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Experimental classification of entanglement in arbitrary three-qubit pure states
on an NMR quantum information processor
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We undertake experimental detection of the entanglement present in arbitrary three-qubit pure quantum states
on an NMR quantum information processor. Measurements of only four observables suffice to experimentally
differentiate between the six classes of states which are inequivalent under stochastic local operation and classical
communication. The experimental realization is achieved by mapping the desired observables onto Pauli z

operators of a single qubit, which is directly amenable to measurement. The detection scheme is applied to
known entangled states as well as to states randomly generated using a generic scheme that can construct all
possible three-qubit states. The results are substantiated via direct full quantum state tomography as well as via
negativity calculations and the comparison suggests that the protocol is indeed successful in detecting tripartite
entanglement without requiring any a priori information about the states.
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I. INTRODUCTION

Quantum entanglement plays a fundamental role in
quantum information processing and is a key resource for
several quantum computational and quantum communication
tasks [1]. Any experiment aimed at entanglement generation
needs as an integral part a way to establish that entanglement
has indeed been generated [2]. Therefore, the detection of en-
tanglement and its characterization is a foundational problem
and is a key focus of research in quantum information process-
ing [3]. Entanglement detection and certification protocols
include quantum state tomography [4], entanglement witness
operators [5–7] of the density operator under partial transpo-
sition [8,9], and the violation of Bell’s inequalities [10].

Experimentally, entanglement has been created in vari-
ous physical systems including nitrogen-vacancy defect cen-
ters [11], trapped-ion quantum computers [12], superconduct-
ing phase qubits [13], nuclear-spin qubits [14], and quantum
dots [15]. Bound entanglement was created and detected by
using three nuclear spins [16] and there have been several
efforts to create and detect three-qubit entanglement by using
NMR [17–21]. Witness-based entanglement detection pro-
tocols have been implemented experimentally in quantum
optics [22] and NMR [23]. Concurrence [24] was measured
by a single measurement on twin copies of the quantum state
of photons [25] while entanglement of formation was used
as an entanglement quantifier in four trapped ions [26]. Al-
though there has been various experimental advances to detect
entanglement, characterizing entanglement experimentally as
well as computationally remains a daunting task [27–30].
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Therefore it is desirable to invent and implement protocols to
certify the existence of entanglement which are not intensive
on resources.

In the present study we undertake the experimental char-
acterization of arbitrary three-qubit pure states. The three-
qubit states can be classified into six inequivalent classes [31]
under stochastic local operation and classical communica-
tion (SLOCC) [32]. Protocols have been invented to carry
out the classification of three-qubit states into the SLOCC
classes [33,34]. A recent proposal aims to classify any three-
qubit pure entangled state into these six inequivalent classes
by measuring only four observables [35]. We have previously
constructed a scheme to experimentally realize a canonical
form for general three-qubit states, which we use here to
prepare arbitrary three-qubit states with an unknown amount
of entanglement. Experimental implementation of the entan-
glement detection protocol is such that, in a single shot, we
were able to determine if a state belongs to the Greenberger–
Horne–Zeilinger (GHZ) class. We use our previously de-
signed scheme to map the desired observables onto the z

magnetization of one of the subsystems, making it possible
to experimentally measure its expectation value on NMR sys-
tems [36]. Mapping of the observables onto Pauli z operators
of a single qubit facilitates the experimental determination
of the desired expectation value, since the NMR signal is
proportional to the ensemble average of the Pauli z operator.

We implement the protocol on known three-qubit entan-
gled states such as the GHZ state and the W state and also im-
plement it on randomly generated arbitrary three-qubit states
with an unknown amount of entanglement. Seven representa-
tive states belonging to the six SLOCC inequivalent classes as
well as twenty random states were prepared experimentally,
with state fidelities ranging between 89% to 99%. To decide
the entanglement class of a state, the expectation values of
four observables were experimentally measured in the state
under investigation. All seven representative states (namely,
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GHZ, W , WW , three biseparable states, and a separable
state) were successfully detected within the experimental error
limits. By using this protocol, the experimentally randomly
generated arbitrary three-qubit states were correctly identified
as belonging to either the GHZ, the W , the biseparable, or
the separable class of states. We also perform full quantum
state tomography to directly compute the observable value.
Reconstructed density matrices were used to calculate the
entanglement by computing negativity in each case, and the
results compared well with those of the current protocol.

This paper is organized as follows: Section II briefly
describes the theoretical framework, while the mapping of
the required observables onto single-qubit z magnetization
is discussed in Sec. II. Section III presents the experimental
implementation of the entanglement characterization proto-
col on a three-qubit NMR quantum information processor.
Section IV contains some concluding remarks.

II. DETECTING TRIPARTITE ENTANGLEMENT

There are six SLOCC inequivalent classes of entanglement
in three-qubit systems; namely, the GHZ, W , three different
biseparable classes, and the separable class [31]. A widely
used measure of entanglement is the n-tangle [37,38] and a
nonvanishing three-tangle is a signature of the GHZ entangled
class and can hence be used for their detection. For three
parties A, B, and C, the three-tangle τ is defined as

τ = C2
A(BC) − C2

AB − C2
AC, (1)

with CAB and CAC being the concurrence that characterizes
entanglement between A and B and between A and C, re-
spectively; CA(BC) denotes the concurrence between A and the
joint state of the subsystem comprising B and C [39].

