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We develop a hierarchical functional derivative (HFD) method to investigate the reduced dynamics of a
spin-boson model within the framework of a stochastic decoupling description. Keeping only the lowest-order
truncation of the hierarchical functional derivatives, one can recover the second-order Nakajima-Zwanzig
quantum master equation. Taking into account the higher-order corrections, our method can be implemented as
a highly efficient numerical scheme for a general spin-boson model beyond the usual Markovian, rotating-wave,
and weak-coupling approximations.
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I. INTRODUCTION

A quantum dissipative system, which describes the interac-
tion between a quantum subsystem and its surrounding bath,
plays a very important role in many research fields, such
as quantum information [1], condensed-matter physics [2],
and biochemistry [3]. The spin-boson model is a common,
but fundamental model in quantum dissipative systems, pro-
viding a universal model to simulate the relaxation and the
decoherence of a quantum subsystem embedded in a bosonic
bath [4]. Despite the long history and the wide interest of
the spin-boson model, there are still relatively few methods
which are capable of exactly describing its reduced dynamical
behavior [4]. To obtaining an analytical result of the quantum
dissipative dynamics, different approximations were used in
many previous studies, say, the Markovian approximation,
the rotating-wave approximation, and the weak-coupling ap-
proximation. Though these approximations are acceptable in
certain parameter regimes, some important physical informa-
tion may be ignored when using these approximations. For
example, as shown in Refs. [5–12], the counter-rotating-wave
terms [5–7] and the non-Markovianity [8–12] have significant
effects on the short-time dynamical behavior as well as the
steady-state characteristics of the spin-boson model. In this
sense, it is highly desirable to develop a method which can
accurately capture the reduced dynamics of the spin-boson
model in a wide parameter regime. An alternative approach to
realize a nonperturbative dynamics of the spin-boson model
is presented in this paper which can be generalized to many
other quantum dissipative systems as well.

The main difficulty in solving a quantum dissipative dy-
namical problem lies in the interaction between the quan-
tum subsystem and its surrounding bath. The most simple
and straightforward strategy is to decouple the system-bath
interaction; by doing so, the evolution of the bath will be no
longer involved in the dynamics of the quantum subsystem.
Such a decoupling scheme can be achieved by making use
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of the Hubbard-Stratonovich transformation [13], or alterna-
tively, the characteristics of the Itô calculus [13–15]. There
are several decoupling techniques reported in previous arti-
cles [13–15]. In this paper, we adopt the stochastic decoupling
(SD) scheme originally proposed by Shao et al. [13]. The
main merit of the SD scheme is its conceptual simplicity:
the sole effect of the bath is providing a stochastic field
exerting on the evolution of the quantum subsystem. However,
the stochastic field induced by the SD scheme randomizes
the original equation of motion; one has to perform some
stochastic simulations, which are rather time-consuming. On
the other hand, a stochastic dynamical method is usually
employed to simulate the short-time dynamical behavior of
a quantum dissipative system, because it becomes unstable
and uncontrollable in the long-time regime [16–18]. In this
sense, comparing with a stochastic method, a deterministic
approach is always preferred. To achieve this aim, one needs
to eliminate all the noise terms and extract a deterministic
quantum master equation in the SD scheme.

Unfortunately, the quantum master equation derived
from the SD scheme contains some time-nonlocal func-
tional derivatives [19,20], which are generally unknown and
severely restrict the application range of the SD scheme. Only
for a few special models, such as the quantum Brownian
model [21] and the damped Jaynes-Cummings model [22],
these time-nonlocal functional derivatives can be exactly
worked out. For most realistic quantum dissipative dynamical
problems, these functional derivatives cannot be explicitly de-
termined. To overcome the difficulty, in this paper we develop
a systematic approach, the HFD method, which can greatly
extend the application range of the SD scheme. It is shown
that these unknown functional derivatives can be constructed
in a hierarchy equation in which each individual functional
derivative couples to other functional derivatives with differ-
ent orders. Although these functional derivatives have been
explored in some previous articles [19,20], in this paper we
reveal their physical meanings: they are not only ancillary
matrices in the hierarchical equations, but also related to mul-
titime bath correlation functions contributing to the reduced
dynamical behavior. In a perturbative approximation, one
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can only consider the lowest-order contribution; in this case,
the HFD result recovers the well-known Nakajima-Zwanzig
quantum master equation [23,24] up to the second order. In
a nonperturbative treatment, these hierarchical equations can
be numerically solved with a suitable truncation by making
use of the traditional Runge-Kutta method. In this situation,
the HFD method is beyond the Markovian, rotating-wave, and
weak-coupling approximations, which are usually adopted in
many previous studies.

This paper is organized as follows: In Sec. II, we present
our main theory and show how to handle the spin-boson
dynamical problem in the framework of the SD scheme. In
Sec. III, we make some comparisons between the numerical
results from the HFD method and the results obtained by
other approaches [the non-Markovian quantum state diffu-
sion (QSD) approach [25–27] and the Born-Markov quantum
master equation]. Some concerned discussions and the main
conclusions of this paper are drawn in Sec. IV. In several
Appendixes, we provide some additional details about the
main text. Throughout the paper, we set h̄ = kB = 1, and all
the other units are dimensionless as well.

II. THEORY

In this section, we present our main results, i.e., how to
use the HFD method to handle the reduced dynamics of a
general spin-boson model. In Sec. II A, we first briefly outline
the SD scheme proposed by Shao, which is totally beyond the
usual Markovian, rotating-wave, and weak-coupling approx-
imations. Unfortunately, due to the difficulty in treating the
time-nonlocal functional derivative terms, it is difficult to per-
form a deterministic simulation for most quantum dissipative
models within the SD scheme. To eliminate this problem, in
Secs. II C and II D we employ the HFD method, which can
greatly generalize the application range of the SD scheme.
In a perturbative treatment, the HFD method is equivalent
to the Nakajima-Zwanzig quantum master equation in the
second order. In a nonperturbative treatment, the higher-order
HFD method provides a highly efficient numerical scheme for
quantum dissipative dynamics as well.

