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(Received 12 April 2018; published 24 September 2018)

The so-called bipartite nonsignaling boxes are systems whose statistics is constrained solely by the principle of
no instantaneous signaling between distant locations. Such systems can exhibit much stronger correlations than
those admitted by quantum mechanics. Inspired by the quantum logic approach of Tylec and Kuś [J. Phys. A:
Math. Theor. 48, 505303 (2015)], we consider nonsignaling boxes with three inputs per party and extend the set of
measurements with just a single global measurement—one that mimics a quantum two-party Bell measurement.
We then show that this seemingly mild extension completely rules out supraquantum correlations: the resulting
system admits precisely quantum-mechanical correlations of two qubits. We also consider nonmaximally
entangled measurements, obtaining interpolation between quantum and full nonsignaling theory. Our study paves
the way to a general program of amending nonsignaling theories with some measurements inherited from quantum
mechanics, leading to various interpolations between nonsignaling boxes and quantum mechanics.
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I. INTRODUCTION

The idea of nonsignaling boxes introduced in Ref. [1]
has become very fruitful for several purposes. First, the
nonsignaling boxes have found an application in device-
independent cryptography [2], based solely on the assumption
of no instantaneous signaling and violation of Bell inequalities
[3]. In particular, randomness amplification and expansion
protocol have been proposed [4,5], whose verification does
not require any knowledge of quantum mechanics but can be
done based solely on the statistical behavior of the devices.
On the other hand, analysis of nonsignaling boxes leads to
a better understanding of the capabilities and limitations of
quantum theory itself: the set of quantum-mechanical states
forms a convex body situated between two polytopes: the
classical polytope of Kolmogorovian probability distributions
and the larger polytope of all nonsignaling boxes. The concept
of nonsignaling boxes has lead to a vast field of so-called
general probabilistic theories (GPTs) [6–8].

Recently, the relations between GPTs and quantum logic
were analyzed [9]. The authors use the framework of quan-
tum logic to construct a logic of propositions of two-party
nonsignaling boxes. They build the logic from propositions
describing a single party and prove that the logic indeed
describes spatially separated subsystems.

So far within the subject of GPT, not much has been done
regarding joint measurements on composite systems. Boxes
with bipartite measurements were considered in Ref. [10]
and were used to construct examples of theories violating
the “no-hypersignaling principle” formulated therein. These
measurements were based on extremal points of the nonsignal-
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ing polytope. The resulting models either exhibit solely clas-
sical correlations (when measurements corresponding to all
extremal points are added) or exhibit maximally nonlocal
correlations—those violating the Tsirelson bound [11]. In
this context, an important challenge is to build models that
interpolate between the two extremes. For a single system,
an important example of such interpolation is a family of
polygonic models [12], some of them violating the Holevo
bound. A bipartite models based on polygonic local systems
was also considered [13], some of them violating the Tsirelson
bound. Yet, the joint measurements possible for those systems
have not been analyzed.

In this paper we want to to avoid the binary situation:
classical or full nonsignaling, so we need more sophisticated
measurements than ones used in Ref. [10]. To this end we take
inspiration from the quantum logic approach to nonsignaling
boxes of Ref. [9]. We aim to analyze the effect of enriching
the initial model—a standard nonsignaling box, which admits
just product measurements—with an entangled measurement
inherited from quantum mechanics.

The basic global measurement in quantum mechanics one
may think of is clearly the Bell measurement [14]. Surprisingly,
we obtain that adding just this single measurement severely
constrains the set of possible states. Namely, we show that
the nonsignaling box with a Bell measurement exhibits no
supraquantum correlations. It actually reproduces exactly all
quantum correlations. We do it by showing that existence of
Bell measurement, combined with natural assumption, that
product of local states is a legitimate joint state, imposes that
local states form a ball, i.e., it is the same as the set of states of
qubit. Then we use the result of Ref. [15] where it is shown that
bipartite systems which are locally quantum and nonsignaling
admit only quantum correlations.
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We also consider nonmaximally entangled measurements,
and obtain interpolation between local systems being balls (like
in quantum mechanics) and cubes (i.e., completely unrestricted
local systems).