The idea of using the three-tangle to investigate entangle-
ment in three-qubit generic states is particularly interesting
and general, because any three-qubit pure state can be written
in the canonical form [40]

|ψ〉 = a0|000〉 + a1e
iθ |100〉 + a2|101〉 + a3|110〉 + a4|111〉,

(2)

where ai � 0,
∑

i a
2
i = 1, and θ ∈ [0, π ], and the class of

states is written in the computational basis {|0〉, |1〉} of the
qubits. The three-tangle for the generic state given in Eq. (2)
turns out to be [35]

τψ = 4a2
0a

2
4 . (3)

A three-tangle can be measured experimentally by measuring
the expectation value of the operator O = 2σ 1

x σ 2
x σ 3

x , in the
three-qubit state |ψ〉. Here, σx , σy , and σz are the Pauli matri-
ces, i = 1, 2, 3 denotes the qubit label, and the tensor product
symbol between the Pauli operators has been omitted for
brevity. Since 〈ψ |O|ψ〉2 = 〈O〉2

ψ = 4τψ , a nonzero expecta-
tion value of O implies that the state under investigation is in
the GHZ class [31]. To further categorize the classes of three-
qubit generic states we need three more observables O1 =
2σ 1

x σ 2
x σ 3

z , O2 = 2σ 1
x σ 2

z σ 3
x , O3 = 2σ 1

z σ 2
x σ 3

x . Experimentally
measuring the expectation values of the operators O, O1, O2,
and O3 can reveal the entanglement class of every three-qubit
pure state [34,35]. Table I summarizes the classification of
the six SLOCC inequivalent classes of entangled states based

TABLE I. Decision table for the classification of three-qubit pure
entangled states based on the expectation values of operators O, O1,
O2, and O3 in state |ψ〉. Each class in the row is shown with the
expected values of the observables.

Class 〈O〉 〈O1〉 〈O2〉 〈O3〉
GHZ �=0 a a a

W 0 �=0 �=0 �=0
BS1 0 0 0 �=0
BS2 0 0 �=0 0
BS3 0 �=0 0 0
Separable 0 0 0 0

aMay or may not be zero.

on the expectation values of the observables O, O1, O2, O3.
The six SLOCC inequivalent classes of three-qubit entangled
states are GHZ, W , BS1, BS2, BS3, and separable. While GHZ
and W classes are well known, BS1 denotes a biseparable
class having B and C subsystems entangled, the BS2 class
has subsystems A and C entangled, while the BS3 class has
subsystems A and B entangled. As has been summarized in
Table I, a nonzero value of 〈O〉 indicates that the state is
in the GHZ class and this expectation value is zero for all
other classes. For the W class of states, all 〈Oj 〉 are nonzero
except 〈O〉. For the BS1 class only 〈O3〉 is nonzero while
only 〈O2〉 and 〈O1〉 are nonzero for the classes BS2 and BS3,
respectively. For separable states all expectations are zero.

To experimentally realize the entanglement characteriza-
tion protocol, one has to determine the expectation values 〈O〉,
〈O1〉, 〈O2〉, and 〈O3〉 for an experimentally prepared state |ψ〉.
In the next section we describe our method to experimentally
realize these expectation values based on subsystem measure-
ment of the Pauli z operator [36] and our experimental scheme
for generating arbitrary three-qubit states [14].

Mapping Pauli-basis operators to single-qubit z operators

A standard way to determine the expectation value of a
desired observable in an experiment is to decompose the
observable as a linear superposition of the observables acces-
sible in the experiment [41]. This task becomes particularly
accessible while dealing with the Pauli basis.

Any observable for a three-qubit system acting on an eight-
dimensional Hilbert space can be decomposed as a linear
superposition of 64 basis operators, and the Pauli basis is one
possible basis for this decomposition. Let the set of Pauli basis
operators be denoted B = {Bi; 0 � i � 63}. For example, O2
has the form σ 1

x σ 2
z σ 3

x and is element B29 of the basis set B.
The four observables O, O1, O2, and O3 are represented
by the elements B21, B23, B29, and B53, respectively, of the
Pauli basis set B. Also by this convention the single-qubit z

operators for the first, second, and third qubit, i.e., σ 1
z , σ 2

z ,
and σ 3

z are the elements B48, B12, and B3, respectively.
Table II details the mapping of all 63 Pauli basis operators

(excluding the 8 ⊗ 8 identity operator) to the single-qubit
Pauli z operator. This mapping is particularly useful in an
experimental setup where the expectation values of Pauli’s
local z operators are easily accessible. In NMR experiments,
the z magnetization of a nuclear spin in a state is proportional
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TABLE II. All 63 product operators, for a three-spin (half) system, mapped to the Pauli z operators (of either spin 1, spin 2, or spin 3) by
mapping the initial state ρ → ρi = Ui · ρ · U †

i .