A. General formulation

In this paper, we consider a generalized Hamiltonian of a
quantum dissipative system, which can be described by

Ĥ = Ĥs + Ĥb + f (ŝ)g(b̂), (1)

where Ĥs is the quantum subsystem of interest, and the
operator f (ŝ) denotes the quantum subsystem’s dissipative
operator, which couples to the surrounding bath. The Hamil-
tonian of the bath is given by Ĥb ≡ ∑

k ωkb̂
†
kb̂k , where b̂k and

b̂
†
k are the bosonic annihilation and creation operators of the

kth environmental mode with frequency ωk , respectively. The
operator g(b̂) ≡ ∑

k gk (b̂†k + b̂k ) is the environmental dissipa-
tive operator, where the parameter gk quantifies the coupling
strength between the quantum subsystem and the kth environ-
mental mode. It is necessary to point out that the SD scheme
still works when the interaction term contains a finite number
of factorized components, i.e., Ĥsb = ∑

n fn(ŝ)gn(b̂) [13].

The time evolution of the whole system is governed by the
quantum von Neumann equation,

i
d

dt
ρ̂sb(t ) = Ĥ×ρ̂sb(t ), (2)

where we have introduced the commutation superoperator
X̂×Ŷ ≡ [X̂, Ŷ ] = X̂Ŷ − Ŷ X̂. The straightforward computa-
tion of Eq. (2) can be very intractable due to the fact that
the size of the whole system scales exponentially with respect
to a large number of environmental modes. To avoid a direct
calculation of Eq. (2), we adopt the SD method, which was
originally proposed by Shao et al. [13]. In the SD scheme,
the density operator of the whole system can be decoupled
as two uncorrelated parts: ρ̂sb(t ) = M{ρ̂s(t )ρ̂b(t )}, where we
have assumed that the whole system is initially prepared in
a product state ρ̂sb(0) = ρ̂s(0)ρ̂b(0). In our study, ρ̂b(0) =
ρ̂th ≡ exp(−βĤb)/trb[exp(−βĤb)], with β being the inverse
temperature. The notation M denotes the statistical average
over all the involved stochastic processes. The two stochastic
operators ρ̂s(t ) and ρ̂b(t ) obey the following stochastic differ-
ential equations, respectively [13–15]:

idρ̂s(t ) = Ĥ×
s ρ̂s(t )dt + 1

2
f (ŝ)×ρ̂s(t )d�1t

+ i

2
f (ŝ)◦ρ̂s(t )d� ∗

2t , (3)

idρ̂b(t ) = Ĥ×
b ρ̂b(t )dt + 1

2
g(b̂)×ρ̂b(t )d�2t

+ i

2
g(b̂)◦ρ̂b(t )d� ∗

1t , (4)

where �1t ≡ ∫ t

0 [w1(t ′) + iw4(t ′)]dt ′ and �2t ≡ ∫ t

0 [w2(t ′) +
iw3(t ′)]dt ′ are two complex-valued Wiener processes, and
wi(t ) (with i = 1, 2, 3, 4) are four uncorrelated white noises,
which obey M{wi(t )} = 0 and M{wi(t )wi′ (t ′)} = δii′δ(t −
t ′). For the sake of simplicity, in Eqs. (3) and (4), we have
also defined the anticommutation superoperator as X̂◦Ŷ ≡
{X̂, Ŷ } = X̂Ŷ + Ŷ X̂. It should be stressed that all the stochas-
tic differential (and integral) equations in this paper are
expressed in the Itô sense, which means M{d�1t d� ∗

1t } =
M{d�2t d� ∗

2t } = 2dt [13,15,28].
The dynamics of the reduced density operator of the quan-

tum subsystem, i.e., �̂s(t ) ≡ trb[ρ̂sb(t )] = ρ̂s(t )trb[ρ̂b(t )], can
be obtained from Eqs. (3) and (4) by employing a Girsanov
transformation [21,29,30]. The result is given by

id�̂s(t ) = [Ĥs + f (ŝ)ḡ(t )]×�̂s(t )dt + 1

2
f (ŝ)×�̂s(t )d�1t

+ i

2
f (ŝ)◦�̂s(t )d� ∗

2t , (5)

where ḡ(t ) denotes the bath-induced stochastic field and
fully characterizes the influence of the bath on the reduced
dynamics of the quantum subsystem. As demonstrated in
Ref. [13], ḡ(t ) plays a similar role to that of the influence
functional in the path-integral treatment. The expression of the
bath-induced stochastic field ḡ(t ) can be derived from Eq. (4),
as shown in Refs. [13,15,21]. The result is given by

ḡ(t ) =
∫ t

0
α(t − t1)dμ∗

t1
+

∫ t

0
α∗(t − t1)dν∗

t1
, (6)
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where dμ∗
t ≡ 1

2d� ∗
1t − i

2d�2t and dν∗
t ≡ 1

2d� ∗
1t + i

2d�2t

are combined complex-valued Wiener processes, and α(t ) ≡
trb[exp(iĤbt )g(b̂) exp(−iĤbt )g(b̂)ρ̂th] is the two-time bath
correlation function. For a bosonic bath consisting of numer-
ous noninteracting harmonic oscillators, it is easy to find the
explicit expression of α(t ) as follows:

α(t ) =
∫ ∞

0
dωJ (ω)

[
coth

(
βω

2

)
cos(ωt ) − i sin(ωt )

]
,

(7)

where J (ω) ≡ ∑
k g2

k δ(ω − ωk ) is the so-called bath density
spectral function.