II. MODEL

We consider system SAB composed of two elementary
subsystems SA, SB . State spaces of elementary systems SA

and SB are identical.
The elementary system may be measured by means of one

of three dichotomic measurements X, Y , Z. The measurements
are not compatible, i.e., they cannot be measured together.
In this sense they mimic Pauli measurements for quantum
system. However, at this step we do not put any constraints
on the measurements outcomes probabilities beside standard
positivity and normalization constraints. In particular, there are
no uncertainty constraints for elementary system.

The state of the elementary system SA is described by
probabilities of measurement outcomes: p(a|xA), where xA ∈
{X, Y,Z} enumerates measurements and a enumerates out-
comes “+,” “−” (similarly for SB).

Now we move to the composed system SAB . Consider
first standard nonsignaling bipartite boxes [1]. These boxes
are described by probabilities p(ab|xAxB ) where a ∈ {+,−}
denote the output of measurement xA ∈ {X, Y,Z} performed
on subsystem A, analogously for b and xB . Probabilities
p(ab|xAxB ) fulfill nonsignaling conditions, i.e., the probabil-
ity of outcomes of measurement performed on subsystem A do
not depend on the measurement performed on the subsystem
B (analogously for B and A). The condition is expressed by
the equation

∑
b

p(a, b|xA, xB ) =
∑

b

p(a, b|xA, x ′
B ), (1)

which holds for all a ∈ {+,−} and xA, xB, x ′
B ∈ {X, Y,Z}.

So far this is a standard “nonsignaling box.” We shall now
assume that there is an additional two-party measurement
which cannot be represented as a joint measurement of two
local measurements. This intrinsically two-party measurement
returns one of the four outcomes k = 1, 2, 3, 4. We will define
probabilities of these outcomes by using parity relations for
Bell measurements known from quantum mechanics, hence
the probabilities will be denoted by p(k|Bell), and the mea-
surement will be called a “Bell measurement.”

In quantum mechanics we have

|φ+〉〈φ+| + |ψ+〉〈ψ+| = P
X,+
A ⊗ P

X,+
B + P

X,−
A ⊗ P

X,−
B ,

|φ−〉〈φ−| + |ψ+〉〈ψ+| = P
Y,+
A ⊗ P

Y,+
B + P

Y,−
A ⊗ P

Y,−
B , (2)

|φ+〉〈φ+| + |φ−〉〈φ−| = P
Z,+
A ⊗ P

Z,+
B + P

Z,−
A ⊗ P

Z,−
B ,

where

φ± = 1√
2

(|0〉|0〉 ± |1〉|1〉),

ψ± = 1√
2

(|0〉|1〉 ± |1〉|0〉), (3)

and P
X,±
A , P

Y,±
A , P

Z,±
A are eigenprojectors of Pauli matrices

σx , σy , σz respectively (same for B). We now impose the same

relations for our joint measurement on the level of statistics:

p(1|Bell) + p(3|Bell) = p(+ + |XX) + p(− − |XX),

p(2|Bell) + p(3|Bell) = p(+ + |YY ) + p(− − |YY ), (4)

p(1|Bell) + p(2|Bell) = p(+ + |ZZ) + p(− − |ZZ).

Notice that it would not make sense to impose nonsignaling
conditions onto a Bell measurement because the latter is
performed on the whole system. The system will be now fully
described by the set of probabilities p(ab|xAxB ) and p(k|Bell).

It is worth mentioning that the state space of the composed
system without a Bell measurement is a maximal tensor prod-
uct space [16] and, with the elementary system as described
above, the state space of such a composed system is a full
nonsignaling polytope [17]. In the remainder of the paper
we show that equipping the composed system with a Bell
measurement will change this picture a lot.

State representation with probabilities p(ab|xAxB ) and
p(k|Bell) contains 40 parameters. However, they are not
independent. By using nonsignaling conditions together with
normalization and relation (4), we can express the state of the
composed system by using 15 free parameters: probabilities
of positive outcomes for every measurement settings p(+ +
|xAxB ) and marginal probabilities p(+|xA), p(+|yB ) [due to
nonsignaling condition, we can write marginal probability as
p(+|xA) = p(+ + |xAX) + p(+ − |xAX)]. We can arrange
these parameters in the form of a matrix:
⎛
⎜⎜⎜⎜⎜⎝

p(+ + |XX) · · · · · · p(+|XB )
... p(+ + |YY ) · · · p(+|YB )
...

