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Quantum-limited Euler angle measurements using anticoherent states
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Many protocols require precise rotation measurement. Here we present a general class of states that surpass the
shot-noise limit for measuring rotation around arbitrary axes. We then derive a quantum Cramér-Rao bound for
simultaneously estimating all three parameters of a rotation (e.g., the Euler angles) and discuss states that achieve
Heisenberg-limited sensitivities for all parameters; the bound is saturated by “anticoherent” states [Zimba,
Electron. J. Theor. Phys. 3, 143 (2006)] (we are reluctant to use “anticoherent” to describe the states, but the
name has become commonplace over the last decade). Anticoherent states have garnered much attention in
recent years, and we elucidate a geometrical technique for finding new examples of such states. Finally, we
discuss the potential for divergences in multiparameter estimation due to singularities in spherical coordinate
systems. Our results are useful for a variety of quantum metrology and quantum communication applications.
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I. INTRODUCTION

Estimating rotations is a highly relevant problem. Rotation
measurements have applications in mathematics, physics, and
beyond, ranging from geodesy [1] and magnetometry [2,3] to
physiology [4] (see Ref. [5] for a recent review). The problem
of estimating rotations around a known axis is well understood
[6–9], while rotation measurement around unknown axes is a
relatively new endeavor [10–12]. Measurement precision can
be enhanced using special quantum input states in the known-
axis case [13,14]; here we investigate quantum enhancements
for simultaneously estimating rotation angles and rotation
axes.

Single-parameter estimation has a long history [15]. One
of the most famous examples is interferometry, in which the
parameter in question is a phase imparted on a beam of light,
which can be used to measure things such as biomolecules
[16,17] and gravitational waves [18,19]. Classical states of
light are limited in their measurement precision by shot
noise arising from photon statistics, leading to uncertainties
bounded from below by 1/

√
N , where N is the number of

photons involved in the measurement [9,20]. However, this
is not a fundamental limit; cleverly designed schemes can
take advantage of quantum correlations between photons to
achieve the so-called Heisenberg limit, in which measurement
uncertainties scale as 1/N [9,20–22]. In this work we seek
similar quantum advantages for simultaneously estimating
multiple parameters.

An arbitrary rotation in three dimensions is characterized
by three parameters [23,24]. These parameters can be the
two angular coordinates of the rotation axis as well as the
angle rotated around that axis, or any of the 12 triplets of
Euler angles [25]. Here we seek to optimize estimates of the
Euler angles; were the rotation axis to be known a priori,
one could simply use single-parameter estimation techniques.
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Nonetheless, any set of three parameters can be obtained from
any other triplet.

Suitably designed quantum optical experiments can po-
tentially enhance the simultaneous estimation of multiple
parameters [26]. For measuring phases imparted by either
commuting or noncommuting operators, reductions in pa-
rameter uncertainties can be on the order of the number of
parameters being estimated [26,27]. A common technique for
finding these enhancements involves the quantum Cramér-
Rao bound, which bounds the covariance matrix between pa-
rameters being estimated by the inverse of the quantum Fisher
information matrix (QFIM) [28]. The quantum Cramér-Rao
bound optimizes the covariance over all possible measurement
techniques, and the QFIM depends on the chosen input state
[28,29]; therefore, an important task is finding quantum states
that maximize the QFIM.

One area in which the QFIM has been studied is for
reference frame alignment. Consider two parties who want to
share some spatial information; to do so, they must know each
other’s coordinate system. Estimating the rotation required to
align two coordinate systems has been studied, and it was
found that “anticoherent” states maximize the QFIM [12].
This result is highly insightful for measurements of rotations
about unknown axes.

Anticoherent states are those whose polarization vectors
vanish, and whose higher-order polarization moments are
isotropic [30]. They are the furthest states from perfectly
polarized states of light [31], with both classical and quan-
tum notions of polarization vanishing for anticoherent states
[30,32]. Because polarized light behaves more classically
than unpolarized light, anticoherent states are in some sense
the least classical quantum states [30,33–35]. Anticoherent
states have numerous mathematical and physical applications,
relating to old problems of distributing points around a sphere
[36,37] and new challenges such as maximizing quantum
entanglement [32,33,38] or other notions of nonclassicality
[39,40]. Some of these states have already been created ex-
perimentally using light’s orbital angular momentum degrees
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of freedom [41]. The states can be readily used for optimizing
estimates of rotation parameters.