In Refs. [13,15], the authors proved that the stochastic
equation of motion given by Eq. (5) is equivalent to the
stochastic Liouville equation studied in Refs. [16,17] by a
simple rearrangement of involved noise terms. Under this
circumstance, one can directly perform stochastic simulations
of Eq. (5) and obtain a convergent trajectory by a sufficiently
large statistical sample. Nevertheless, a stochastic simulation
is unstable in the long-time regime and is usually less effi-
cient than solving a deterministic quantum master equation.
Therefore, we prefer to extract a deterministic quantum master
equation by taking the statistical averages on both sides of
Eq. (5). Finally, we obtain the evolution equation of the
reduced density operator �̃s(t ) ≡ M{�̂s(t )} as follows:

i
d

dt
�̃s(t ) = Ĥ×

s �̃s(t ) + f (ŝ)×
[ ∫ t

0
dt1α(t − t1)M

{
δ�̂s(t )

δμ(t1)

}

+
∫ t

0
dτ1α

∗(t − τ1)M
{

δ�̂s(t )

δν(τ1)

}]
, (8)

where we have used the Furutsu-Novikov theorem [29], which
states

M{w∗
ςF[wt ]} = M

{
δF[wt ]

δwς

}
,

for any white noise wt = w(t ) and its arbitrary functional
F[wt ] = F[w(t )]. The characteristics of the involved noise in
the SD scheme are different from those of a non-Markovian
QSD approach. However, as long as the final reduced density
matrix is noiseless, one can demonstrate the equivalence of
the non-Markovian QSD and SD approaches [20].

By far, no approximations are used during the deriva-
tion of Eq. (8), which means Eq. (8) can be regarded as a
rigorous quantum master equation. However, Eq. (8) con-
tains some time-nonlocal functional derivative terms, i.e.,
M{δ�̂s(t )/δμ(t1)} and M{δ�̂s(t )/δν(τ1)}, which are gen-
erally unknown. Only for a few particular models [21,22],
one can exactly evaluate their explicit expressions. This
problem severely hinders the application range of the SD
scheme. Except for the common Markovian approxima-
tion (see Sec. II B), in this paper, a perturbative (but
non-Markovian) treatment (see Sec. II C) and a rigorous non-
perturbative numerical approach (see Sec. II D) are used to
solve the problem.

B. Markovian approximation

In the Markovian approximation, the bath correlation func-
tion can be approximately viewed as a Dirac-δ function,

namely, α(t − t1) � 1
2�δ(t − t1) and α∗(t − τ1) � 1

2�δ(t −
τ1), where � is assumed to be a positive value and can be
explained as the decay rate [see Eq. (10)]. Then the quantum
master equation given by Eq. (8) reduces to

i
d

dt
�̃s(t ) � Ĥ×

s �̃s(t ) + 1

2
�f (ŝ)×

[
M

{
δ�̂s(t )

δμ(t )

}

+M
{

δ�̂s(t )

δν(t )

}]
. (9)

The explicit expressions of the time-local functional deriva-
tives in Eq. (9) can be easily obtained with the help of Eq. (3).
The results are given by

M
{

δ�̂s(t )

δμ(t )

}
= −if (ŝ)M{�̂s(t )} = −if (ŝ)�̃s(t ),

M
{

δ�̂s(t )

δν(t )

}
= iM{�̂s(t )}f (ŝ) = i�̃s(t )f (ŝ).

Substituting the above expressions into Eq. (9), we can obtain
the following Markovian quantum master equation:

d

dt
�̃s(t ) = −iĤ×

s �̃s(t ) − 1

2
�f (ŝ)×f (ŝ)×�̃s(t ). (10)

One can find Eq. (10) has the same form with the
famous Gorini-Kossakowski-Sudarshan-Lindblad quantum
master equation [31], which has wide applications in quantum
information [1] and quantum optics [32].

C. Perturbative treatment

To solve the quantum master equation [Eq. (8)] beyond
the Markovian approximation, one needs to treat the time-
nonlocal functional derivative terms in a more rigorous way.
For this purpose, we define a series of functional derivative
operators [19,20]:

Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn)

= M
{

δm+n�̂s(t )

δμ(t1)δμ(t2)...δμ(tm)δν(τ1)δν(τ2)...δν(τn)

}
.

(11)

Then the quantum master equation given by Eq. (8) can be
rewritten as

i
d

dt
�̃s(t ) = Ĥ×

s �̃s(t ) + f (ŝ)×
[ ∫ t

0
dt1α(t − t1)Ô(t ; t1; )

+
∫ t

0
dτ1α

∗(t − τ1)Ô(t ; ; τ1)

]
. (12)

It is found that the dynamics of �̃s(t ) can be fully determined
if one can obtain the expression or the evolution equation
of Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn). To this aim, we take the
time derivative to Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn) and use the
following consistency condition [26,27]:

d

dt
M

{
δF[wt ]

δwς

}
= M

{
δ

δwς

dF[wt ]

dt

}
. (13)
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Then, the time evolution equation of Ô(t ; t1, t2, ..., tm;
τ1, τ2, ..., τn) can be derived as

i
d

dt
Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn)

= Ĥ×
s Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn)

+ f (ŝ)×
∫ t

0
dtm+1α(t − tm+1)

× Ô(t ; t1, t2, ..., tm, tm+1; τ1, τ2, ..., τn)

+ f (ŝ)×
∫ t

0
dτn+1α

∗(t − τn+1)

× Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn, τn+1), (14)

with the initial conditions

Ô(tm; t1, t2, ..., tm; τ1, τ2, ..., τn)

= −if (ŝ)Ô(tm; t1, t2, ..., tm−1; τ1, τ2, ..., τn), (15)

Ô(τn; t1, t2, ..., tm; τ1, τ2, ..., τn)

= iÔ(τn; t1, t2, ..., tm; τ1, τ2, ..., τn−1)f (ŝ). (16)

It is clear to see that the evolution of each individual functional
derivative depends on not only itself, but also its two neigh-
boring functional derivatives with different orders. There are
infinite coupled equations in Eq. (14). In a practical calcula-
tion, one needs to employ a truncation technique for obtaining
a finite and closed set of equations. For the simplest truncation
it is assumed that

i
d

dt
Ô(t ; t1, t2, ..., tM ; τ1, τ2, ..., τN )

� Ĥ×
s Ô(t ; t1, t2, ..., tM ; τ1, τ2, ..., τN ) (17)

in the (M + N )th order, and all the higher-order corrections
are set to be zero.