... p(+ + |ZZ) p(+|ZB )

p(+|XA) p(+|YA) p(+|ZA) 1

⎞
⎟⎟⎟⎟⎟⎠

. (5)

In particular, the state is fully determined by the statistics of
local measurements satisfying therefore the local tomography
principle [18,19].

We can treat Eq. (5) as p(+ + |xA, xB ) in a extended
measurement set, i.e., xA, xB ∈ {X, Y,Z, I }, where I denotes
some trivial measurement which always gets the + result:
p(+|IA) = p(+|IA) = p(+ + |IA, IB ) = 1.

Before we move further in analysis of state space �AB , let us
make a digression. Namely, suppose that the elementary system
is equipped only with two measurements X, Y . One then finds
that, in such a theory, extending the set of measurements with
the Bell measurement leads to an additional free parameter.
It follows from fact that we can write only the first two
equations from Eq. (4). This theory does not fulfill the local
tomography principle [18,19] since the state of the composed
system cannot be fully described in terms of joint probabilities
of local measurements, i.e., in terms of p(ab|xA, xB ). This is
analogous to the difference between complex and real quantum
mechanics where local tomography is a crucial piece [20].

III. CONSTRAINTS FOR CORRELATIONS IMPOSED
BY EXISTENCE OF BELL MEASUREMENT

In this section we show that correlations exhibited by boxes
admitting Bell measurement are exactly the quantum ones. To
this end we study how conditions imposed by the existence of
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a Bell measurement impacts the state space of the elementary
system. We shall assume that two natural conditions hold:

(i) the sets of states of local systems are the same, i.e.,
�A = �B ;

(ii) all product states are allowed, i.e., �A ⊗ �B ⊂ �AB .
We now show that non-negativity of p(k|Bell) together

with these assumptions leads to the equivalence of elementary-
system state space with a Bloch ball. Then, knowing that
elementary state space is quantum and the composed system
is nonsignaling, we can directly use results from Ref. [15]
to obtain that all correlations in bipartite system are quantum
correlations.

To proceed, consider the product of two identical states
ωAB = ωA ⊗ ωB which by assumption (ii) is allowed. Denote
marginals by

p(+|xA = X) = p(+|xB = X) = pX,

p(+|xA = Y ) = p(+|xB = Y ) = pY , (6)

p(+|xA = Z) = p(+|xB = Z) = pZ,

and consider the probability p(4|Bell) for that state. Then, from
simple algebra, we get

p(4|Bell)

= 1
2 [p(+|xA = X) + p(+|xA = Y ) + pA(+|xA = Z)

+p(+|xB = X) + p(+|xB = Y ) + pB (+|xB = Z)

−p(+ + |XX) − p(+ + |YY ) − p(+ + |ZZ) − 1],

(7)

and for state ωAB :

p(4|Bell) = pX + pY + pZ − p2
X − p2

Y − p2
Z − 1

2 . (8)

We can rewrite the above expression together with the positiv-
ity condition for p(4|Bell) as

(
pX − 1

2

)2 + (
pY − 1

2

)2 + (
pZ − 1

2

)2 �
(

1
2

)2
. (9)

This formula constrains the state space of elementary system,
and we see that the condition is equivalent to the Bloch ball for
averages of observables X, Y , X. In particular, the constraints
can be interpreted as an uncertainty relation expressed in terms
of probability of measurement outcome.

Now we show that these constraints are tight, i.e., that all
the products of states fulfilling Eq. (9) give positive values
for the outcome probabilities of measurement. Of course,
for products of local measurements, the product states give
positive probabilities by definition. So we need to check
whether they give positive values of probabilities of outcomes
just for the Bell measurement.

To this end we rewrite the positivity conditions for
p(k|Bell) in moments representation [i.e., mean values of
local measurement, e.g., mA

X = 1
2 [p(+|xA = X) − p(−|xA =

X)] = p(+|xA = X) − 1
2 ]. When we arrange moments in the

form of the vector m = (mX,mY ,mZ, 1), then the positivity
condition take the form