Observable Initial state mapped via Observable Initial state mapped via

〈B1〉 = Tr[ρ1 · I 3
z ] U1 = Y 3 〈B33〉 = Tr[ρ33 · I 3

z ] U33 = CNOT13 · Y 3 · X1

〈B2〉 = Tr[ρ2 · I 3
z ] U2 = X3 〈B34〉 = Tr[ρ34 · I 3

z ] U34 = CNOT13 · X3 · X1

〈B3〉 = Tr[ρ3 · I 3
z ] U3 = I8 〈B35〉 = Tr[ρ35 · I 3

z ] U35 = CNOT13 · X1

〈B4〉 = Tr[ρ4 · I 2
z ] U4 = Y 2 〈B36〉 = Tr[ρ36 · I 2

z ] U36 = CNOT12 · Y 2 · X1

〈B5〉 = Tr[ρ5 · I 3
z ] U5 = CNOT23 · Y 3 · Y 2 〈B37〉 = Tr[ρ37 · I 3

z ] U37 = CNOT23 · Y 3 · CNOT12 · Y 2 · X1

〈B6〉 = Tr[ρ6 · I 3
z ] U6 = CNOT23 · X3 · Y 2 〈B38〉 = Tr[ρ38 · I 3

z ] U38 = CNOT23 · X3 · CNOT12 · Y 2 · X1

〈B7〉 = Tr[ρ7 · I 3
z ] U7 = CNOT23 · Y 2 〈B39〉 = Tr[ρ39 · I 3

z ] U39 = CNOT23 · CNOT12 · Y 2 · X1

〈B8〉 = Tr[ρ8 · I 2
z ] U8 = X2 〈B40〉 = Tr[ρ40 · I 2

z ] U40 = CNOT12 · X2 · X1

〈B9〉 = Tr[ρ9 · I 3
z ] U9 = CNOT23 · Y 3 · X2 〈B41〉 = Tr[ρ41 · I 3

z ] U41 = CNOT23 · Y 3 · CNOT12 · X2 · X1

〈B10〉 = Tr[ρ10 · I 3
z ] U10 = CNOT23 · X3 · X2 〈B42〉 = Tr[ρ42 · I 3

z ] U42 = CNOT23 · X3 · CNOT12 · X2 · X1

〈B11〉 = Tr[ρ11 · I 3
z ] U11 = CNOT23 · X2 〈B43〉 = Tr[ρ43 · I 3

z ] U43 = CNOT23 · CNOT12 · X2 · X1

〈B12〉 = Tr[ρ12 · I 3
z ] U12 = I8 〈B44〉 = Tr[ρ44 · I 2

z ] U44 = CNOT12 · X1

〈B13〉 = Tr[ρ13 · I 3
z ] U13 = CNOT23 · Y 3 〈B45〉 = Tr[ρ45 · I 3

z ] U45 = CNOT23 · Y 3 · CNOT12 · X1

〈B14〉 = Tr[ρ14 · I 3
z ] U14 = CNOT23 · X3 〈B46〉 = Tr[ρ46 · I 3

z ] U46 = CNOT23 · X3 · CNOT12 · X1

〈B15〉 = Tr[ρ15 · I 3
z ] U15 = CNOT23 〈B47〉 = Tr[ρ47 · I 3

z ] U47 = CNOT23 · CNOT12 · X1

〈B16〉 = Tr[ρ16 · I 1
z ] U16 = X1 〈B48〉 = Tr[ρ48 · I 1

z ] U48 = I8

〈B17〉 = Tr[ρ17 · I 3
z ] U17 = CNOT13 · Y 3 · Y 1 〈B49〉 = Tr[ρ49 · I 3

z ] U49 = CNOT13 · Y 3

〈B18〉 = Tr[ρ18 · I 3
z ] U18 = CNOT13 · X3 · Y 1 〈B50〉 = Tr[ρ50 · I 3

z ] U50 = CNOT13 · X3

〈B19〉 = Tr[ρ19 · I 3
z ] U19 = CNOT13 · Y 1 〈B51〉 = Tr[ρ51 · I 3

z ] U51 = CNOT13

〈B20〉 = Tr[ρ20 · I 2
z ] U20 = CNOT12 · Y 2 · Y 1 〈B52〉 = Tr[ρ52 · I 2

z ] U52 = CNOT12 · Y 2

〈B21〉 = Tr[ρ21 · I 3
z ] U21 = CNOT23 · Y 3 · CNOT12 · Y 2 · Y 1 〈B53〉 = Tr[ρ53 · I 3

z ] U53 = CNOT23 · Y 3 · CNOT12 · Y 2

〈B22〉 = Tr[ρ22 · I 3
z ] U22 = CNOT23 · X3 · CNOT12 · Y 2 · Y 1 〈B54〉 = Tr[ρ54 · I 3