In the lowest-order truncation, we find that

Ô(t ; t1; ) � −ie−iĤs (t−t1 )f (ŝ)�̂s(t1)eiĤs (t−t1 ) (18)

and

Ô(t ; ; τ1) � ie−iĤs (t−τ1 )�̂s(τ1)f (ŝ)eiĤs (t−τ1 ). (19)

Inserting Eqs. (18) and (19) into Eq. (12), an approximated
but non-Markovian quantum master equation is obtained as

follows:

i
d

dt
�̃s(t ) = Ĥ×

s �̃s(t ) − if (ŝ)×
∫ t

0
dt1α(t − t1)

× e−iĤs (t−t1 )f (ŝ)�̂s(t1)eiĤs (t−t1 )

+ if (ŝ)×
∫ t

0
dτ1α

∗(t − τ1)

× e−iĤs (t−τ1 )�̂s(τ1)f (ŝ)eiĤs (t−τ1 ). (20)

As shown in Appendix A, Eq. (20) is equivalent to the well-
known Nakajima-Zwanzig quantum master equation [23,24]
up to the second order. The truncation technique given by
Eq. (17) is the simplest, but it may not produce good numeri-
cal results for a small value of M + N . An alternative choice
is to assume that [33]∫ t

0
dtm+1α(t − tm+1)Ô(t ; t1, t2, ..., tm, tm+1; τ1, τ2, ..., τn)

� ξ (t )Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn),∫ t

0
dτn+1α

∗(t − τn+1)Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn, τn+1)

� ζ (t )Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn),

where ξ (t ) and ζ (t ) are undeterminate terminators with sev-
eral possible expressions [33], such as ξ (t ) = ∫ t

0 α(t ′)dt ′ and
ζ (t ) = ∫ t

0 α∗(t ′)dt ′. We want to stress that different truncation
techniques may have different numerical performances; they
should provide the same physical result when the truncation
order is sufficiently large.

Before moving on to the next section, we would like to
make some remarks on the functional derivative operators
Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn) defined by Eq. (11). It is nec-
essary to point out that these functional derivative operators
have their corresponding physical interpretations. They are
not mere ancillary matrices or certain mathematical tricks,
when solving Eq. (8). Though the SD scheme was origi-
nally proposed to study the reduced dynamics of a quantum
subsystem coupled to a bosonic bath, this stochastic theory
can be also generalized to fermionic bath and spin bath
situations [15]. For a more generalized bath, beyond the
bosonic bath considered in this paper, the expression of the
bath-induced stochastic field ḡ(t ) is given by [15]

ḡ(t ) = �1(t ) +
∫ t

0
�2(t, t1)dμ∗

t1
+

∫ t

0
�∗

2(t, t1)dν∗
t1

+
∫ t

0

∫ t1

0
�3(t, t1, t2)dμ∗

t1
dμ∗

t2

+
∫ t

0

∫ t1

0
�∗

3(t, t1, t2)dν∗
t1
dν∗

t2
+ · · · +

∫ t

0

∫ t1

0

∫ t2

0
...

∫ tn−1

0
�n+1(t, t1, t2, .., tn)dμ∗

t1
dμ∗

t2
...dμ∗

tn

+
∫ t

0

∫ t1

0

∫ t2

0
...

∫ tn−1

0
�∗

n+1(t, t1, t2, .., tn)dν∗
t1
dν∗

t2
...dν∗

tn
+ · · · , (21)

where �n(t, t1, t2, ..., tn−1) denotes the n-time bath corre-
lation function. The odd-time correlation functions can be
neglected if one chooses a suitable thermal equilibrium state
as the environmental initial state. Note that Eq. (21) is quite

similar to the so-called functional expansion technique used
in Ref. [34]. However, in contrast to that of Ref. [34], the
expansion coefficients in our scheme have specific physical
meanings: they are multitime bath correlation functions. For
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the bosonic bath and the fermionic bath, one can only consider
that the contributions arise from the two-time bath correlation
functions due to the Gaussian characteristic; in this situation,
Eq. (21) recovers Eq. (6). However, for a spin bath, one should

take into account the effects of the higher-order multitime bath
correlation functions.

By substituting Eq. (21) into Eq. (5), one can obtain a more
generalized quantum master equation by averaging out the
noises as follows:

i
d

dt
�̃s(t ) = Ĥ×

s �̃s(t ) + f (ŝ)×
[ ∞∑

m=0

∫ t

0
dt1

∫ t1

0
dt2...

∫ tm−1

0
dtm�m+1(t, t1, t2, ..., tm)Ô(t ; t1, t2, ...tm; )

+
∞∑

n=0

∫ t

0
dτ1

∫ τ1

0
dτ2...

∫ τn−1

0
dτn�

∗
n+1(t, τ1, τ2, ..., τn)Ô(t ; ; τ1, τ2, ...τn)

]
. (22)

From the above quantum master equation, the functional
derivative operators Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn) can be re-
garded as the weights of the multitime bath correlation func-
tions contributing to the final reduced dynamics. In other
words, Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn) is closed associated
with the influence of its corresponding multitime bath cor-
relation function on a quantum dissipative dynamics. Con-
sidering the fact that �n ∝ 〈gk〉n, where 〈gk〉 stands for the
mean coupling strength, the contribution from higher-order
multitime bath correlation functions can be neglected when
the system-bath coupling function is not too strong. This
result suggests that the reduced dynamical behavior in a spin
bath is similar to that of a bosonic (or a fermionic) bath in
the weak-coupling regime, where their corresponding two-
time correlation functions may have similar structures under
certain conditions, owing to the fact that the two-time bath
correlation is the leading-order correction in this situation. A
similar conclusion has also been reported in Ref. [35].

D. Nonperturbative treatment

As shown in many previous literatures [36], the Nakajima-
Zwanzig quantum master equation may give an incorrect dy-
namical description as a result of neglecting higher-order cor-
rections in the strong-coupling regime. Thus, it is necessary to
develop a nonperturbative approach, which can include all the
contributions arising from higher-order functional derivative
terms.