0 � 〈mA|Tk|mB〉, (10)

where Tk are diagonal matrices representing outcomes k given
by

T1 = 1
4 diag(1,−1, 1, 1),

T2 = 1
4 diag(−1, 1, 1, 1),

(11)
T3 = 1

4 diag(1, 1,−1, 1),

T4 = 1
4 diag(−1,−1,−1, 1),

where diag(. . .) denotes diagonal matrix with the given entries.
The relation (10) comes solely from assumption (4) and

the definition of moments, and does not use quantum for-
malism. To see this, first observe that, for a product state,
we have p(+ + |xA, xB ) = p(+|xA)p(+|xB ) [here we use the
extended measurements set {X, Y,Z, I }, cf. Eq. (5)]. Then
express p(k|Bell) as a linear combination of p(+ + |xA, xB )
[cf. (4)]:

p(k|Bell) =
∑

i,j∈{X,Y,Z,I }
M

i,j

k p(+ + |xA = i, xB = j )

=
∑

i,j∈{X,Y,Z,I }
M

i,j

k p(+|xA = i)p(+|xB = j ),

(12)

where Mk represents p(k|Bell) in terms of p(+ + |xA, xB ).
Putting probabilities as vectors p(+|xA) = vA, p(+|xB ) =
vB , we can write the above equation in a matrix form:
p(k|Bell) = vT

AMkvB . Notice that vectors vA and vB have form
(.,.,.,1). Moments representation m is related with probability
representation v by the relation v = Cm, where matrix C has
the form ⎛

⎜⎜⎜⎝

1 0 0 1/2

0 1 0 1/2

0 0 1 1/2

0 0 0 1

⎞
⎟⎟⎟⎠. (13)

This leads to

p(k|Bell) = vT
AMkvB

= mT
ACT MkCmB

= mATkmB, (14)

where Tk = CT MkC.
Formula (10) can be unwind to

k = 1 : −mA
XmB

X + mA
Y mB

Y − mA
ZmB

Z � r2, (15)

k = 2 : mA
XmB

X − mA
Y mB

Y − mA
ZmB

Z � r2, (16)

k = 3 : −mA
XmB

X − mA
Y mB

Y + mA
ZmB

Z � r2, (17)

k = 4 : mA
XmB

X + mA
Y mB

Y + mA
ZmB

Z � r2, (18)

where r = 1
2 . First observe that the left-hand side of Eq. (18)

has the form of a scalar product between vectors (mA
X,mA

Y ,mA
Z )

and (mB
X,mB

Y ,mB
Z ). We know from Eq. (9) that the norm of

these vectors is bounded by r , therefore Eq. (18) holds for all
states from the ball given by Eq. (9). The other inequalities can
be easily translated to the form of a scalar product: because
of symmetry of state space we can always replace the state on
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SB by the state with the appropriate observable flipped. We
can conclude that all states given by Eq. (9) fulfill positivity
constraints, therefore Eq. (9) defines the state space of the local
system and in fact is a Bloch ball.

As said, knowing that an elementary state space is quantum
and a composed system is nonsignaling, we can directly use
results from Ref. [15] to say that all correlations in bipartite
systems are quantum correlations.

IV. ADDING NEW MEASUREMENTS: QUANTUM LOGIC
APPROACH VERSUS LOCAL TOMOGRAPHIC APPROACH

The way we approached the definition of a Bell measure-
ment for a nonsignaling box was to enforce the relation be-
tween the statistics of the new measurement and the statistics of
the local measurements to be the same as the relation between
the statistics of Pauli measurements and Bell measurements in
quantum mechanics. The inspiration was taken from quantum
logic approach to nonsignaling boxes.

Bell measurement and quantum logic approach. One starts
from the logic structure of nonsignaling boxes. The paper [9]
provides the set of valid propositions for nonsignaling boxes.
An example of a valid proposition is “the system is in state ++
of measurement XX.” Moreover we know that the proposition
“the system is in state ++ or −− of measurement XX”
is also valid. These two propositions refers to probabilities
p(+ + |XX) and p(+ + |XX) + p(− − |XX) for the given
boxes. In contrast, the proposition “the system is in state ++
of measurement XX or ++ of measurement ZZ” is not valid.
This works in analogy to the algebra of orthogonal projectors in
quantum mechanics. Now one observes that some propositions
in quantum mechanics may be expressed in several ways:
e.g., parity XX may be expressed as P

X,+
A ⊗ P

X,+
B + P

X,−
A ⊗

P
X,−
B or |φ+〉〈φ+| + |ψ+〉〈ψ+|. We require the same type of

relations to hold in our model. That leads to Eq. (4).
Adding measurements via the local tomographic approach.

