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Derivation of Maxwell-type equations for open systems
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Using equations of motion with the anisotropic dissipative term for quantum particle and quantum-mechanical
commutation rules, the general Maxwell-type differential equations are derived. The direct modifications of the
well-known Maxwell equations due to the medium effects (openness of the system) are discussed.
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I. INTRODUCTION

Maxwell equations have been derived as a mathematical
reflection of the already established empirical facts. In macro-
scopic quantum electrodynamics, they have been expressed
as a relationship between electric E0 and magnetic H0 field
vectors, describing an electromagnetic field. The properties of
the medium (matter) are taken into account only by means
of material equations. Since the latter is not always possible,
such a description is not universal [1].

Using the equations of motion

mẍj = F 0
j (x, ẋ, t ) (1)

of the nonrelativistic point particle of mass m with the
Cartesian position operator xj , j = 1, 2, 3, and the quantum-
mechanical commutation relations

[xj , xk] = 0, (2)

m[xj , ẋk] = ih̄δjk, (3)

the Lorentz force law (εjkl is the Levi-Cività antisymmetric
tensor)

F 0
j = E0

j + εjkl ẋkH
0
l (4)

and two Maxwell equations

∇jH
0
j = 0, (5)

Ḣ 0
j + εjkl∇kE

0
l = 0 (6)

were derived in Ref. [2]. As explicitly demonstrated, E0(x, t )
and H0(x, t ) are the vector functions of the coordinate x and
time t but not the velocities. As shown in Ref. [3], the particle
motion in the noninertial frame with the Coriolis-like forces
or in the weak gravitational field also satisfies the constraints
(1)–(3). The velocity-dependent forces are not limited to
electromagnetic ones, and the commutation relations (2) and
(3) are also determined by the equations of motion (1) [3].
The generalization of this approach [2,3] to the relativistic
case was done in Ref. [4]. The connection of the classical
equations of motion and Maxwell electromagnetic equations
in an elegant manner was explicitly shown in Ref. [5].

Note also the derivation of the Lorentz force law in Ref. [6]
based on the commutation rules.

References [2–6] did not taken into account that systems by
their nature are open systems [1,7–11]. In this case, it is nec-
essary to explicitly take into consideration the environmental
or medium effects in the equations of motion. In the present
paper, we try to solve this problem. In addition to the Lorenz
force F 0

j , the motion of the test particle (open system) is under
the influence of an additional force fj induced by the physical
medium. This force effectively describes the direct interaction
of the moving particle with the medium and has experimental
justification.

II. GENERAL CONSIDERATION

Let us consider the general equations of motion

mẍj = Fj (x, ẋ, t ) − λjk (x)ẋk, (7)

where the motion of the test particle is under the influence of
an additional dissipative type force fj = −λjk (x)ẋk induced
by physical medium. Here λjk (x) = λ(jk)(x) + λ[jk](x) is the
general tensor field, where λ(jk) and λ[jk] are the symmetrized
and antisymmetrized tensors, respectively. Note that these
tensors depend on the coordinate x. In general, Eq. (7) should
also include the fluctuating forces, leading to a stochastic
dynamics. For simplicity, we consider the average dynamics
of the test particle.

Taking the total time derivative of Eq. (3), we obtain

[ẋj , ẋk] + [xj , ẍk] = 0. (8)

Substituting (7) in Eq. (8), we find

[xj , Fk] = ih̄

m

(
λ(jk) +

{
im2

h̄
[ẋj , ẋk] − λ[jk]

})

= ih̄

m
(λ(jk) − εjklHl ). (9)

Because the term in curly brackets in Eq. (9) is antisym-
metrized with respect to j → k and k → j , we introduce,
without loss of generality, the vector magnetic field

Hl = −1

2
εjkl

(
im2

h̄
[ẋj , ẋk] − λ[jk]

)
= H 0

l + 1

2
εjklλ[jk].

(10)
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Expressing [ẋj , ẋk] from Eq. (10) and substituting into the
Jacobi identity

[xl, [ẋj , ẋk]] = 0, (11)

we derive

εjkp[xl,Hp] = [xl, λ[jk]] = 0 → [xl,Hp] = 0, (12)

which means that Hp only depends on x and t . The Jacobi
identity

εjkl[ẋl , [ẋj , ẋk]] = 0 (13)

together with Eq. (10) implies

[ẋl , Hl] = 1
2εjkl[ẋl , λ[jk]], (14)

which is equivalent to

divH = 1
2εjkl∇lλ[jk]. (15)

One can assign the role of magnetic charge density ρm to the
term on the right-hand side of Eq. (15). Thus, the magnetic
charge density ρm is a possible source of the static magnetic
field by analogy with the electric charge density ρe as a source
of the static electric field. Here the magnetic charge (Dirac
monopole [12]) is related to the heterogeneous antisymmetric
tensor field λ[jk]. When λ[jk] is a homogeneous field and,
correspondingly, ∇lλ[jk] = 0, we again obtain Eq. (5). In
magnets, the magnetic charge is related to the magnetization I:
ρm = −divI [13]. The well-known Maxwell equations assert
that ρm = 0 and there are no other sources of magnetic fields,
except electric currents.