Due to the non-Markovian characteristics, the evolution
equation of Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn), i.e., Eq. (14), con-
tains many integro-differential terms, which are difficult to
handle in a numerical simulation. Motivated by the hierar-
chical equations of motion (HEOM) formalism [37–39], we
define a set of auxiliary operators which fold these integro-
differential terms in their auxiliary constructions and convert
Eq. (14) into a set of ordinary differential equations. To this
aim, first, we need to introduce a complete set of orthonor-
mal functions {φj (t )} with j = 1, 2, 3, ..., ε [15,40,41], and
then the bath correlation function can be decomposed in the
form of α(t ) = ∑

j cjφj (t ), where cj denotes the expansion
coefficients in the basis {φj (t )}. Owing to the completeness of
{φj (t )}, d

dt
α(t ) can be fully expanded over the same basis as

d

dt
α(t ) =

∑
j,j ′

cjηjj ′φj ′ (t ). (23)

Then, let us define the auxiliary operators ÔJm
n

m+n(t ) as follows:

ÔJm
n

m+n(t ) ≡
∑

j

cj

∫ t

0
dt1φj1 (t − t1)

∫ t

0
dt2φj2 (t − t2)...

×
∫ t

0
dtmφjm

(t − tm)

×
∫ t

0
dτ1φ

∗
j1

(t − τ1)
∫ t

0
dτ2φ

∗
j2

(t − τ2)...

×
∫ t

0
dτnφ

∗
jn

(t − τn)Ômn, (24)

where Ômn = Ô(t ; t1, t2, ..., tm; τ1, τ2, ..., τn), cj is the expan-
sion coefficient of

∏m
l=1 αl (t )

∏n
�=1 α∗

� (t ) in the basis {φj (t )},
and

∑
j means the summation runs over all the jl and j�. The

subscript m + n indicates the order of the hierarchy expan-
sion, and the superscript Jm

n , which is a matrix with indefinite
size, is employed to identify different auxiliary operators with
the same hierarchy order. The expression of Jm

n is

Jm
n ≡

(
j1, j2, ..., jl, ..., jm, 0, ...

j1, j2, ..., j�, ..., jn, 0, ...

)
.

By doing so, the quantum master equation given by
Eq. (12) becomes

i
d

dt
�̃s(t ) = Ĥ×

s �̃s(t ) + f (ŝ)×ÔJ1
0

1+0(t ) + f (ŝ)×ÔJ0
1

0+1(t ).

(25)

And the auxiliary operators ÔJm
n

m+n(t ) obey the follow-
ing hierarchical equations (see Appendix B for more
details):

i
d

dt
ÔJm

n

m+n(t ) = Ĥ×
s ÔJm

n

m+n(t ) + f (s)×
∑
jm+1

cjm+1Ô
Jm+1

n

m+1+n(t )

+ f (s)×
∑
jn+1

c∗
jn+1

ÔJm
n+1

m+n+1(t )

+ i
∑
l,l′

ηjljl′ Ô
J

m(jl→j
l′ )

n

m+n (t )

+ i
∑
�,�′

η∗
j�j�′ Ô

Jm
n(j�→j

�′ )

m+n (t )
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+
∑

l

φjl
(0)f (ŝ)ÔJ

m(m−jl )
n

m−1+n (t )

−
∑

�

φ∗
j�

(0)Ô
Jm

n(n−j� )

m+n−1(t )f (ŝ), (26)

where m(jl → jl′ ) and n(j� → j�′ ) denote an element re-
placement in the first and the second row of matrix Jm

n , respec-
tively. We use m(m − jl ) and n(n − j�) to mean removing
an element in the first and the second row of matrix Jm

n ,
respectively. Together with Eq. (25), the reduced dynamics
of the quantum subsystem is fully determined. This result
[Eq. (26)] is beyond the result in Ref. [39] and already
resembles that in Ref. [40]. However, we want to emphasize
that the choice of the auxiliary operators in our scheme is
completely different from those of Refs. [37,38,42,43]. In this
sense, we propose an alternative way to establish the HEOM.
The HEOM can be viewed as a bridge linking the origi-
nal quantum Liouville equation and a computable numerical
scheme, which should be elaborately designed without losing
any important dynamical information. How to build such a
bridge is the crucial step of the HEOM treatment. In most of
the previous studies [37,38], the construction of HEOM was
achieved by an influence functional approach instead of the
stochastic process adopted in this paper. We believe that a
different viewpoint of building HEOM would be helpful to
obtain more physical insights into this research field.

If the bath correlation function α(t ) is an Ornstein-
Uhlenbeck–type correlation function, i.e., α(t ) = �e−γ t or
α(t ) = ∑

q �qe
−γq t , which can be viewed as a special situ-

ation of the above derivation, the hierarchical equations given
by Eq. (26) can be greatly simplified (see Appendix C).
Similar to the hierarchy equation of Ômn, there are infinite
auxiliary operators in Eq. (26), thus we need to truncate the
number of coupled equations for a sufficiently large integer
M + N and let all the terms with m > M and n > N equal
zero. In a numerical simulation, the initial conditions for
the auxiliary operators are ÔJm

n

m+n(0) = 0, and we keep on
increasing the truncation order until the final result converges.

In Ref. [27], Luo et al. introduced a set of auxiliary
operators which are very similar to the ÔJm

n

m+n(t ) defined in
our paper. However, these auxiliary operators employed by
Luo et al. still contain some complex-valued colored noises,
and they obey a series of stochastic differential equations. In
our treatment, the auxiliary operators ÔJm

n

m+n(t ) are noise-free,

and evolution equations of ÔJm
n

m+n(t ) are ordinary differential
equations. Thus, the key advantage of our formulation is its
highly efficient; it is easier to numerically solve a set of
(deterministic and noiseless) ordinary differential equations,
comparing with computing stochastic differential equations,
because it is usually difficult to have a convergent stochastic
averaging. In Sec. III, a specific example is provided to
verify this algorithm is superior to the non-Markovian QSD
approach in numerical efficiency.

III. RESULTS

In this section, we show some numerical results obtained
by the HFD method and make some comparisons between
our results with those of some other approaches (the non-

FIG. 1. The dynamics of the population difference 〈σ̂z(t )〉 of
the spin-boson model at zero temperature with different spectrum
widths: λ = 0.2 (non-Markovian QSD approach: solid blue line,
our numerical results: blue rectangles), λ = 0.4 (non-Markovian
QSD approach: dot-dashed purple line, our numerical results: purple
diamonds), and λ = 0.8 (non-Markovian QSD approach: dashed red
line, our numerical results: red circles). Other parameters are chosen
as ω0 = 1 and �γ = 0.2.