The considered definition of a Bell measurement can be seen
as an instance of a more general way of inheriting joint
measurements from quantum theory that is not covered by the
quantum logic approach—the one based on local tomography.
Namely, suppose that we consider some measurement from
quantum mechanics and want to impose it onto a nonsignaling
box. In quantum mechanics, due to local tomography, the
statistics of the local observables determines the statistics of
all measurements. We can thus define a new measurement by
requiring that the statistics of its outcomes be determined by the
statistics of local observables through the quantum-mechanical
relation. It is then possible to extend nonsignaling boxes
with the analog of quantum measurement in a nonmaximally
entangled basis.

V. NOISY BELL MEASUREMENT AND NONMAXIMALLY
ENTANGLED MEASUREMENT

Here we present how a noisy Bell measurement as well as
a measurement in a nonmaximally entangled basis modify the
local state space. We use the local tomography approach to
define these measurements for nonsignaling boxes.
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FIG. 1. State space for noisy Bell measurement for λ = 1/4 (up-
per) and λ = 1/2 (lower). The axes OX, OY, OZ refer to pX, pY , pZ ,
respectively.

Noisy Bell measurement. We consider here a measurement
inherited from a positive-operator-value measure with ele-
ments

(1 − λ)|φ±〉〈φ±| + λI/4,

(1 − λ)|ψ±〉〈ψ±| + λI/4. (19)
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FIG. 2. Allowed values of l (OY) and h (OX) for α = π/16, 2π/16, 3π/16, 4π/16. The thick black line bounds the region permitted in
quantum mechanics. We can observe interpolation between quantum and unrestricted systems.

The probabilities p(k|˜Bell) of the measurements are related to
the probabilities p(k|Bell) as follows:

p(k|˜Bell) = (1 − λ)p(k|Bell) + λ/4, (20)

and can be expressed in the terms of moments by Eqs. (15)–
(18) with r = 1

2
√

1−λ
. The argumentation analogous to the one

present in the case of a Bell measurement can be used here to
show that the state space of the elementary system (in terms of
probabilities) is 1/2 centered ball with r = 1

2
√

1−λ
restricted to

the box of 0 � pX, pY , pZ � 1 (see Fig. 1).
Nonmaximally entangled measurement. Here we take a

nonmaximally entangled basis parametrized by real a and b:

φ̃± = 1√
2

(a|0〉|0〉 ± b|1〉|1〉),

ψ̃± = 1√
2

(a|0〉|1〉 ± b|1〉|0〉). (21)

Taking a = 0, b = 1 leads to product basis and a = b = 1/
√

2
leads to the standard Bell basis.

We express positivity conditions in terms of formula (10)
(outcome 1 refers to φ̃+, 2 to φ̃−, etc.; note that a and b are real
parameters):

T1 = 1

4

⎛
⎜⎜⎜⎜⎝

2ab 0 0 0

0 −2ab 0 0

0 0 1 a2 − b2

0 0 a2 − b2 1

⎞
⎟⎟⎟⎟⎠

, (22)

T2 = 1

4

⎛
⎜⎜⎜⎜⎝

−2ab 0 0 0

0 2ab 0 0

0 0 1 a2 − b2

0 0 a2 − b2 1

⎞
⎟⎟⎟⎟⎠

, (23)
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T3 = 1

4

⎛
⎜⎜⎝

2ab 0 0 0
0 2ab 0 0
0 0 −1 a2 − b2

0 0 −a2 + b2 1

⎞
⎟⎟⎠, (24)

T4 = 1

4

⎛
⎜⎜⎝

−2ab 0 0 0
0 −2ab 0 0
0 0 −1 a2 − b2

0 0 −a2 + b2 1

⎞
⎟⎟⎠. (25)

In the following part we will analyze state space for partic-
ular basis with a = sin(π/4 + α), b = cos(π/4 + α). For that
parametrization we can write Eq. (10) as [cf. Eqs. (15)–(18)]

−mA
ZmB

Z + (−mA
XmB

X + mA
Y mB

Y

)
cos (2α)

− (
mA

Z + mB
Z

)
sin (2α) � 1,

−mA
ZmB

Z + (
mA

XmB
X − mA

Y mB
Y

)
cos (2α)

− (
mA

Z + mB
Z

)
sin (2α) � 1, (26)

mA
ZmB

Z − (
mA

XmB
X + mA

Y mB
Y

)
cos (2α)

− (
mA

Z − mB
Z

)
sin (2α) � 1,

mA
ZmB

Z + (
mA

XmB
X + mA

Y mB
Y

)
cos (2α)

− (
mA

Z − mB
Z

)
sin (2α) � 1.

