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Experimental test of a stronger multiobservable uncertainty relation
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The Heisenberg-Robertson uncertainty relation is the hallmark of quantum physics and has been widely
investigated. However, it does not capture the concept of incompatible observables because it can be trivial
even for incompatible observables. Recently some stronger uncertainty relations relating the sums of variances
were proposed. Here we experimentally demonstrate that these stronger multiobservable uncertainty relations
are valid in a state-dependent manner and that the lower bound is guaranteed to be nontrivial for multiple
observables that are incompatible on the state of the system being measured. We find that the behavior of multiple
high-dimensional observables agrees with the predictions of quantum theory. Our experimental results not only
foster insight into a fundamental limitation of measurements with multiple observables but also contribute to the
study of the precision measurement technology in quantum information processing.
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I. INTRODUCTION

The Heisenberg-Robertson uncertainty relation [1–3] is
the hallmarks of quantum physics and has been widely in-
vestigated since its original formulation, as it quantitatively
expresses the impossibility of jointly sharp preparation of
incompatible observables. The uncertainty relation plays an
important role in quantum technologies including quantum
cryptography [4,5], quantum entanglement [6–8], and general
physics [9,10]. The uncertainty relation has been tested exper-
imentally in many physics systems, such as neutronic [11–13]
and photonic qubits [14–20].

If the measurement on a given particle is chosen from a set
of two possible observables A and B, the resulting bound on
the uncertainty can be expressed in terms of the commutator,

�A2�B2 �
∣∣ 1

2 〈[A,B]〉∣∣2
, (1)

which is the so-called Heisenberg-Robertson uncertainty rela-
tion. However, it does not capture the concept of incompatible
observables because it can be trivial even for incompatible ob-
servables. When either of two variances is zero the uncertainty
relation becomes trivial even if the other variance is nonzero.

To overcome this limitation of the Heisenberg-Robertson
uncertainty relation, Maccone and Pati proposed two un-
certainty relations to overcome the flaw in the Heisenberg-
Robertson relation [21], employing the sum of variances of
measurements of general observables instead of product of
them. The first inequality is

�A2 + �B2 � ±i〈[A,B]〉 + |〈ψ |A ± iB|ψ⊥〉|2, (2)

where the signs ± should be chosen so that ±i〈[A,B]〉 is
positive, |ψ〉 is an arbitrary state on which A and B are
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incompatible, and |ψ⊥〉 is orthogonal to |ψ〉. It becomes an
equality by maximizing over |ψ⊥〉. The second inequality is

�A2 + �B2 � 1
2 |A+B〈ψ⊥|A + B|ψ〉|2, (3)

where |ψ⊥〉A+B ∝ (A + B − 〈A + B〉)|ψ〉 is orthogonal to
|ψ〉. It becomes an equality if the state |ψ〉 is an eigenstate
of A − B. Both of these uncertainty relations, based on the
sum of variances of two observables, have been tested experi-
mentally [19].

The uncertainty relation based on the sum of variances
of measurements of general observables can be extended to
a multiobservable uncertainty relation [22]. For the case of
N incompatible observables Ai (i = 1, . . . , N ), there are two
inequalities:

N∑
i=1

(�Ai )
2 � 1

2(N − 1)

∑
1�i<j�N

[�(Ai + Aj )]2 (4)

and
N∑

i=1

(�Ai )
2 � 1

2(N − 1)

∑
1�i<j�N

[�(Ai − Aj )]2. (5)

Recently, Song et al. [23] improved the multiobservable
uncertainty relation and proposed a stronger one with a tighter
lower bound:

N∑
i=1

(�Ai )
2 � 1

N

[
�

(
N∑

i=1

Ai

)]2

+ 2

N2(N − 1)

⎡
⎣ ∑

1�i<j�N

�(Ai − Aj )

⎤
⎦

2

. (6)

The uncertainty relations based on the sum of variances of
three two-dimensional observables have been experimentally
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investigated [24,25]. The question has been raised of whether
or not these uncertainty relations work for higher-dimensional
observables.