In this paper, we use the QFIM and the quantum Cramér-
Rao bound to derive a bound on the covariance matrix for
simultaneously estimating all three Euler angles. We find
that anticoherent states can be used to achieve Heisenberg-
limited variances in estimating all three rotation parameters,
showing a quantum enhancement relative to estimation tech-
niques using classical states. We also find that, regardless of
parametrization, there exist angles for which the measurement
precision diverges, and we discuss a relation with the so-
called hairy ball theorem [42]. The multiparameter technique
outperforms classical shot-noise scaling everywhere, even in
this diverging regime. We then compare this scheme to other
parametrizations of rotation parameters as well as combina-
tions of single-parameter estimation schemes, finding that we
can always achieve quantum enhancements in measurement
precision relative not just to the classical case but also to
the best single-parameter schemes. Finally, we provide an
intuitive, alternative method for identifying new anticoherent
states.

II. ROTATIONS AND POLARIZATION

We begin by considering polarization states of light; these
are mathematically equivalent to any quantum states made
from two harmonic oscillator modes. The two modes are asso-
ciated with operators â and b̂ satisfying bosonic commutation
relations [âi , â

†
j ] = δij , âi ∈ {â, b̂}, such that a general state

can be written as

|ψ〉 =
∑
m,n

cm,n|m, n〉, |m, n〉 ≡ â†mb̂†n|vac〉/
√

m!n!.

(1)

Using these operators we can define angular momentum
operators [43]

Ŝ0 = (â†â + b̂†b̂)/2, Ŝx = (â†b̂ + b̂†â)/2,
(2)

Ŝy = −i(â†b̂ − b̂†â)/2, Ŝz = (â†â − b̂†b̂)/2,

satisfying the usual su(2) algebraic equations

[Ŝi , Ŝj ] = i

3∑
k=1

εijkŜk,

Ŝ2
x + Ŝ2

y + Ŝ3
z = Ŝ0(Ŝ0 + 1). (3)

Here, Ŝ0 is the total angular momentum operator, counting the
total number of quanta in the system. If, for example, â and b̂

represent annihilation operators for two orthogonal polariza-
tions of light, then we can associate the operators in Eq. (2)
with quantum Stokes operators, whose expectation values are
the classical Stokes parameters (up to a normalization factor)
[43,44].

The Stokes parameters contain all of the polarization infor-
mation of classical states of light, denoted by the vectors Ŝ ≡
(Ŝx, Ŝy, Ŝz) and S = 〈Ŝ〉 [45]. The Stokes operators generate
the SU(2) rotation operators

R̂(χ, n) = exp(iχ Ŝ · n), (4)

which rotate the Stokes vector S by angle χ about axis n =
(sin θ cos φ, sin θ sin φ, cos θ ). The goal of this paper is to
identify ways of measuring the three independent parameters
of these rotation operators R̂.

The key concept of polarization is that it defines a preferred
direction for a state. A state is unpolarized if its Stokes vector
is isotropic and therefore unchanged by rotations, which is
only satisfied when S = 0 [45]. Quantum mechanically, how-
ever, higher-order moments are required to fully characterize
a general state; there may still be some polarization infor-
mation in these classically unpolarized states [46,47]. This
prompted the definition of anticoherent states as those whose
higher-order polarization moments are also unchanged under

rotations. A “t-anticoherent” state satisfies 〈(Ŝ · n)
k〉 = ck for

all positive integers k � t and all unit vectors n [30]. States
that are anticoherent to order t have isotropic polarization
moments up to order t , just as classically unpolarized states of
light have polarization vectors that point nowhere. The con-
ditions for a state to be anticoherent have become more clear
in recent years [48–51]; in Sec. V, we provide a geometrical
formulation for finding new anticoherent states.