It is hard to obtain the full state space for given posi-
tivity conditions. Moreover there may be many inequivalent
states spaces. Here we are interested in interpolation between
quantum and unrestricted systems. For this reason we bound
the state space of a single system from inside by a cube in
moments representation with vertices (±l,±l,±h). Because
of linearity it is enough to check if the vertices fulfill the
positivity conditions. For a Bell basis (α = 0 which leads to

a = b = 1/
√

2) we get the condition

2l2 + h2 � 1. (27)

In Fig. 2 we present the permitted values of l and h for different
parameters α.

VI. CONCLUDING REMARKS

First of all we would like to stress here that our approach is
operational. We assume some relations between statistics, such
as Eq. (4). This is an operational relation, which can be tested
in experiment: having an ensemble of identically prepared
systems, one performs a Bell measurement on one part of the
ensemble and estimates p(k|Bell), then one performs product
measurements on the other part of the ensemble, obtaining
p(+ + |XX), p(+ + |YY ), and p(+ + |ZZ).

Our model of nonsignaling boxes admitting Bell measure-
ments or nonmaximally entangled measurements is just an
example of constraining the nonsignaling theory by amend-
ing it by quantum-inherited joint measurements. The results
encourage us to study other amendments, and checking their
properties. In particular, it is worth examining multipartite
systems or systems with nondichotomic observables where
the quantumness of local systems no longer determines the
correlations [21]. Another route is to consider more general
parity measurements, e.g., with more outcomes than just four,
in place of Bell measurements. Finally, it would be interesting
to perform a more detailed study of the correlations exhib-
ited by nonsignaling systems with nonmaximally entangled
measurements. Such an analysis involves a highly nonlinear
problem, which requires further investigation.
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[9] T. Tylec and M. Kuś, Non-signaling boxes and quantum logics,
J. Phys. A: Math. Theor. 48, 505303 (2015).

[10] M. Dall’Arno, S. Brandsen, A. Tosini, F. Buscemi, and V. Vedral,
No-Hypersignaling Principle, Phys. Rev. Lett. 119, 020401
(2017).

[11] B. S. Cirel’son, Quantum generalizations of Bell’s inequality,
Lett. Math. Phys. 4, 93 (1980).

[12] S. Massar and M. K. Patra, Information and communication in
polygon theories, Phys. Rev. A 89, 052124 (2014).

[13] P. Janotta, C. Gogolin, J. Barrett, and N. Brunner, Limits on
non-local correlations from the structure of the local state space,
New J. Phys. 13, 063024 (2011).

[14] S. L. Braunstein, A. Mann, and M. Revzen, Maximal Violation
of Bell Inequalities for Mixed States, Phys. Rev. Lett. 68, 3259
(1992).

[15] H. Barnum, S. Beigi, S. Boixo, M. B. Elliott, and S. Wehner,
Local Quantum Measurement and No-Signaling Imply Quantum
Correlations, Phys. Rev. Lett. 104, 140401 (2010).

[16] P. Janotta and H. Hinrichsen, Generalized probability theories:
What determines the structure of quantum theory? J. Phys. A:
Math. Theor. 47, 323001 (2014).

[17] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and
D. Roberts, Nonlocal correlations as an information-theoretic
resource, Phys. Rev. A 71, 022101 (2005).

[18] H. Barnum and A. Wilce, Local tomography and the Jordan
structure of quantum theory, Found. Phys. 44, 192 (2014).