Here, we experimentally demonstrate that the stronger
uncertainty relations based on the sum of variances of multiple
high-dimensional observables are valid in a state-dependent
manner, and the lower bound is guaranteed to be nontrivial for
multiple high-dimensional observables that are incompatible
on the state of the system being measured. We use a qutrit as
an example, realized by polarized photons in three different
modes, and we demonstrate that these uncertainty relations
are valid for states of a spin-1 particle. The behavior we find
agrees with the predictions of quantum theory and obeys these
uncertainty relations.

These uncertainty relations work well even for spe-
cial states which trivialize the Heisenberg-Robertson rela-
tion. When either of the variances is zero, the Heisenberg-
Robertson relation becomes an equality and is trivial even
if the other variance is nonzero. This is the so-called

complementarity—an extreme form of uncertainty. That is,
one of properties of a system is perfectly known, and the
others are completely uncertain. This is a situation which the
Heisenberg-Robertson inequality fails to explain. However,
the behavior of the system obeys the stronger uncertainty
relations even in that situation.

Furthermore, in our experiment, every term can be ob-
tained directly by the outcomes of the projective measure-
ments applied on the state being measured. No quantum state
tomography is required at all, which makes our experiment
more easy to perform.

II. EXPERIMENTAL INVESTIGATIONS

We investigate the stronger uncertainty relations based on
the sum of variants of three incompatible observables (6)
by choosing three components of the angular momentum for
spin-1 particle as three observables:

A = Jx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, B = Jy = 1√

2

⎛
⎝ 0 i 0

−i 0 i

0 −i 0

⎞
⎠, C = Jz =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (7)

The inequality (6) can be written as

�J 2
x + �J 2

y + �J 2
z � 1

3 [�(Jx + Jy + Jz)]2 + 1
9 [�(Jx − Jy ) + �(Jy − Jz) + �(Jx − Jz)]2. (8)

It can be rewritten as

�J 2
x + �J 2

y + �J 2
z

� 1

3

[〈
J 2

x

〉+〈
J 2

y

〉+〈
J 2

z

〉+〈J ′〉 − (〈Jx〉 + 〈Jy〉 + 〈Jz〉)2
]

+ 1

9

[√〈
J 2

x

〉 + 〈
J 2

y

〉 − (〈Jx〉 − 〈Jy〉)2

+
√〈

J 2
x

〉 + 〈
J 2

z

〉 − 〈J ′〉 − (〈Jx〉 − 〈Jz〉)2

+
√〈

J 2
y

〉 + 〈
J 2

z

〉 − (〈Jz〉 − 〈Jy〉)2

]2

. (9)

Here, we define an observable J ′ as

J ′ = JxJz + JzJx. (10)

Thus to test the uncertainty relation (8), we need the expected
values of observables Jx , Jy , Jz, and J ′.

For experimental demonstration, a qutrit is realized by
single photons in three modes and the basis states |0〉 =
(1, 0, 0)T, |1〉 = (0, 1, 0)T, and |2〉 = (0, 0, 1)T are encoded
by the horizontally polarized photons in the upper mode, the
vertically polarized photons in the upper mode, and the verti-
cally polarized photons in the lower mode, respectively. Pairs
of photons are generated via type-I spontaneous parametric
down-conversion (SPDC). With the detection of a trigger
photon, the other photon in one pair is heralded in the exper-
imental setup shown in Fig. 1. The heralded single photons
pass through a polarizing beam splitter (PBS) followed by a
half-wave plate (HWP, H0) with the specific setting angle ϑ .

Then a birefringent calcite beam displacer (BD1) splits them
into two parallel spatial modes, i.e., upper and lower modes.
The optical axis of the BD is cut so that vertically polarized
photons are directly transmitted and horizontal photons un-
dergo a lateral displacement into a neighboring mode. After
passing through two HWPs (H1 at π/8 and H2 at π/2), the
photons are prepared in the state

|ψθ 〉 =
(

sin θ√
2

,
sin θ√

2
, cos θ

)T

, (11)

where θ = π/2 − 2ϑ . The matrix form of the operation of the
HWP with the setting angle ϑ is

(
cos 2ϑ sin 2ϑ

sin 2ϑ − cos 2ϑ

)
.

The matrix form of the operation of the QWP is

(
cos2 ϑ + i sin2 ϑ (1 − i) sin ϑ cos ϑ

(1 − i) sin ϑ cos ϑ sin2 ϑ + i cos2 ϑ

)
.