z ] U54 = CNOT23 · X3 · CNOT12 · Y 2

〈B23〉 = Tr[ρ23 · I 3
z ] U23 = CNOT23 · CNOT12 · Y 2 · Y 1 〈B55〉 = Tr[ρ55 · I 3

z ] U55 = CNOT23 · CNOT12 · Y 2

〈B24〉 = Tr[ρ24 · I 2
z ] U24 = CNOT12 · X2 · Y 1 〈B56〉 = Tr[ρ56 · I 2

z ] U56 = CNOT12 · X2

〈B25〉 = Tr[ρ25 · I 3
z ] U25 = CNOT23 · Y 3 · CNOT12 · X2 · Y 1 〈B57〉 = Tr[ρ57 · I 3

z ] U57 = CNOT23 · Y 3 · CNOT12 · X2

〈B26〉 = Tr[ρ26 · I 3
z ] U26 = CNOT23 · X3 · CNOT12 · X2 · Y 1 〈B58〉 = Tr[ρ58 · I 3

z ] U58 = CNOT23 · X3 · CNOT12 · X2

〈B27〉 = Tr[ρ27 · I 3
z ] U27 = CNOT23 · CNOT12 · X2 · Y 1 〈B59〉 = Tr[ρ59 · I 3

z ] U59 = CNOT23 · CNOT12 · X2

〈B28〉 = Tr[ρ28 · I 2
z ] U28 = CNOT12 · Y 1 〈B60〉 = Tr[ρ60 · I 2

z ] U60 = CNOT12

〈B29〉 = Tr[ρ29 · I 3
z ] U29 = CNOT23 · Y 3 · CNOT12 · Y 1 〈B61〉 = Tr[ρ61 · I 3

z ] U61 = CNOT23 · Y 3 · CNOT12

〈B30〉 = Tr[ρ30 · I 3
z ] U30 = CNOT23 · X3 · CNOT12 · Y 1 〈B62〉 = Tr[ρ62 · I 3

z ] U62 = CNOT23 · X3 · CNOT12

〈B31〉 = Tr[ρ31 · I 3
z ] U31 = CNOT12 · CNOT23 · Y 1 〈B63〉 = Tr[ρ63 · I 3

z ] U63 = CNOT23 · CNOT12

〈B32〉 = Tr[ρ32 · I 1
z ] U32 = X1

to the expectation value of Pauli z operator of that spin in the
state.

As an example of the mapping given in Table II, the opera-
tor O2 has the form σ 1

x σ 2
z σ 3

x and is the element B29 of basis set
B. It should be noted here that the order of the basis elements
in the Table II is in the increasing order of base-four subscript,
since in the base-four notation, 0, 1, 2, 3 can be directly
mapped to either identity or Pauli x, y, and z matrices (for
details see the convention followed in Ref. [42]). To determine
〈O2〉 in the state ρ = |ψ〉〈ψ |, one can map the state ρ →
ρ29 = U29 · ρ ·U †

29 with U29 = CNOT23 ·Y 3 · CNOT12 ·Y 1. This
is followed by finding 〈σ 3

z 〉 in the state ρ29. The expectation
value 〈σ 3

z 〉 in the state ρ29 is equivalent to the expectation
value of 〈O2〉 in the state ρ = |ψ〉〈ψ | (Table II); the operation

CNOTkl is a controlled-NOT gate with k as the control qubit
and l as the target qubit, and X, X, Y , and Y represent local π

2
unitary rotations with phases x, −x, y, and −y, respectively.
The subscript on π/2 local unitary rotations denotes qubit
number. The quantum circuit to achieve such a mapping is
shown in Fig. 1(a).

Note that, while measuring the expectation values of O,
O1, O2, or O3, all the Y local rotations may not act in all
four of these cases. The mapping given in Table II is used to
decide which Y local rotation in the circuit 1(a) will act. All
the basis operators in set B can be mapped to single-qubit z

operators in a similar fashion. The mapping given in Table II
is not unique and there are several equivalent mappings which
can be worked out as per the experimental requirements.
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FIG. 1. (a) Quantum circuit to achieve mapping of the state ρ to
either of the states ρ21, ρ23, ρ29, or ρ53 followed by measurement of
qubit three in the computational basis. (b) NMR pulse sequence of
the quantum circuit given in panel (a). All the unfilled rectangles
denote π

2 spin-selective rf pulses while filled rectangles denote π

pulses. Pulse phases are written above the respective pulse and a
bar over a phase represents negative phase. Delays are given by
τij = 1/(8Jij ); i, j label the qubit and J is the coupling constant.