032117-6

https://doi.org/10.1007/BF02058098
https://doi.org/10.1007/BF02058098
https://doi.org/10.1007/BF02058098
https://doi.org/10.1007/BF02058098
https://doi.org/10.1103/PhysRevLett.95.010503
https://doi.org/10.1103/PhysRevLett.95.010503
https://doi.org/10.1103/PhysRevLett.95.010503
https://doi.org/10.1103/PhysRevLett.95.010503
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nphys2300
https://doi.org/10.1038/nphys2300
https://doi.org/10.1038/nphys2300
https://doi.org/10.1038/nphys2300
https://doi.org/10.1007/BF01647093
https://doi.org/10.1007/BF01647093
https://doi.org/10.1007/BF01647093
https://doi.org/10.1007/BF01647093
https://doi.org/10.1007/BF01646788
https://doi.org/10.1007/BF01646788
https://doi.org/10.1007/BF01646788
https://doi.org/10.1007/BF01646788
https://doi.org/10.1088/1751-8113/48/50/505303
https://doi.org/10.1088/1751-8113/48/50/505303
https://doi.org/10.1088/1751-8113/48/50/505303
https://doi.org/10.1088/1751-8113/48/50/505303
https://doi.org/10.1103/PhysRevLett.119.020401
https://doi.org/10.1103/PhysRevLett.119.020401
https://doi.org/10.1103/PhysRevLett.119.020401
https://doi.org/10.1103/PhysRevLett.119.020401
https://doi.org/10.1007/BF00417500
https://doi.org/10.1007/BF00417500
https://doi.org/10.1007/BF00417500
https://doi.org/10.1007/BF00417500
https://doi.org/10.1103/PhysRevA.89.052124
https://doi.org/10.1103/PhysRevA.89.052124
https://doi.org/10.1103/PhysRevA.89.052124
https://doi.org/10.1103/PhysRevA.89.052124
https://doi.org/10.1088/1367-2630/13/6/063024
https://doi.org/10.1088/1367-2630/13/6/063024
https://doi.org/10.1088/1367-2630/13/6/063024
https://doi.org/10.1088/1367-2630/13/6/063024
https://doi.org/10.1103/PhysRevLett.68.3259
https://doi.org/10.1103/PhysRevLett.68.3259
https://doi.org/10.1103/PhysRevLett.68.3259
https://doi.org/10.1103/PhysRevLett.68.3259
https://doi.org/10.1103/PhysRevLett.104.140401
https://doi.org/10.1103/PhysRevLett.104.140401
https://doi.org/10.1103/PhysRevLett.104.140401
https://doi.org/10.1103/PhysRevLett.104.140401
https://doi.org/10.1088/1751-8113/47/32/323001
https://doi.org/10.1088/1751-8113/47/32/323001
https://doi.org/10.1088/1751-8113/47/32/323001
https://doi.org/10.1088/1751-8113/47/32/323001
https://doi.org/10.1103/PhysRevA.71.022101
https://doi.org/10.1103/PhysRevA.71.022101
https://doi.org/10.1103/PhysRevA.71.022101
https://doi.org/10.1103/PhysRevA.71.022101
https://doi.org/10.1007/s10701-014-9777-1
https://doi.org/10.1007/s10701-014-9777-1
https://doi.org/10.1007/s10701-014-9777-1
https://doi.org/10.1007/s10701-014-9777-1


BELL MEASUREMENT RULING OUT SUPRAQUANTUM … PHYSICAL REVIEW A 98, 032117 (2018)

[19] L. Hardy and W. K. Wootters, Limited holism and real-vector-
space quantum theory, Found. Phys. 42, 454 (2011).

[20] H. Araki, On a characterization of the state space of quantum
mechanics, Commun. Math. Phys. 75, 1 (1980).

[21] A. Acin, R. Augusiak, D. Cavalcanti, C. Hadley, J. K. Korbicz,
M. Lewenstein, Ll. Masanes, and M. Piani, Unified Framework
for Correlations in Terms of Local Quantum Observables, Phys.
Rev. Lett. 104, 140404 (2010).

032117-7

https://doi.org/10.1007/s10701-011-9616-6
https://doi.org/10.1007/s10701-011-9616-6
https://doi.org/10.1007/s10701-011-9616-6
https://doi.org/10.1007/s10701-011-9616-6
https://doi.org/10.1007/BF01962588
https://doi.org/10.1007/BF01962588
https://doi.org/10.1007/BF01962588
https://doi.org/10.1007/BF01962588
https://doi.org/10.1103/PhysRevLett.104.140404
https://doi.org/10.1103/PhysRevLett.104.140404
https://doi.org/10.1103/PhysRevLett.104.140404
https://doi.org/10.1103/PhysRevLett.104.140404