Markovian QSD approach [27] and the Born-Markov quan-
tum master equation).

We first consider the standard spin-boson model with-
out the rotating-wave approximation, i.e., Ĥs = 1

2ω0σ̂z and
f (ŝ) = σ̂x . We assume the initial state of the quantum subsys-
tem is given by �̃s (0) = |e〉〈e|, where |e〉 is the excited state of
the Pauli z operator, and the environment is initially prepared
in its Fock vacuum state. In this numerical simulation, the bath
density spectral function is chosen as the Lorentzian spectrum,
i.e., 2πJL(ω) = �λ2/(ω2 + λ2), where � denotes the cou-
pling constant, and λ can be explained as the broadening width
of the bath mode, which is connected to the bath correlation
time λ−1. In this case, the bath correlation function is given by
αL(t ) = 1

2λ�e−λt at zero temperature, which is the simplest
situation in this numerical scheme.

As shown in Fig. 1, our numerical results are in excel-
lent agreement with results from the non-Markovian QSD
approach in the short-time regime. A small deviation is found
in the long-time regime, probably because of the instability in-
duced by the stochastic simulation in the non-Markovian QSD
approach. More importantly, the simulation of the curve λ =
0.2 needs about 2 h for the non-Markovian QSD approach on
an Intel core-i7 CPU PC cluster (the truncation order is 50th
with 1000 noise realizations), but in our numerical scheme,
it only needs a few seconds with the same computational
resource.

In the above illustrative example, the quantum subsystem
is a spin- 1

2 system. It should be emphasized that our method
can be accommodated to some more complex situations. For
instance, our method can also be used to describe the reduced
dynamics of an arbitrary size spin interacting with a bosonic
reservoir. For this generalized model, Ĥs = εĴz + �Ĵx and
f (ŝ) = Ĵz, where Ĵx,z are components of a spin vector �J of
an arbitrary spin-J size. Such a large-spin model has been
extensively employed to investigate the dynamical property
of two-component Bose-Einstein condensates [44]. Unfortu-
nately, no exact solution is found for the reduced dynamics of
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the large-spin model. In order to verify the feasibility of the
HFD method, we also employ a second-order Born-Markov
quantum master equation to compute the reduced dynamics
of the large-spin model as a benchmark. The quantum master
equation is given by [42]

d

dt
�̃s(t ) = [−iĤ×

s − f (ŝ)×ϒ(ŝ)× + f (ŝ)×�(ŝ)◦]�̃s(t ),

(27)
where

ϒ(ŝ) ≡
∫ ∞

0
dtαR(t )f̂s(−t ),

�(ŝ) ≡ −i

∫ ∞

0
dtαI(t )f̂s(−t ),

with f̂s(t ) ≡ eiĤst f (ŝ)e−iĤst , and αR(I)(t ) being the real
(imaginary) part of the bath correlation function α(t ). One can
further simplify the expressions of ϒ(ŝ) and �(ŝ) by making
use of the trick proposed in Ref. [42], which would be very
helpful to a numerical calculation.

We now consider a spin-1 model as the second illustrative
example. In this spin-1 model, the matrix expressions of Ĵz,x

are given by

Ĵz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, Ĵx = 1√

2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠.

These matrices are written in the basis {|J = 1, Jm =
1〉, |J = 1, Jm = 0〉, |J = 1, Jm = −1〉}, where |J, Jm〉 are
the eigenstates of Ĵz with Ĵz|J, Jm〉 = Jm|J, Jm〉. In the simu-
lation, the bath density spectral function is an Ohmic spectrum
with Debye-type cutoff

JD(ω) = 1

π

2χωcω

ω2 + ω2
c

,

where χ denotes the system-bath coupling strength and ωc is
the cutoff frequency. At finite temperature, the corresponding
two-time bath correlation function can be expressed as a series
of exponential functions [37–39],

αD(t ) =
[
χωc cot

(
βωc

2

)
− iχωc

]
e−ωct

+ 4χωc

β

∞∑
j=1

ϑj

ϑ2
j − ω2

c

e−ϑjt ,

where ϑj ≡ 2jπ/β denotes the j th Matsubara frequency. In
a practical numerical simulation, we can only consider the
first few terms in the series, which is reliable when the bath
temperature is not very low.

In Fig. 2, we make a comparison between the result
obtained by the HFD method and that of the Born-Markov
quantum master equation given by Eq. (27). It is clear to
see that our numerical result is in agreement with the result
from the Born-Markov quantum master equation in short-time
regime. In the long-time limit, whether our numerical result or
that of the Born-Markov quantum master equation, it is found
that 〈Ĵz(t )〉 finally decays to a same steady value 〈Ĵz(t →
∞)〉. In the limit of zero coupling χ → 0, the steady value

FIG. 2. The dynamics of the spin z component 〈Ĵz(t )〉 of the
spin-1 model at finite temperature βωc = 0.5. The solid purple line
is the numerical result according to our HFD method, and the red
dashed line denotes the approximate solution given by the Born-
Markov quantum master equation. The initial state is |J = 1, Jm =
1〉. Other parameters are chosen as ε = 0.25ωc, � = 0.5ωc, χ =
0.05, and ωc = 1.

〈Ĵz(t → ∞)〉 coincides the thermodynamic expression of
Ĵz, i.e.,

〈Ĵz(t → ∞)〉

= 〈Ĵz〉th = − ε√
ε2 + �2

2 sinh(β
√

ε2 + �2)

1 + 2 cosh(β
√

ε2 + �2)
,

where 〈Ĵz〉th ≡ trs[Ĵz exp(−βĤs )]/trs[exp(−βĤs)]. This re-
sult is physically reasonable and convinces us that the HFD
method truly captures the dynamical behavior of a generalized
spin-boson model.