III. NMR IMPLEMENTATION OF THREE-QUBIT
ENTANGLEMENT DETECTION PROTOCOL

The Hamiltonian [43] for a three-qubit system in the rotat-
ing frame is given by

H = −
3∑

i=1

νiI
i
z +

3∑
i>j,i=1

Jij I
i
z I

j
z , (4)

where the indices i, j = 1, 2, or 3 represent the qubit number
and νi is the respective chemical shift in rotating frame,
Jij is the scalar coupling constant, and I i

z is the Pauli’s z-
spin angular-momentum operator of the ith qubit. To im-
plement the entanglement detection protocol experimentally,
13C-labeled diethyl fluoromalonate dissolved in an acetone-
D6 sample was used. 1H, 19F, and 13C spin-half nuclei were
encoded as qubit one, qubit two, and qubit three, respectively.
The system was initialized in the pseudopure (PPS) state, i.e.,
|000〉, using the spatial averaging [44,45] with the density
operator being

ρ000 = 1 − ε

23
I8 + ε|000〉〈000|, (5)

where ε ∼ 10−5 is the thermal polarization at room tempera-
ture and I8 is the 8×8 identity operator. The experimentally
determined NMR parameters (chemical shifts, T1 and T2

relaxation times, and scalar couplings Jij ) as well as the
NMR spectra of the PPS state are shown in Fig. 2. Each
spectral transition is labeled with the logical states of the pas-
sive qubits (i.e., qubits not undergoing any transition) in the
computational basis. The state fidelity of the experimentally
prepared PPS [Fig. 2(c)] was compute to be 0.98 ± 0.01 and

(a)

FIG. 2. (a) Molecular structure of 13C-labeled diethyl fluoroma-
lonate and NMR parameters. NMR spectra of (b) thermal equilib-
rium state and (c) pseudopure state. Each peak is labeled with the
logical state of the qubit which is passive during the transition.
Horizontal scale represents the chemical shifts in ppm.

was calculated by using the fidelity measure [46,47]

F = [Tr(
√√

ρtheorρexpt
√

ρtheor )]
2, (6)

where ρtheor and ρexpt are the theoretically expected and the
experimentally reconstructed density operators, respectively.
Fidelity measure is normalized such that F → 1 as ρexpt →
ρtheor. For the experimental reconstruction of density operator,
full quantum state tomography (QST) [42,48] was performed
by using a preparatory pulse set

{III,XXX, IIY,XYX, YII,XXY, IYY },
where I implies “no operation.” In NMR, a π

2 local unitary
rotation X (Y ) can be achieved by using spin-selective trans-
verse radio frequency (rf) pulses having phase x (y).

Experiments were performed at room temperature (293 K)
on a Bruker Avance III 600-MHz FT-NMR spectrome-
ter equipped with a QXI probe. Local unitary operations
were achieved by using highly accurate and calibrated spin-
selective transverse rf pulses of suitable amplitude, phase,
and duration. Nonlocal unitary operation were achieved by
free evolution under the system Hamiltonian (4), of suitable
duration under the desired scalar coupling with the help
of embedded π refocusing pulses. In the current study, the
durations of π

2 pulses for 1H, 19F, and 13C were 9.55 μs at
18.14 W power level, 22.80 μs at a power level of 42.27 W,
and 15.50 μs at a power level of 179.47 W, respectively.
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A. Measuring observables by mapping to local z magnetization

As discussed in Sec. II, the observables required to differ-
entiate between six inequivalent classes of three-qubit pure
entangled states can be mapped to the Pauli z operator of one
of the qubits. Furthermore, in NMR, the observed z magneti-
zation of a nuclear spin in a quantum state is proportional to
the expectation value of the σz operator [43] of the spin in that
state. The time-domain NMR signal, i.e., the free-induction
decay with appropriate phase gives Lorentzian peaks when
Fourier transformed. These normalized experimental inten-
sities give an estimate of the expectation value of σz of the
quantum state.

Let Ô be the observable whose expectation value is to
be measured in a state ρ = |ψ〉〈ψ |. Instead of measuring
〈Ô〉ρ , the state ρ can be mapped to ρi by using ρi = Ui.ρ.U

†
i

followed by a z-magnetization measurement of one of the
qubits. Table II lists the explicit forms of Ui for all the basis
elements of the Pauli basis set B. In the present study, the
observables of interest are O, O1, O2, and O3, as described
in Sec. II and Table I. The quantum circuit to achieve the
required mapping is shown in Fig. 1(a). The circuit is designed
to map the state ρ to either of the states ρ21, ρ23, ρ29, or ρ53
followed by a σz measurement on the third qubit, i.e., σ 3

z ,
in the mapped state. Depending on the experimental settings,
〈B3〉 in the mapped states is indeed the expectation values of
O, O1, O2, or O3 in the initial state ρ.

The NMR pulse sequence to achieve the quantum mapping
of circuit in Fig. 1(a) is shown in Fig. 1(b). The unfilled
rectangles represent π

2 spin-selective pulses while the filled
rectangles represent π pulses. Evolution under chemical shifts
has been refocused during all the free evolution periods (de-
noted by τij = 1

8Jij
) and π pulses are embedded between the

free evolution periods in such a way that the system evolves
only under the desired scalar coupling Jij .