III. SINGLE-PARAMETER ESTIMATION

For a known axis n, one can try to optimize measurements
of the rotation angle χ around that axis by minimizing the
variance in an estimate of χ . One method of estimating χ

is by measuring the projection P̂ = |ψ〉〈ψ | of an initially
prepared pure state |ψ〉 onto the rotated state R̂|ψ〉: 〈P̂ 〉 =
|〈ψ |R̂(χ, n)|ψ〉|2, where expectation values are henceforth
taken with respect to the rotated state. For small angles χ ,
one can expand the exponential in Eq. (4) to find 〈P̂ 〉 = 1 −
χ2Var[Ŝ · n] + O(χ4), for variances Var[X] = 〈X2〉 − 〈X〉2.
This can be used to calculated the variance of the estimated
angle:

Var[χ ] = Var[P̂ ]∣∣ ∂〈P̂〉
∂χ

∣∣2
≈ 1

4Var[Ŝ · n]
. (5)

Coherent-state inputs with average photon number N ,
such as e−N/2 ∑∞

m=0
Nm/2√

m!
|m, 0〉, have 4Var[Ŝ · n] = N . These

classical states can at best achieve the shot-noise precision
�χ ≡ √

Var[χ ] = 1/
√

N . In comparison, the NOON states
|N,0〉+|0,N〉√

2
satisfy 4Var[Ŝ · n] = N2 cos2 θ + N sin2 θ , and so

can achieve Heisenberg-limited precisions �χ = 1/N for
rotations around a unit vector n aligned with the θ = 0 axis.
This is an important example of the fact that particular input
states can provide quantum-enhanced sensitivities in parame-
ter estimation.

If we do not specify a measurement scheme, the quantum
Cramér-Rao bound tells us that �χ � 1/

√
I , for quantum

Fisher information [52]

I = 4[〈ψ |(∂χ R̂)†∂χ R̂|ψ〉 − |〈ψ |R̂†∂χ R̂|ψ〉|2]. (6)

The measurement scheme of projecting onto the initial
state, described above, saturates the Cramér-Rao bound in
the small-angle limit, which is always possible for single-
parameter estimation [5,26,34]. The Fisher information to-
gether with the quantum Cramér-Rao bound can thus be used
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as a way of determining input states that will achieve optimal
sensitivities for a particular transformation.

It is clear that states with isotropic Var[Ŝ · n] = O(N2) are
useful for estimating rotations about arbitrary, known axes
n. These states will achieve Heisenberg-scaling precisions
regardless of the rotation axis n, albeit with slightly less
sensitivity than the NOON states rotating about the θ = 0

axis. The 2-anticoherent states have 〈Ŝ〉 = 0 and 〈(Ŝ · n)
2〉 =

〈Ŝ0(Ŝ0 + 1)〉/3, which allows the variances to scale quadrati-
cally with the number of quanta in the initial states. Recent
experiments have used these states to achieve Heisenberg-
scaling sensitivities for rotations around a variety of rotation
axes [41]. We presently investigate these states in the context
of measuring rotations whose axes are not known a priori.

IV. MULTIPARAMETER ESTIMATION

In this section we investigate the most sensitive techniques
for simultaneously measuring changes in all three Euler an-
gles of a rotation.

A. Quantum Fisher information matrix for
Euler angle estimation

The QFIM for pure states has components [53]

[Iθ ]l,m = 1

2
〈ψθ |LlLm + LmLl|ψθ 〉 (7)

for symmetric logarithmic derivatives

Li = 2(|∂θi
ψθ 〉〈ψθ | + |ψθ 〉〈∂θi

ψθ |). (8)

Here, |ψθ 〉 = R̂(θ )|ψ0〉, for input state |ψ0〉 and some triplet
of rotation parameters θ . The operator Lχ is relatively easy
to compute given the parametrization R̂ = exp (iχ Ŝ · n), be-
cause in taking the derivative ∂χ R̂ one need not consider
operator ordering. The other components can be calculated
using Ref. [54]’s more involved technique; for clarity, we
concentrate on a simpler Euler angle parametrization for
our subsequent discussion to avoid introducing this new
technique.

Following the notation in Ref. [55] discussing the SU(2)
representation of beam splitters, we parametrize our rotation
operators by

R̂(�,�,� ) = e−i�Ŝz e−i�Ŝy e−i�Ŝz . (9)

Our goal is to estimate the parameters (�,�,�). For this
we must evaluate the symmetric logarithmic derivatives defin-
ing the quantum Fisher information, which rely on deriva-
tives of R̂ with respect to each of the three angles: ∂θi

R̂ =
−iĤθi

R̂, θi ∈ (�,�,�), for operators

Ĥ� ≡ Ŝz,

Ĥ� ≡ e−i�Ŝz Ŝye
i�Ŝz = − sin �Ŝx + cos �Ŝy,

Ĥ� ≡ R̂ŜzR̂
† = sin � cos �Ŝx + sin � sin �Ŝy + cos �Ŝz.