IV. CONCLUSIONS

Compared to that of the standard bosonic bath case, where
one can easily generate complex Gaussian noises in a practical
numerical simulation [43], a straightforward stochastic simu-
lation for a fermionic bath case can be trackable due to the
difficulty in generating generic anticommuting Grassmannian
noises [15,45]. A natural way to eliminate this problem is to
average out the Grassmannian variables and derive a corre-
sponding noise-free quantum master equation, which suggests
that the HFD method presented in this paper is a promising
candidate for a fermionic bath system. On the other hand, with
a suitable truncation, Eq. (22) also provides a perturbative
(but non-Markovian) quantum master equation for a spin bath
system. In this sense, the SD scheme is a unified methodology
for the reduced dynamics of a quantum dissipative system.

In summary, we develop an alternative HFD method to
investigate the reduced dynamics of a spin-boson model and
greatly extend the application range of the SD scheme. The
main idea is to convert the time-nonlocal functional derivative
terms in the original SD scheme into a set of hierarchical
equations. We also uncover the physical meaning of these
functional derivative terms. The sacrifice of the HFD method
is that, instead of intractable functional derivatives, we need
to deal with infinite integro-differential equations. In a pertur-
bative approximation, one can only consider the lowest-order
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truncation of these hierarchical equations and rederive the
second-order Nakajima-Zwanzig quantum master equation. In
a nonperturbative treatment, we can further eliminate these
integro-differential terms by deriving a corresponding hierar-
chy equation of the auxiliary operators, which can be easily
solved by employing the traditional Runge-Kutta algorithm.
In this case, our method also provides a highly efficient
numerical formalism for a general quantum dissipative sys-
tem without the usual Markovian, rotating-wave, and weak-
coupling approximations. Finally, due to the generality of the
quantum dissipative system, we expect our approach to be of
interest for a wide range of applications in quantum optics and
quantum information processing.
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APPENDIX A: COMPARISON WITH
NAKAJIMA-ZWANZIG EQUATION

The general Nakajima-Zwanzig quantum master equation
is given by [23]

i
d

dt
�̃s(t ) = Ĥ×

s �̃s(t ) +
∫ t

0
dτ 	̂(t − τ )�̃s(τ ), (A1)

where 	̂(t ) is the self-energy superoperator, which gives rise
to memory effects, i.e., the time evolution of �̃s(t ) depends
on the state �̃s(t ) at all earlier times τ � t . The rigorous
expression of 	̂(t ) is given by

	̂(t ) = −itrb(Ĥ×
sbe

−itQ̂Ĥ×
Ĥ×

sb ρ̂th ), (A2)

where Ĥsb = f (ŝ)g(b̂) and Q̂ ≡ 1 − ρ̂thtrb is the projection
superoperator. In the second-order (and Born) approximation,
one can find the expression of 	̂(2)(t ) is given by [24]

	̂(2)(t )�̃s(t ) = −itrb{[Ĥsb, e
−iĤ0t [Ĥsb, �̃s(t ) ⊗ ρ̂th]eiĤ0t ]}

= −itrb{Ĥsbe
−iĤ0t Ĥsb�̃s(t ) ⊗ ρ̂the

iĤ0t } + itrb{e−iĤ0t Ĥsb�̃s(t ) ⊗ ρ̂the
iĤ0t Ĥsb}

+ itrb{Ĥsbe
−iĤ0t �̃s(t ) ⊗ ρ̂thĤsbe

iĤ0t } − itrb{e−iĤ0t �̃s(t ) ⊗ ρ̂thĤsbe
iĤ0t Ĥsb}, (A3)

where Ĥ0 = Ĥs + Ĥb. The first term in the second row of Eq. (A3) can be calculated as follows:

trb{Ĥsbe
−iĤ0t Ĥsb�̃s(t ) ⊗ ρ̂the

iĤ0t } = trb[g(b̂)e−iĤbt g(b̂)ρ̂the
iĤbt ]f (ŝ)e−iĤst f (s)�̃s(t )eiĤst

= trb[eiĤbt g(b̂)e−iĤbt g(b̂)ρ̂th]f (ŝ)e−iĤst f (s)�̃s(t )eiĤst

= α(t )f (ŝ)e−iĤst f (s)�̃s(t )eiĤst .

By making use of the same method, we can finally obtain

trb{e−iĤ0t Ĥsb�̃s(t ) ⊗ ρ̂the
iĤ0t Ĥsb} = α(t )e−iĤst f (ŝ)�̃s(t )eiĤst f (ŝ),

trb{Ĥsbe
−iĤ0t �̃s(t ) ⊗ ρ̂thĤsbe

iĤ0t } = α∗(t )f (ŝ)e−iĤst f (ŝ)�̃s(t )eiĤst ,

trb{e−iĤ0t �̃s(t ) ⊗ ρ̂thĤsbe
iĤ0t Ĥsb} = α∗(t )e−iĤst f (ŝ)�̃s(t )eiĤst f (ŝ).

Inserting these expressions into Eq. (A1), one can obtain the quantum master equation given by Eq. (20) in the main text.

APPENDIX B: THE DERIVATION OF EQ. (26)

In this Appendix, we shall show how to derive the HEOM given by Eq. (26). Taking the time derivative of ÔJm
n

m+n(t ), we find
that

i
d

dt
ÔJm

n

m+n(t ) = I + II + III,

where the first term I can be worked out with the help of Eq. (14):

I =
∑

j

cj

∫ t

0
dt1φj1 (t − t1)...

∫ t

0
dtmφjm

(t − tm)
∫ t

0
dτ1φ

∗
j1

(t − τ1)...
∫ t

0
dτnφ

∗
jn

(t − τn)∂t (iÔmn)

=Ĥ×
s ÔJm

n

m+n(t ) + f (s)×
∑
jm+1

cjm+1Ô
Jm+1

n

m+1+n(t ) + f (s)×
∑
jn+1

c∗
jn+1

ÔJm
n+1

m+n+1(t ).
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The second term II can be evaluated as

II = i
∑

j

cj

∫ t

0
dt1...

∫ t

0
dtm

∫ t

0
dτ1...

∫ t

0
dτnÔmn∂t

[
φj1 (t − t1)...φjm

(t − tm)φ∗
j1

(t − τ1)...φ∗
jn

(t − τn)
]

= i
∑

j

cj

∫ t

0
dt1...

