a measurement of the total particle number Nk
A1

in subsystem A1 and of Nk
A1

in A2 for each copy k = 1 . . . n.
(iv) Calculate

q ≡ 1

n

n∑
k=1

(
Nk

A1
− Nk

A2

)
, rn ≡ e

2πi
n

∑n
k=1 k(Nk

A1
−Nk

A2
)
. (34)

To obtain the value of [Rn]Q one must repeat this procedure
and average over a quantity which is equal to rn if q equals the
required imbalance sector q = Q and is 0 otherwise. In other
words,

[Rn]Q = Tr
{
ρ⊗n

A f̂
neg
Q ({Ñ})

}
, (35)

where the right-hand side reflects the measurement protocol in
the occupation basis Ñ after the Fourier transformation and

f
neg
Q ({N}) ≡ δQ, 1

n

∑
k (Nk

A1
−Nk

A2
) × e

2πi
n

∑
k k(Nk

A1
−Nk

A2
)
. (36)

A few remarks about our protocol are in order. First, it is
not necessary to perform the Fourier transform exclusively on
the sites of subsystem A. Instead, one needs only to perform a
Fourier transform on any region C of the system that contains
region A. This simplification allows for experimental flexibil-
ity. Second, if one measures the total particle numbers Nk

A1

and Nk
A2

in subsystems A1 and A2 by performing occupation
measurements on every site, one can immediately get the
Rényi negativity for all partitions of A, i.e., for all A′

1 ∪ A′
2 =

A ⊆ C. Third, by evaluating Q, the occupancy measurements
automatically decompose the entanglement negativity into
imbalance sectors.
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We also note that we have restricted our analysis to bosons.
The case of fermions was addressed for the second Rényi
entropy in Ref. [37] and we leave generalizations to future
work [38]. In addition, while we only discussed the n � 2
Rényi entropies and negativities, one may use the methods in
Ref. [11] to access the corresponding entanglement entropy
or negativity obtained by analytic continuation and taking the
limit of n → 1.

The proof of Eq. (35) follows from the relation
Tr{[ρA]⊗n

Q T̂ } = Tr{ρ⊗n
A f̂

neg
Q ({Ñ})}; the left-hand side is the

expectation value of the twisted shift operator in the n-
copy state of the imbalance-Q sector [ρA]Q ≡ ([ρT2

A ]Q)T2 ,
which satisfies [Rn]Q = Tr{[ρA]⊗n

Q T̂ }. In order to show
this relation we write a general state using the superindex
notation

|N〉 ≡ ∣∣N1
A1

, . . . , Nn
A1

〉i1
A1

,...,inA1
∣∣N1

A2
, . . . , Nn

A2

〉i1
A2

,...,inA2 , (37)

where {|Nk
Aα

〉1, |Nk
Aα

〉2, |Nk
Aα

〉3, . . . } span the Hilbert space
of subsystem Aα in copy k. We proceed exactly along
the lines of Eqs. (26)–(28) and hence only provide key
remarks. We use the fact that the total number of parti-
cles in each region A1 and A2 remains invariant under the
Fourier transformation

∑n
k=1 Ñk

Aα
=∑n

k=1 Nk
Aα

. This allows
us to extract the δ function operator from the matrix el-
ement 〈N′|δQ,(1/n)

∑n
k=1(Ñk

A1
−Ñk

A2
)e

(2πi/n)
∑n

k=1 k(Ñk
A1

−Ñk
A2

)|N〉. Fi-
nally, we use the relation (32) to obtain a matrix element of
the twisted shift operator 〈N′|T̂ |N〉. The twisted shift operator
acts as

T̂

∣∣∣∣∣
N1

A1
, . . . , Nn

A1

N1
A2

, . . . , Nn
A2

〉{i}
=
∣∣∣∣∣
Nn

A1
, N1

A1
, . . . , Nn−1

A1

N2
A2

, . . . , Nn
A2

, N1
A2

〉{i}
. (38)