We choose θ = jπ/10 (j = 0, . . . , 10), a total of eleven
states for testing the uncertainty relation (8).

To test the uncertainty relation (8), we need the expected
values of observables Jx , Jy , Jz, and J ′. An observable can be
written as M = ∑

i mi |mi〉〈mi |, where |mi〉 is the eigenstate
of the observable M and mi is the corresponding eigenvalue.
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FIG. 1. Experimental setup for testing the uncertainty relations based on the sum of variants of three incompatible observables Jx , Jy , and
Jz. Photon pairs are generated via type-I SPDC using a 0.5-mm-thick β-barium-borate (BBO) crystal, pumped by a continuous wave diode
laser with 80 mW of power. The pump is filtered out by an interference filter which restricts the photon bandwidth to 3 nm. With the detection
of the trigger, the heralded single photon is injected into the optical network. The polarizing beam splitter (PBS), half-wave plates (HWPs;
H0, H1, and H2) and beam displacer (BD1) are used to generate the qutrit state |ψθ 〉 being measured. The rest HWPs, quarter-wave plates
(QWPs) and BDs are used to realize the projective measurements of the observables Jx , Jy , and J ′ in (a) and Jz in (b), which are applied on the
state |ψθ 〉.

The expected value of the observable M is

〈M〉 = 〈ψθ |M|ψθ 〉
=

∑
i

mi〈ψθ |mi〉〈mi |ψθ 〉 =
∑

i

mi |〈ψθ |mi〉|2. (12)

Then we can define a unitary operator U = ∑
i |i〉〈mi |. We

apply the unitary operator U on the initial state |ψθ 〉 and then
project the final state into the basis states |i〉 (i = 0, 1, 2). The
value |〈ψθ |mi〉|2 equals the probability of the photons being
measured in the state |i〉,

|〈ψθ |mi〉|2 = Tr(|ψθ 〉〈ψθ |U †|i〉〈i|U ). (13)

Similarly, one can calculate the variance �M =
〈M2〉 − 〈M〉2 of the observable M with the outcome of
the projective measurement on the state |ψθ 〉. Thus to obtain
the expected values of the observables Jx , Jy , Jz, and J ′, we
only need to realize four unitary operators applied on the state
|ψθ 〉 being measured and apply the projective measurement
|i〉〈i| (i = 0, 1, 2) on the final state U |ψθ 〉.

The unitary operator belong to SU (3) can be decomposed
into three unitary operators, each of which applies a rotation
on just two of the basis states, leaving the other unchanged.
Each of them can be realized by wave plates and beam displac-
ers. One of the HWPs is used to apply a rotation on two modes
of the qutrit state and the others are use to compensate for
the optical delay. The BDs are used to split the photons with
different polarizations into different spatial modes and then
combine the photons with two specific polarization modes in

the same spatial mode. Then two-mode transformations can
be implemented via wave plates acting on the two polarization
modes propagating in the same spatial mode.

We use J ′ as an example. The corresponding unitary
operator is

U =

⎛
⎜⎝

− 1
2

1√
2

1
2

− 1
2 − 1√

2
1
2

1√
2

0 1√
2

⎞
⎟⎠, (14)

which can be decomposed as

U =U3U2U1

=

⎛
⎜⎝

1√
2

1√
2

0

− 1
2

1√
2

0

0 0 1

⎞
⎟⎠ ·

⎛
⎜⎝

−1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2

⎞
⎟⎠ ·

⎛
⎝ 0 −1 0

−1 0 0
0 0 1

⎞
⎠.

(15)
A similar unitary transformation was realized in our previous
experiment in [19], and our setup can actually realize an
arbitrary unitary transformation on a qutrit. In this experiment,
a HWP (H3) is used to realize a two-mode transformation
on the basis states |0〉 and |1〉, and then a BD (BD2) is used
to split the photons with different polarizations into different
spatial modes and then combine the photons in states |1〉
and |2〉 in the same spatial mode. We use a HWP (H6) to
realize another two-mode transformation on the basis states
|1〉 and |2〉 and the following BD3 splits and recombines the
photons. After a HWP (H7) is applied on the basis states |0〉
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TABLE I. The setting angles of wave plates for the projective
measurements of the observables Jx , Jy , Jz, and J ′. Here “-” denotes
that the corresponding wave plate is not used for the certain measure-
ment and has been removed from the optical circuit.