∫ t

0
dtm

∫ t

0
dτ1...

∫ t

0
dτnÔmn∂t

[
φj1 (t − t1)...φjm

(t − tm)
]
φ∗

j1
(t − τ1)...φ∗

jn
(t − τn)

+ i
∑

j

cj

∫ t

0
dt1...

∫ t

0
dtm

∫ t

0
dτ1...

∫ t

0
dτnÔmnφj1 (t − t1)...φjm

(t − tm)∂t

[
φ∗

j1
(t − τ1)...φ∗

jn
(t − τn)

]

= i
∑
l,l′

ηl,l′
∑

j

cj

∫ t

0
dt1...

∫ t

0
dtl′ ...

∫ t

0
dtm

∫ t

0
dτ1...

∫ t

0
dτnÔmnφj1 (t − t1)...φjl′ (t − tl′ )...φjm

(t − tm)

× φ∗
j1

(t − τ1)...φ∗
jn

(t − τn) + i
∑
�,�′

η∗
�,�′

∑
j

cj

∫ t

0
dt1...

∫ t

0
dtm

∫ t

0
dτ1...

∫ t

0
dτ�′ ...

∫ t

0
dτnÔmn

× φj1 (t − t1)...φjm
(t − tm)φ∗

j1
(t − τ1)...φj�′ (t − τ�′ )...φ∗

jn
(t − τn)

= i
∑
l,l′

ηjljl′ Ô
J

m(jl→j
l′ )

n

m+n (t ) + i

n∑
�,�′

η∗
j�j�′ Ô

Jm
n(j�→j

�′ )

m+n (t ).

The last term can be easily formulated out with the help of the initial conditions given by Eqs. (15) and (16) as follows:

III = i
∑

l

∑
j

cjφjl
(0)

∫ t

0
dt1φj1 (t − t1)...

∫ t

0
dtl−1φjl−1 (t − tl−1)

∫ t

0
dtl+1φjl+1 (t − tl+1)...

∫ t

0
dtmφjm

(t − tm)

×
∫ t

0
dτ1φ

∗
j1

(t − τ1)...
∫ t

0
dτnφ

∗
jn

(t − τn)Ômn(t ; t1, ..., tl = t, ..., tm; τ1, ...τn)

+ i
∑

�

∑
j

cjφ
∗
j�

(0)
∫ t

0
dt1φj1 (t − t1)...

∫ t

0
dtmφjm

(t − tm)
∫ t

0
dτ1φ

∗
j1

(t − τ1)...
∫ t

0
dτ�−1φ

∗
j�−1

(t − τ�−1)

×
∫ t

0
dτ�+1φ

∗
j�+1

(t − τ�+1)...
∫ t

0
dτnφ

∗
jn

(t − τn)Ômn(t ; t1, ..., tm; τ1, ..., τ� = t, ..., τn)

=
∑

l

φjl
(0)f (ŝ)ÔJ

m(m−jl )
n

m−1+n (t ) −
∑

�

φ∗
j�

(0)Ô
Jm

n(n−j� )

m+n−1(t )f (ŝ).

Finally, we can recover Eq. (26) in the main text.

APPENDIX C: ORNSTEIN-UHLENBECK–TYPE
BATH CORRELATION FUNCTION

If α(t ) is an Ornstein-Uhlenbeck–type correlation function,
namely, α(t ) = �e−γ t , one can redefine the auxiliary opera-
tors as

Ômn(t ) =
∫ t

0
dt1α(t − t1)

∫ t

0
dt2α(t − t2)...

∫ t

0
dtmα(t − tm)

×
∫ t

0
dτ1α

∗(t − τ1)
∫ t

0
dτ2α

∗(t − τ2)...

×
∫ t

0
dτnα

∗(t − τn)Ômn, (C1)

where we have already omitted the hierarchy order index
m + n for the sake of simplicity. The subscript (m, n) is a two-
dimensional index identifying different auxiliary operators.
Making use of the similar procedure shown in Appendix B,
one can also derive the hierarchical equations of Ômn(t ). The

result is given by

i
d

dt
Ômn(t ) = [Ĥ×

s − i(mγ + nγ ∗)]Ômn(t ) + f (ŝ)×

× [Ôm+1,n(t ) + Ôm,n+1(t )]

+m�f (ŝ)Ôm−1,n(t ) − n�∗Ôm,n−1(t )f (ŝ).

(C2)

Noticing that �̃s(t ) = Ô00(t ), then Eqs. (25) and (C2) can be
combined and rewritten in a more compact form,

d

dt
Ô �p(t ) = (−iĤ×

s − �p · �γ )Ô �p(t ) − if (ŝ)×
2∑

k=1

Ô �p+�ek (t )

+
2∑

k=1

pk
̂kÔ �p−�ek (t ), (C3)

where �p = (m, n), �γ = (γ, γ ∗), �� = (�,�∗), �e1 = (1, 0),
and �e2 = (0, 1) are two-dimensional indexes, and the super-
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operator 
̂k is defined by


̂k ≡ i

2
�k[(−1)kf (ŝ)◦ − f (ŝ)×].

It is found that Eq. (C3) recovers the HEOM given by
Ref. [39].

For the more general case, where the bath correlation
function α(t ) can be (or at least approximately) expressed as
a sum of exponential functions,

α(t ) =
Q∑

q=1

�qe
−γq t ,

where Q is the cutoff integer. A similar hierarchy equation of
Ô �p(t ) can be derived,

d

dt
Ô �p(t ) = (−iĤ×

s − �p · �γ )Ô �p(t ) − if (ŝ)×
2Q∑
k=1

Ô �p+�ek (t )

+
2Q∑
k=1

pk
̂kÔ �p−�ek (t ), (C4)

and in this case, �p = (m1, n1,m2, n2, ..., mQ, nQ), �γ =
(γ1, γ

∗
1 , γ2, γ

∗
2 , ...γQ, γ ∗

Q), �� = (�1,�
∗
1,�2,�

∗
2, ...,�Q,

�∗
Q), and �ek = (0, 0, ..., 1k, ...0) become 2Q-dimensional

indexes.
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