States contributing to this matrix element satisfy N ′k
A1

= Nk−1
A1

and N ′k
A2

= Nk+1
A2

. In addition, charge conservation implies
Nk

A1
+ Nk

A2
= N ′k

A1
+ N ′k

A2
. This set of equations allows us to

define

Q ≡ N1
A1

− N2
A2

= Nn
A1

− N1
A2

= Nn−1
A1

− Nn
A2

= · · · = N2
A1

− N3
A2

. (39)

By summing all these equations, we get

Q = 1

n

n∑
k=1

(
Nk

A1
− Nk

A2

) = 1

n

n∑
k=1

(Ñk
A1

− Ñk
A2

). (40)

By observing Eq. (39) we can see that the states which
contribute are exactly the blocks of the original density matrix
that satisfy Eq. (12); these precisely form the imbalance-Q
sector.

IV. FIELD THEORY ANALYSIS

Having shown the possibility to experimentally measure
the separation of negativity into symmetry sectors, we now
study 1D critical systems where general results for this quantity
can be readily obtained. In such 1D critical systems the
entanglement entropy shows the famous logarithmic scaling

FIG. 3. Schematic representation of the Rényi negativity
Tr{(ρT2

A )n} as an n-sheet Riemann surface with A1 = [−
1, 0] and
A2 = [0, 
2]. The phase factor exp{iα(N1 − N

T2
2 )} is implemented by

flux insertions Vα (−
1)V−2α (0)Vα (
2) and represented by the vertical
arrows. The winding line serves only as a visual aid.

with the subsystem size S = c
3 log(
A) + const, which can

be decomposed into charge sectors [28] S =∑NA
[S]NA

; the
contributions [S]NA

were found [28] to share the same dis-
tributions as the charge NA in region A [39]. We will now
address a similar question for the negativity and its imbalance
decomposition.

Similar to the entanglement entropy scaling result, the neg-
ativity of two subsystems consisting of two adjacent intervals
A1 and A2, of lengths 
1 and 
2, out of an infinite system in
the ground state, has also been studied in the scaling limit. It
acquires a universal form [12] Tr|ρT2

A | = Rne→1 ∝ ( 
1
2

1+
2

)c/4,
depending only on the central charge c. We will decompose this
result into imbalance sectors. We note that although the case of
nonadjacent intervals may be treated using similar methods, it
is more technically involved and so we do not explicitly address
it in this section.

We begin by briefly recapitulating the computation method
of negativity based on Ref. [12] using CFT. We note that these
field theory methods are closely related in spirit to the n-copy
construction of the system discussed in the preceding section.
In field theory [12], the Rényi negativity is treated as a partition
function of an n-sheet Riemann surface depicted in Fig. 3. It is
found to be determined by the three-point correlation function
of local “twist” fields,

Rn = Tr
{(

ρ
T2
A

)n} = 〈Tn(−
1)T̃ 2
n (0)Tn(
2)

〉
. (41)

The twist fields Tn generate the n-sheet Riemann surface
depicted in Fig. 3 and have scaling dimensions

�Tn
= c(n − 1/n)

24
, �T 2

no
= �Tno

, �T 2
ne

= 2�Tne/2 . (42)

Here we split the results for the scaling dimension of the
squared twist field for even (n = ne) and odd (n = no) cases.
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Using these scaling dimensions, the desired three-point func-
tion is easily evaluated,

Rno
∝ [
1
2(
1 + 
2)]−

c
12 (no− 1

no
), (43)

Rne
∝ (
1
2)−

c
6 ( ne

2 − 2
ne

)(
1 + 
2)−
c
6 ( ne

2 + 1
ne

), (44)

Tr
∣∣ρT2

A

∣∣ = Rne→1 ∝
(


1
2


1 + 
2

) c
4

. (45)

We herein implement the negativity splitting of Eq. (9).
To do so, we use the Fourier representation of the projection
operator

P̂Q =
∫ π

−π

dα

2π
e−iαQeiα(N̂1−N̂

T2
2 ),

∑
Q

P̂Q = 1. (46)

In the context of field theory, however, we treat the system in
the continuum limit such that