Observable H3 H4 H5 H6 H7 Q1

Jx
π

4
π

4 − π

4
π

8
π

8 -

Jy − π

4
π

4
π

4
π

8
π

8 0

J ′ − π

4
π

4 − π

4
π

8
π

8 -

Jz - - - - - -

and |1〉, the unitary operation has been accomplished. The last
BD4 is used to project the photons into the basis states |i〉
(i = 0, 1, 2). The probability of the photons being measured
in |i〉 is obtained by normalizing photon counts in the specific
spatial mode to total photon counts. Angles of the wave plates
are shown in Table I.

In Fig. 2, we show the experimental demonstration of a
three-observable uncertainty relation (8). Our experimental
results agree with the theoretical predictions well. For com-
parison, we also show the experimental results of the uncer-
tainty relations (4) and (5). We find that the three-observable
uncertainty relation (8) is much stronger compared to the
other uncertainty relations (4) and (5). The right-hand side of
the inequality (8) is much closer to the left-hand side of the
inequalities �J 2

x + �J 2
y + �J 2

z .

θ/π

FIG. 2. Experimental results of the uncertainty relations based
on the sum of variants of three incompatible observables Jx , Jy ,
and Jz. The solid black curve represents theoretical predictions of
the left-hand side of the inequality (8), i.e., �J 2

x + �J 2
y + �J 2

z

with eleven states |ψθ 〉. Black squares represent the experimental
results of the left-hand side of the inequality (8), i.e., the sum of
the measured uncertainties �J 2

x , �J 2
y , and �J 2

z . The red dashed
curve represents theoretical predictions of the right-hand side of the
inequality (8). Red dots indicate the experimental results of the right-
hand side of the inequality (8) with eleven states |ψθ 〉. Blue triangles
and green stars indicate the experimental result of the right-hand
side of the inequalities (4) and (5), respectively. The corresponding
curves represent the theoretical predictions. Error bars indicate the
statical uncertainty which is obtained based on assuming Poissonian
statistics.

For some states, the inequality (8) becomes an equality,
which means the uncertainty inequality (8) is tight. However,
as the uncertainty relation (8) is state-dependent, with the
choice of the state |ψθ 〉 being measured in our experiment, for
the angle parameter of the state θ = 0.44π , the left-hand and
right-hand sides of (8) are 1.0494 and 1.0465, respectively.
Thus the inequality is almost saturated with this specific type
of states |ψθ 〉. In Fig. 2, we show the experimental results of
the left-hand and right-hand sides of (8) with the angle pa-
rameter of the state θ = 0.44π ; they are 1.0557 ± 0.0084 and
1.0534 ± 0.0083, respectively. Error bars indicate the statical
uncertainty, which is obtained based on assuming Poissonian
statistics. Total coincidence counts are about 10 000 over a
collection time of 5 s.

III. CONCLUSION

A correct understanding and experimental confirmation of
a fundamental limitation of measurements will not only foster
insight into foundational problems but also advance precision
measurement technology in quantum information processing.
In this work, we experimentally demonstrate that the stronger
multiple high-dimensional observable uncertainty relations
are valid in a state-dependent manner and the lower bound
is guaranteed to be nontrivial for multiple high-dimensional
observables that are incompatible on the state of the system
being measured. With the measurement of three observables
as an example, we find that the behavior of multiple high-
dimensional observables agrees with the predictions of quan-
tum theory. All experimental results agree well with theoret-
ical predictions. Our experimental results provide a correct
understanding and confirmation of a fundamental limitation of
measurements with multiple high-dimensional observables.