B. Implementing the entanglement detection protocol

The three-qubit system was prepared in 27 different states
in order to experimentally demonstrate the efficacy of the
entanglement detection protocol. Seven representative states
were prepared from the six inequivalent entanglement classes,
i.e., GHZ (GHZ and WW states), W , three biseparable and a
separable class of states. In addition, 20 generic states were
randomly generated (labeled as R1, R2, R3, . . . , R20). Our
recent [14] experimental scheme was utilized to prepare the
generic three-qubit states. For the details of quantum circuits
as well as NMR pulse sequences used for state preparation,
see Ref. [14]. All the prepared states had state fidelities rang-
ing between 0.89 to 0.99. Each prepared state ρ was passed
through the detection circuit 1(a) to yield the expectation
values of the observables O, O1, O2, and O3, as described
in Sec. III A. Furthermore, full QST [44] was performed to
directly estimate the expectation value of O, O1, O2, and O3
for all the 27 states.

The results of the experimental implementation of the
three-qubit entanglement detection protocol are tabulated in
Table III. For a visual representation of the data in Table III,
bar charts are shown in Fig. 3. The seven known states
were numbered as 1–7 while the 20 random states were

The.
Dir.
QST

O
3

O
2

O
1

O

State Number

3 6 9 12 15 18 21 24 27

0.8

0.4

0

-0.4

-0.8

0.8

0.4

0

-0.4

-0.8

0.8

0.4

0

-0.4

-0.8

0.8

0.4

0

-0.4

-0.8

FIG. 3. Bar plots of the expectation values of the observables O,
O1, O2, and O3 for states numbered from 1–27 (Table III). The hori-
zontal axes denote the state number while the vertical axes represent
the values of the respective observable. Black, cross-hatched, and
unfilled bars represent the theoretical (The.), directly (Dir.) measured
from experiment, and QST-derived expectation values, respectively.

numbered as 8–27, in accordance with Table III. Horizon-
tal axes in plots of Fig. 3 denote the state number while
vertical axes represent the value of the respective observable.
Black, cross-hatched, and unfilled bars represent theoretical
(The.), direct (Dir.) experimental, and QST-based expectation
values, respectively. To further quantify the entanglement
quotient, the entanglement measure, negativity [49,50] was
also computed theoretically as well as experimentally in all
the cases (Table IV). Experiments were repeated several times
for error estimation and to validate the reproducibility of
the experimental results. All the seven representative states
belonging to the six inequivalent entanglement classes were
detected successfully within the experimental error limits, as
suggested by the experimental results in the first seven rows
of Table III in comparison with Table I. The errors in the
experimental expectation values reported in the Table III were
in the range 3.1%–8.5%. The entanglement detection protocol
with only four observables is further supported by negativity
measurements (Table IV). Note here that one will never be
able to conclude that the result of an experimental observation
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TABLE III. Results of the three-qubit entanglement detection protocol for 27 states. The label BS is for biseparable states and R is for
random states. The first column depicts the state label, the top row lists the observable (Obs.), while second row specify if the observable value
is theoretical (The.), direct experimental (Dir.), or from QST.

Obs. → 〈O〉 〈O1〉 〈O2〉 〈O3〉
State(F ) ↓ The. Dir. QST The. Dir. QST The. Dir. QST The. Dir. QST