P̂Q =
∫ ∞

−∞

dα

2π
e−iαQeiα(N̂1−N̂

T2
2 ),

∫ ∞

−∞
dQ P̂Q = 1. (47)

We now restrict our attention to a CFT of central charge
c = 1 which is equivalent to 1D massless bosons and thus
to Luttinger liquids (gapless interacting 1D fermions [40,41]).
Applying the methods of Ref. [28], the phase factor eiα(N̂1−〈N̂1〉)

may be implemented by two vertex operators Vα at z = −
1

and V−α at z = 0. Moreover, within the CFT’s geometrical
basis, N̂ is a real operator and thus N̂T2 = N̂∗ = N̂ and so a
similar vertex operator insertion may account for e−iα(N̂2−〈N̂2〉).
In general, such insertions may be done in any of the k =
1, . . . , n sheets with different phases αk , However, these vertex
operators may be interpreted as a flux insertion, in which case
gauge invariance implies that only the overall flux has physical
implications. Indeed, using the techniques of Refs. [33,42], we
show in Appendix A that this physical intuition holds and that
the correlations depend only on the total flux α =∑n

k=1 αk .
Considering a generic Luttinger liquid with parameter K , we
find the scaling dimension of the fluxed twist operator TnVα to
be [28]

�n(α) = 1

24

(
n − 1

n

)
+ K

2n

( α

2π

)2
. (48)

In terms of these fluxed twist operators, the negativities are
also related to three-point functions

[Rn]Q =
∫ ∞

−∞

dα

2π
e−iα(Q−〈Q̂〉)Rn(α), (49)

Rn(α) = e
−iα

〈
N̂1−N̂

T2
2 〉Tr

{
eiα(N̂1−N̂

T2
2 )
(
ρ

T2
A

)n}
= 〈(TnVα )z=−
1

(
T̃ 2

n V−2α

)
z=0(TnVα )z=
2

〉
. (50)

Using the scaling dimensions given in Eqs. (42) and (48), we
evaluate

Rn(α)

Rn

∝ (
1
2)−
4K
n

( α
2π

)2
(
1 + 
2)

2K
n

( α
2π

)2
. (51)

�6 �4 �2 0 2 4 6
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Q− Q

10
3
�R
3�
Q

1� 2�1
1� 2�12
1� 2�50

� CFT

�6 �4 �2 0 2 4 6

10�13

10�10

10�7

10�4

Q− Q

�R
3�
Q

FIG. 4. Exact numerical calculations of [R3]Q for a half-filled
tight-binding chain of free fermions are displayed on a logarithmic
scale and fitted to the CFT predictions (solid lines) of Eq. (52) with
K = 1. The inset shows the same data displayed on a linear scale. All
graphs are for 
1 + 
2 = 4000a and infinite-length environment B.

Upon integration over α in Eq. (49) we obtain the result

[Rn]Q
Rn

=
√

πn

2K ln 
2
1


2
2

(
1+
2 )�3

exp

⎛
⎝−nπ2(Q − 〈Q̂〉)2

2K ln 
2
1


2
2

(
1+
2 )�3

⎞
⎠,

(52)

Tr
∣∣[ρT2

A

]
Q

∣∣
Tr
∣∣ρT2

A

∣∣ =
[

[Rn]Q
Rn

]
ne→1

, (53)

where � ∼ a � 
 is a short distance cutoff and a is the lattice
spacing. These equations provide an analytic expression for the
imbalance-resolved negativity and Rényi negativities which
are numerically inaccessible for large systems.

One may simply cast the result for the negativity equa-
tions (52) and (53) as

Tr
∣∣[ρT2

A

]
Q

∣∣ = 〈P̂N1−N2=Q〉Tr
∣∣ρT2

A

∣∣. (54)

It follows from the identity that TrÔ = Tr{ÔT2}, which leads
to [R1]Q = 〈P̂N1−N2=Q〉 [see Eq. (55)]. This result signifies
that the imbalance-resolved negativity depends only on the
probability distribution function of the occupation imbalance
N1 − N2 itself, 〈P̂N1−N2=Q〉. The latter depends on the Lut-
tinger parameter as seen in Eq. (52).