Substituting now the vector field

Fj = Ej + εjkl ẋkHl (16)

into Eq. (9), we obtain

[xj , Ek] = ih̄

m
λ(jk). (17)

The vector electric field

Ej = E0
j + λ(jk)ẋk (18)

follows from Eqs. (2) and (17). As seen from Eqs. (10)
and (18), the vector electric and magnetic fields contain the
individual property of the medium, resistance, or conductivity.
At E0 = 0, Eq. (18) is reduced to the material-type equation
(e.g., the Ohmic law in the case of electromagnetic forces).
Using Eq. (18), one can derive the Maxwell type equation

divE = ρe + ∇j λ(jk)ẋk, (19)

where ρe = divE0 is an analog of the electric charge density.
Taking the total time derivative of the vector magnetic field

H (10),

∂Hl

∂t
+ ẋm

∂Hl

∂xm

= 1

2
εjkl ẋm∇mλ[jk] − im2

h̄
εjkl[ẍj , ẋk], (20)

and making some tedious but simple algebra, we obtain the
Maxwell-type equation

∂Hl

∂t
=−εlkj

∂Ej

∂xk

− 1

m
{λjjHl−λqlHq − λ[lk]Hk−εjklλjpλ[pk]}

− εjkl ẋp∇kλjp + 1

2
{εjkl ẋm∇m + εjkpẋl∇p}λ[jk]. (21)

This equation is the generalized law of electromagnetic induc-
tion and more complicated than the corresponding Maxwell
equation. In the case of λjk ≡ 0, we rederive all the results of
Refs. [2,3]. If λjk are constants, Eq. (21) is transformed into

∂Hl

∂t
= −εlkj

∂Ej

∂xk

− 1

m
{λjjHl − λqlHq

− λ[lk]Hk − εjklλjpλ[pk]}. (22)

In the particular case of the symmetric tensor field λjk =
λ(x)δjk , Eq. (21) is simplified as

∂Hl

∂t
= −εlkj

∂Ej

∂xk

− 2λ

m
Hl − εljkẋj∇kλ (23)

or

∂H
∂t

= −rotE − 2λ

m
H − ẋ × ∇λ. (24)

At constant λ, we have

∂H
∂t

= −rotE − 2λ

m
H, (25)

which is similar to one for the ferromagnetic materials, in
which λ is proportional to the magnetic conductivity (inverse
to the magnetic viscosity) [13].

Taking total time derivative of vector electric field E (18),

∂El

∂t
+ ẋm

∂El

∂xm

= ∂E0
l

∂t
+ ẋm

∂E0
l

∂xm

+ ẋi∇iλ(lk) + λ(lk)ẍk,

(26)

we obtain the Maxwell-type equation

∂El

∂t
= εlkj

∂Hj

∂xk

− jl + ẋi∇iλ[lk]ẋk + λ(lk)

m
{Ek

+ εlkj ẋlHj − λklẋl}. (27)

Here we employ that

∂E0
l

∂t
= εlkj

∂H 0
j

∂xk

− jl, (28)

where j is an analog of the electric current density. Equation
(27) is the generalized Ampère law.

Thus, in the general case for electromagnetic forces, in-
stead of the Maxwell and material equations, more compli-
cated equations should be used: a closed system of coupled
equations of motion (7) (or, more generally, the quantum
Langevin equations or the corresponding quantum diffusion
equation by also taking into account the fluctuations) for the
charge particles and field equations (15), (19), (21), and (27).
Note that our definitions for H and E are different from the
standard definitions. For example, such an approach can be
used to describe electromagnetic processes in a fully ionized
plasma.

III. CONCLUSION

Employing equations of motion for the test quantum par-
ticle and quantum-mechanical commutation rules, we derived
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the Maxwell-type differential equations for forces Fj of any
nature. Because these equations contain the influence of the
medium (openness of the system), they are more complicated
than the usual Maxwell equations for electromagnetic forces.
As shown, for the strongly inhomogeneous anisotropic sys-
tems, the effective magnetic charge appears in Eq. (15). Thus,
the obtained equations acquire a more symmetrical form,
where there are magnetic and electric charges. The magnetic
charge is related to the inhomogeneous antisymmetric tensor
field λ[jk]. It should be noted that a magnetic monopole
(magnetic charge) was sought in some materials possess-
ing strongly anisotropic crystal structure (e.g., the nematic
materials) and, accordingly, possessing strongly anisotropic
dissipative properties. We also found that the influence of
a homogeneous and isotropic medium leads to the field
equation (25) for the ferromagnetic materials with magnetic
conductivity.

Using the nonrelativistic classical equations of motion,
corresponding to Eq. (7), and the usual commutator–Poisson
bracket correspondence, one can deduce the same results for
the open classical systems. It is also possible to assume that
the forces in nature are united only by the general form of
the equations of motion which contain the “electric” and
“magnetic” components.
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