GHZ(0.95 ± 0.03) 1.00 0.91 0.95 0 −0.04 0.03 0 −0.07 0.05 0 0.07 −0.02

WW (0.98 ± 0.01) 1.00 0.94 0.96 0 0.02 0.03 0 0.05 −0.02 0 −0.03 0.05

W (0.96 ± 0.02) 0 0.05 0.04 0.67 0.60 0.62 0.67 0.61 0.69 0.67 0.59 0.63

BS1(0.95 ± 0.02) 0 −0.03 0.02 0 −0.07 0.06 0 0.09 0.03 1.00 0.93 0.95

BS2(0.96 ± 0.03) 0 0.04 0.04 0 0.06 −0.05 1.00 0.90 0.95 0 0.05 0.05

BS3(0.95 ± 0.04) 0 0.08 −0.06 1.00 0.89 0.94 0 0.09 0.07 0 −0.04 0.02

Sep(0.98 ± 0.01) 0 −0.05 0.02 0 0.09 −0.04 0 0.04 0.03 0 0.08 0.07

R1(0.91 ± 0.02) −0.02 −0.05 −0.05 0.04 0.06 0.05 0.00 0.03 0.01 0.00 0.09 0.03

R2(0.94 ± 0.03) 0.06 0.09 0.08 −0.22 −0.32 −0.33 −0.25 −0.46 −0.41 −0.09 −0.13 −0.16

R3(0.93 ± 0.03) −0.66 −0.76 −0.80 0.17 0.19 0.23 −0.41 −0.63 −0.42 −0.16 −0.23 −0.20

R4(0.91 ± 0.01) −0.17 −0.25 −0.31 −0.15 −0.25 −0.21 −0.29 −0.37 −0.48 0.46 0.55 0.60

R5(0.94 ± 0.03) −0.05 −0.08 −0.08 0.00 0.02 0.05 0.04 0.06 0.04 0.00 0.05 0.07

R6(0.90 ± 0.02) −0.34 −0.65 −0.48 0.10 0.16 0.19 −0.21 −0.29 −0.24 −0.12 −0.19 −0.20

R7(0.93 ± 0.03) −0.08 −0.14 −0.10 0.19 0.22 0.28 0.05 0.08 0.08 −0.01 −0.09 −0.11

R8(0.94 ± 0.01) 0.00 0.03 0.04 0.00 0.04 0.04 0.00 0.06 0.05 0.01 0.04 −0.02

R9(0.95 ± 0.02) −0.13 −0.14 −0.17 −0.02 −0.06 0.03 −0.02 0.05 −0.03 0.03 0.06 0.04

R10(0.92 ± 0.03) 0.64 0.84 0.73 0.03 0.06 0.05 0.00 0.07 −0.03 −0.23 −0.41 −0.25

R11(0.93 ± 0.03) 0.00 0.04 −0.06 0.26 0.47 0.38 0.16 0.18 0.31 0.89 1.01 0.97

R12(0.89 ± 0.02) −0.02 −0.08 0.03 0.12 0.19 0.13 0.02 0.04 0.03 0.04 0.07 0.07

R13(0.92 ± 0.03) −0.07 −0.09 −0.10 −0.17 −0.26 −0.20 0.32 0.44 0.43 −0.33 −0.64 −0.53

R14(0.94 ± 0.04) −0.15 −0.17 −0.19 0.02 0.01 −0.08 −0.01 −0.05 0.03 −0.02 −0.05 −0.06

R15(0.94 ± 0.03) 0.08 0.16 0.12 0.12 0.16 0.15 0.48 0.51 0.68 −0.37 −0.46 −0.61

R16(0.93 ± 0.02) −0.12 −0.17 −0.22 −0.08 −0.12 −0.06 −0.62 −0.77 −0.71 0.13 0.18 0.22

R17(0.93 ± 0.04) 0.00 0.07 0.04 0.00 0.02 0.05 0.00 0.05 0.05 0.00 0.09 −0.03

R18(0.90 ± 0.02) −0.01 −0.08 0.02 0.00 0.04 −0.02 0.00 0.09 0.11 0.00 0.05 0.09

R19(0.94 ± 0.02) −0.19 −0.22 −0.27 −0.63 −0.82 −0.86 −0.48 −0.73 −0.54 0.13 0.20 0.16

R20(0.93 ± 0.03) 0.00 −0.07 −0.01 0.00 0.05 0.04 0.00 −0.04 0.06 0.00 0.07 −0.02

is exactly zero. However, it can be established that the result
is nonzero. This has to be kept in mind while interpreting the
experimentally obtained values of the operators involved via
the decision Table I.

The results for the 20 randomly generated generic states,
numbered 8–27 (R1–R20) are interesting. For instance, states
R10 and R11 have a negativity of approximately 0.35 which
implies that these states have genuine tripartite entanglement.
On the other hand, the experimental results of the current
detection protocol (Table III) suggest that R10 has a nonzero
three-tangle, which is a signature of the GHZ class. The states
R3, R4, R6, R7, R14, R16, and R19 also belong to the GHZ class
because they all have nonzero three-tangle as well as finite
negativity. On the other hand, the state R11 has a vanishing
three-tangle with nonvanishing expectation values of O1, O2,
and O3 which indicates that this state belongs to the W class.
The states R2, R13, and R15 were also identified as members
of the W class by using the detection protocol. These results
demonstrate the fine-grained state discrimination power of the
entanglement detection protocol as compared with procedures
that rely on QST. Furthermore, all vanishing expectation

values as well as a near-zero negativity, in the case of the
R8 state, imply that it belongs to the separable class. The
randomly generated states R1, R5, R17, R18, and R20 have
also been identified as belonging to the separable class of
states. Interestingly, R12 has vanishing values of three-tangle,
negativity, 〈O2〉, and 〈O3〉 but has a finite value of 〈O1〉,
from which one can conclude that this state belongs to the
biseparable BS3 class.

C. Effect of mixedness in the prepared states

While the proposed entanglement classification protocol
assumes the state under investigation to be pure, the experi-
mentally prepared states are invariably mixed. The experimen-
tally prepared density operator ρe can be expanded in terms
of its eigenvalues λj and corresponding eigenvectors |λj 〉
as ρe = ∑8

j=1 |λj 〉〈λj |, obeying the normalization condition∑8
j=1 λj = 1. For a pure state ρp, only one of the eigenvalues

can be nonzero, so we take λ
p

1 = 1 and the other eigenvalues
to be zero. The expectation value of the observable Ô can then
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TABLE IV. Theoretically calculated and experimentally mea-
sured values of negativity.