The expression for the n = 3 Rényi negativity is numeri-
cally accessible and is used in the following section to validate
our results (see Fig. 4).

Numerics

For adjacent intervals A1 and A2, one may use the Jordan-
Wigner transformation to relate the entanglement of either
hard-core bosons or a bosonic spin-half chain such as the XY

model [43,44] to that of free fermions. This corresponds to
the case of Luttinger parameter K = 1, whereby we may use
free-fermion methods to effectively calculate the negativities.

By generalizing the analysis of Refs. [26,45] and using the
results of Refs. [46,47], we may study the Rényi negativity
in any equilibrium free-fermion system with density matrix
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ρ ∝ e−βĤ via a double-Gaussian representation. Specifically,
we may calculate Tr{eÔ (ρT2

A )n} for any operator Ô that is
quadratic in fermionic creation and annihilation operators (see
Appendix B). To utilize these techniques, we use Eq. (46) with
Ô = iα(N̂1 − N̂

T2
2 ),

[Rn]Q = Tr
{
P̂Q

(
ρ

T2
A

)n}
=
∫ π

−π

dα

2π
e−iαQTr

{
eiα(N̂1−N̂

T2
2 )(ρT2

A

)n}
. (55)

Numerical results for [R3]Q for free fermions at zero
temperature are shown in Fig. 4 and are fitted to the CFT
predictions of Eq. (52) with K = 1. Analyses for �/a of
similar systems are known [39,48] to range between 0.1017
and 0.1033. Within the validity regime � � 
, the functional
dependence on � is negligible, and all values in the aforemen-
tioned range yield excellent fits to the data; the figure is plotted
with �/a = 0.1. Further details about the numerical technique
are given in Appendix B.

V. CONCLUSION AND OUTLOOK

We studied entanglement negativity in general many-body
systems possessing a global conserved charge and found it to
be decomposable into symmetry sectors. Interestingly, due to
the partial transposition operation involved in the definition
of negativity, the resulting operator that commutes with the
partially transposed density matrix is not the total charge, but
rather an imbalance operator which is essentially the particle
number difference between two regions.

We have proposed an experimental protocol for the mea-
surement of these contributions to the Rényi negativities using
existing cold-atom technologies. While current cold-atom
detection schemes [32] are based on measurements of the
parity of the on-site occupation due to unavoidable two-atom
molecule formation, the measurements of n > 2 Rényi en-
tropies proposed here require full integer occupation detection.
This requirement may be relaxed for hard-core interacting
bosons, or specifically for fermions. An issue which we have
not addressed here is the entanglement and negativity mea-
surement protocols for fermions where additional fermionic
exchange phases should be taken into account [38].

We have also attained field theory predictions for the
distribution of entanglement in critical 1D systems and have
verified them numerically. In addition to critical systems,
one may study the symmetry decomposition of negativity in
gapped systems. It would be interesting to further explore
physical consequences of this imbalance decomposition of
negativity in topological systems [21–23] such as the AKLT
model [49,50].
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APPENDIX A: GENERALIZED TQFT RESULTS

In this Appendix we investigate the fluxed twist operator
TnVα of Sec. IV. Following Refs. [28,33,42], we find its scaling
dimension (48) and show that it depends only on the total flux
insertion. For simplicity, we set K = 1 (free fermions) within
this appendix.

A vertex operator insertion of Vαk
at copy k = 1, . . . , n

creates a monodromy of α when crossing to the next copy.
Therefore, the boson fields φk satisfy the relations upon
crossing the A1 cut at [−
1, 0],

� �→ T{α}�, (A1)

where the field vector � and transformation matrix T{α}
satisfy [51]

� =

⎛
⎜⎜⎜⎝

eiφ1

eiφ2

...
eiφn

⎞
⎟⎟⎟⎠, T{α} =

⎛
⎜⎜⎜⎝

0 eiα1

0 eiα2

. . .
. . .