Furthermore, Our achievement relies on a stable interfer-
ometric network with simple linear optical elements. In our
setup, a high-dimensional system can always be realized by
polarized single photons in different spatial modes. With wave
plates, a qutrit or qudit can be prepared in an arbitrary state,
which is important for testing state-dependent uncertainty
relations. To realize an arbitrary unitary transformation on
a qutrit or qudit, we can decompose it into several unitary
operators, each of which applied a rotation on just two modes,
leaving the other modes unchanged. Each of them can be
realized by wave plates and BDs. Thus we can use simple
optical elements to realize arbitrary state preparation and
unitary transformation and then demonstrate the interesting
phenomena. Our demonstration is simple and programmable,
and serves as an ideal platform for demonstrating uncertainty
relations and the other protocols of quantum information
science.
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FIG. 3. Experimental setup for testing the uncertainty relations based on the sum of variants of multiple four-dimensional observables. The
polarizing beam splitter (PBS), half-wave plates (HWP, H0), and beam displacer (BD1) are used to generate a family of qudit states |ψd

θ 〉 being
measured. The rest of the HWPs, BDs, and PBS are used to realize the projective measurements of the four-dimensional observable Jx , as an
example, which is applied on the qudit state.

APPENDIX: PROPOSAL OF TESTING MULTIPLE
FOUR-DIMENSIONAL OBSERVABLES

UNCERTAINTY RELATION

We show our setup can encode information of qudits in dif-
ferent freedoms of single photons including polarizations and
spatial modes and realize measurements of four-dimensional
observables.

The basis states of qudits |0〉, |1〉, |2〉 and |3〉 are encoded
by the horizontally polarized photons in the upper mode, the
vertically polarized photons in the upper mode, the horizon-
tally polarized photons in the lower mode and the vertically
polarized photons in the lower mode, respectively. We can
prepare an arbitrary qudit state with a PBS, several wave
plates with certain setting angles and a BD. For example,
a family of qudit states |ψd

θ 〉 = (cos θ, 0, 0, sin θ )T can be
prepared with a PBS, HWP (H0) with certain setting angle
and BD1 shown in Fig. 3.

Then we choose the components of the angular momentum
for spin-3/2 particle as observables. Here, we use

Jx = 1

2

⎛
⎜⎜⎝

0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎞
⎟⎟⎠

as an example to show how to realize the measurement of
Jx via single photons and linear optics. First we calculate
the eigenstates |mj 〉 of Jx (j = 0, 1, 2, 3) and 4×4 unitary
transformation is

U4 =
∑

j

|j 〉〈mj | =
√

2

4

⎛
⎜⎜⎝

−1
√

3 −√
3 1

1
√

3
√

3 1√
3 −1 −1

√
3

−√
3 −1 1

√
3

⎞
⎟⎟⎠

which can be decomposed as

U4 =
(

H5 0

0 H6

)
P

(
H3 0

0 H4

)
Q

(
H1 0

0 H2

)
,

where

Q(P ) =

⎛
⎜⎝

0 sin 2θ7(8) cos 2θ7(8) 0
1 0 0 0
0 0 0 1
0 − cos 2θ7(8) sin 2θ7(8) 0

⎞
⎟⎠.

As

Hi =
(

cos 2θi sin 2θi

sin 2θi − cos 2θi

)
(i = 1, . . . , 6)

is the transformation on two dimensions, i.e., the degrees of
freedom of polarizations of the photons in either the upper
mode or the lower mode, we can realize them via a half-wave
plate with the setting angle θi . Q (P ) can be realized by two
beam displacers BD2 and BD3 (BD4 and BD5) and three half-
wave plates [two of them with the setting angle 45◦ and the
other with the setting angle θ7 (θ8)]. The setting angles of wave
plates for the projective measurement of a four-dimensional
observable Jx are shown in Table II.

Similar to the realization of measurements of three-
dimensional observables, after applying the unitary transfor-
mation U4, we project the qudit state into the four basis
states |0〉, |1〉, |2〉, and |3〉, and the probabilities of pro-
jective measurements can be used to calculate the expected
values and variances of four-dimensional observables. This
method is general and can be used to realize the measurement
of arbitrary four-dimensional observables. Thus our setup
can be used to test uncertainty relations of multiple higher-
dimensional observables.

TABLE II. The setting angles of wave plates for the projective measurement of a four-dimensional observable Jx .

Observable H1 H2 H3 H4 H5 H6 H7 H8 H

Jx 27.311◦ −6.011◦ 0.781◦ −18.133◦ 122.622◦ 2.945◦ 16.896◦ 24.862◦ 45◦
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