Negativity →
State ↓ Theoretical Experimental

GHZ 0.5 0.46 ± 0.03

WW 0.37 0.35 ± 0.03

W 0.47 0.41 ± 0.02

BS1 0 0.03 ± 0.02

BS2 0 0.05 ± 0.02

BS3 0 0.03 ± 0.03

Sep 0 0.02 ± 0.01

R1 0.02 0.04 ± 0.02

R2 0.16 0.12 ± 0.04

R3 0.38 0.35 ± 0.07

R4 0.38 0.34 ± 0.06

R5 0.03 0.04 ± 0.02

R6 0.21 0.18 ± 0.04

R7 0.09 0.08 ± 0.03

R8 0 0.02 ± 0.02

R9 0.07 0.06 ± 0.03

R10 0.38 0.35 ± 0.08

R11 0.32 0.28 ± 0.06

R12 0.05 0.04 ± 0.02

R13 0.18 0.15 ± 0.03

R14 0.08 0.07 ± 0.02

R15 0.34 0.32 ± 0.06

R16 0.30 0.28 ± 0.06

R17 0 0.03 ± 0.02

R18 0 0.02 ± 0.02

R19 0.39 0.36 ± 0.09
R20 0 0.02 ± 0.02

be written as

〈Ô〉p = 〈
λ

p

1

∣∣Ô∣∣λp

1

〉 = Tr[ρp · Ô]. (7)

In an actual experiment the situation is different and sev-
eral eigenvalues of the density operator may be nonzero.
The errors can arise either from the mixedness present in
the experimentally prepared state ρe or in the experimental
measurement of 〈Ô〉. These errors are dominantly caused by
imperfections in the unitary rotations used in state prepara-
tion, rf inhomogeneity of the applied magnetic field, as well
as T2 and T1 decoherence processes.

Let λ1 be the maximum eigenvalue of the experimentally
prepared state ρe. Mixedness is indicated by nonzero eigenval-
ues λj for j �= 1. The expectation value of Ô can be written
as an equation similar to Eq. (7):

〈Ô〉e = Tr[ρe.Ô] =
8∑

j=1

λiTr[Pi.Ô] =
8∑

j=1

λioi . (8)

The question is that, if we approximate our state to be a
pure state corresponding to the largest eigenvalue λ1 and take

〈Ô〉p = 〈λ1|Ô|λ1〉, how much error is introduced and how do
these errors affect our results?

To estimate the error in the value of 〈Ô〉 due to the
mixedness we can define the fractional error as

� = 〈Ô〉p − 〈Ô〉e
〈Ô〉p

∼= (1 − λ1) −
∑8

j=2 λjoj

o1
, (9)

where oj depend on the operator involved. The experimental
states have a minimum λ1 = 0.88 while λ1 � 0.92 in other
cases. In case of all the four observables O, O1, O2, and O3

we computed � for all the 27 experimentally prepared states
and the obtained values as percentage error were in the range
1.1% � � � 9.3%.

In light of the errors introduced by the mixedness present
in the experimentally prepared states the detection protocol
has to take � error values into consideration in addition to
the experimental errors reported in the Table III for deciding
the class of three-qubit entanglement. As is evident from
the above analysis, in the worst-case scenario the protocol
works 90% of the time. To further increase the fidelity of
the protocol, one can repeat the entire scheme on the same
prepared state a number of times.

IV. CONCLUDING REMARKS

We have implemented a three-qubit entanglement detec-
tion and classification protocol on an NMR quantum infor-
mation processor. The current protocol is resource efficient
because it requires the measurement of only four observ-
ables to detect the entanglement of unknown three-qubit pure
states, in contrast to the procedures relying on QST, where
we need many more experiments. The spin ensemble was
prepared in a number of three-qubit states, including stan-
dard and randomly selected states, to test the efficacy of the
entanglement detection scheme. Experimental results were
further verified and supported with full QST and negativity
measurements. The protocol was very well able to detect
the entanglement present in the seven representative states
(belonging to the GHZ, W , WW̄ , biseparable and separable
SLOCC inequivalent classes). A nonzero negativity indicates
a genuine tripartite entanglement while a nonvanishing three-
tangle implies that the state is in GHZ class, and for the
randomly generated states, the protocol was able to classify
the R3, R4, R6, R7, R10, R14, R16, and R19 states as belonging
to the GHZ class. Although the randomly generated R11 state
has a nonzero negativity, it has a vanishing three-tangle, which
implies that state belongs to the W class (which is further
supported by nonzero values of the expectation values O1,
O2, and O3). The states R2, R13, and R15 were also found
to belong to the W class. Vanishing expectation values for
all four observables as well as vanishing negativity values
indicate that the randomly generated states R1, R5, R8, R17,
R18, and R20 belong to the separable class, while the state
R12 was correctly identified as belonging to the BS3 class.
We noted that, while deciding the class of an experimentally
prepared state using the current protocol, one has to take into
consideration the mixedness present in the actually prepared
states. We estimated the errors introduced due to mixed-
ness and found that, although the errors were nonvanishing,
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their effect on the experimental classification was small,
due to the high purity of all the experimentally prepared
states.

With these encouraging experimental results, it would be
interesting to extend the scheme to mixed states of three
qubits, to a larger number of qubits, and to multipartite
entanglement detection in higher-dimensional qudit systems.
Results in these directions will be taken up elsewhere. Exper-
imentally classifying entanglement in arbitrary multipartite
entangled states is a challenging venture and our scheme is
a step forward in this direction.
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