(−1)n+1eiαn 0

⎞
⎟⎟⎟⎠.

(A2)

This transformation matrix has eigenvalues

λp = ei 1
n

∑n
k=1 αk e2πi

p

n , p = −n − 1

2
· · · n − 1

2
. (A3)

On the other hand, upon crossing the A2 cut at [0, 
2] the
relation reverses

� �→ T T
{−α}�. (A4)

Since T T
{−α} = T

†
{α} = T −1

{α} , one has [T T
{−α}, T{α}] = 0. This

enables one to simultaneously diagonalize the transformations
T{α} and T T

{−α} in the cuts A1 and A2. This implies that the
p basis eigenvector fields φp remain decoupled and so all
correlations depend only on α =∑n

k=1 αk . In agreement with
the monodromies, one may decompose [33,42] the fluxed
twist operator (TnVα ) =∏p ei( p

n
+ α

2πn
)φp and find its scaling

dimension

�n(α) = 1

2

∑
p

(p

n
+ α

2πn

)2
= 1

24

(
n − 1

n

)
+ 1

2n

( α

2π

)2
.

(A5)

Similar scaling dimensions may be found for the other fluxed
twist operators.

APPENDIX B: NUMERICAL TECHNIQUE

In this Appendix we briefly review the double-Gaussian
representation of Refs. [26,45] and use it to explicitly present
our numerical procedure of Eq. (55), which is displayed
in Fig. 4. References [26,45] have shown that the partially
transposed density matrix of free-electron systems may be
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written as a sum of Gaussian matrices

ρ
T2
A =

∑
σ=±

uσ

Ôσ

TrÔσ

, (B1)

Ôσ = e
∑

ij ĉ
†
i [Wσ ]ij ĉj , uσ = 1√

2
e−i(π/4)σ . (B2)

The Wσ matrices are related to the fermionic Green’s function
[C]ij = 〈[ĉ†i , ĉj ]〉 by

eWσ = 1 + Gσ

1 − Gσ

, Gσ =
(

C11 σ iC12

σ iC21 C22

)
, (B3)

where Cαβ are the blocks of C in regions Aα and Aβ .
To obtain Eq. (55), we first study a generic quadratic

operator X̂ =∑ij ĉ
†
i [X]ij ĉj ,

Tr
{
eX̂
(
ρ

T2
A

)n} =
∑
{σ }

u{σ }
Tr
{
eX̂
∏

i Ôσi

}
∏

i TrÔσi

, (B4)

where u{σ } = 2−n/2e−i(π/4)
∑

i σi are the coefficients of {Ôσ } in
the expansion of (ρT2

A )n. We use the results of Refs. [46,47] to

evaluate

Tr
{
eX̂
(
ρ

T2
A

)n} =
∑
{σ }

u{σ }
det
(
1 + eX

∏
i e

Wσi

)
∏

i det(1 + eWσi )
. (B5)

When [X,Wσ ] = 0, we may use Eq. (B3) and some matrix
algebra to get

Tr
{
eX̂
(
ρ

T2
A

)3} = −1

2
det

[(
1 − G+

2

)3

+ eX

(
1 + G+

2

)3
]

+ 3

2
det

[(
1 − G+

2

)2 1 − G−
2

+ eX

(
1 + G+

2

)2 1 + G−
2

]
. (B6)

This may straightforwardly be numerically estimated.
As noted in Sec. IV, for the calculation of R3 we pick

Ô = iα(N̂1 − N̂
T2
2 ) in Eq. (55). However, in this basis [26]

we have N̂
T2
2 = L2 − N̂2, where L2 is the number of sites in

A2. Therefore, Ô = iα(N̂ − L2) and

[Rn]Q =
∫ π

−π

dα

2π
e−iαQ−iαL2 Tr

{
eiαN̂

(
ρ

T2
A

)n}
, (B7)

such that N̂ =∑ij ĉ
†
i [I]ij ĉj clearly satisfies [I,Wσ ] = 0, and

we may use Eq. (B6).
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