(10)

Then we find that [Iθ ]l,m takes the form

[Iθ ]l,m = 4Cov{Ĥl, Ĥm}, (11)

where we use Cov{X, Y } = 〈XY+YX
2 〉 − 〈X〉〈Y 〉 and expecta-

tion value are taken with respect to the rotated state |ψθ 〉. All
that remains is to find states |ψθ 〉 that maximize the amount of
information in this matrix.

B. Quantum Fisher information
matrix for optimum input states

We assume that the input states have exactly N quanta, as
these will always perform at least as well as superposition
states with various numbers of quanta [12]. It was shown
that the best states for estimating the three components of a
reference frame have 〈Ŝ〉 = 0 and 〈Ŝi Ŝj 〉 = δij

N
2 ( N

2 + 1)/3
[12]; these are the 2-anticoherent states [30]. We calculate
the QFIM for 2-anticoherent states with N quanta, in the
(�,�,�) basis:

Iθ = N (N + 2)

3

⎛
⎝ 1 0 cos �

0 1 0
cos � 0 1

⎞
⎠. (12)

The quantum Cramér-Rao bound says that the covariance
matrix for the parameters (�,�,�) satisfies the inequality

Cov{θ} � I−1
θ = 3

N (N + 2)

⎛
⎜⎝

1
sin2 �

0 − cos �

sin2 �

0 1 0

− cos �

sin2 �
0 1

sin2 �

⎞
⎟⎠;

(13)

this bound can be saturated for pure states with real symmetric
logarithmic derivatives [5,26,34], which is always the case
here.

This result gives excellent scaling with N . The actual
measurement precisions have very small bounds for sin � ≈ 1
but are worse when sin � ≈ 0, which can be expected from
the chosen Euler angle parametrization. This is because, for
� = 0, the beam splitter simply acts as R̂ = e−i(�+�)Ŝz , and
so one would only ever be able to estimate � and the sum
� + �. Alternatively, we can see this divergence by consid-
ering the difference in parameters � − �. The eigenvector
(1, 0,−1) of the QFIM given in Eq. (12) corresponding to the
difference � − � has eigenvalue proportional to 1 − cos �,
which vanishes at � = 0 (see Ref. [56] for further discussion).
Our estimation scheme does well everywhere other than at this
angle.

For any � > 0 we thus get Heisenberg scaling in the
variance of estimating �, �, and � simultaneously:

Var[�] + Var[�] + Var[�] � Tr[I−1
θ ]

= 3

N (N + 2)

(
1 + 2

sin2 �

)
. (14)

Equation (14) shows that quantum enhancements can be
achieved in the simultaneous estimation of all three rotation
parameters.

C. Comparison to single-parameter estimation and
other rotation parametrizations

We can compare our result in Eq. (14) to the best
possible single-parameter estimation techniques, as well as
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parametrizations other than (�,�,�). The optimum single-
parameter estimation techniques use NOON states. A scheme
that uses three NOON states to measure rotations around three
arbitrary axes, with N/3 particles in each state, only yields the
quantum Cramér-Rao bound (see Appendix A)

Var[�] + Var[�] + Var[�] �
(

3

N

)2

×
(

1 + 1

cos2 θ1 + 1
N

sin2 θ1
+ 1

cos2 θ2 + 1
N

sin2 θ2

)
,

(15)

where θ1 is the angle between one of the chosen axes and
(− sin �, cos �, 0), and θ2 is the angle between another cho-
sen axis and (sin � cos �, sin � sin �, cos �).

Even for the most fortuitous choice of axes (θ1 = θ2 = 0
versus � = π/2), our multiparameter scheme outperforms
this single-parameter scheme by a factor d + 2d/N , where
d = 3 is the number of parameters being estimated. This
is because one can only use N/d quanta per measurement
in the single-parameter scheme, which is similar to the
O(d ) enhancements found by Ref. [26,27] in using d-mode
schemes to simultaneously estimate d parameters. However,
one should not combine the Cramér-Rao bounds for single
parameters when multiple parameters are unknown. The off-
diagonal elements of the QFIM are what determine its singu-
larities; it is unfair to compare to single-parameter estimation
schemes when none of the parameters necessary to determine
the optimal measurement parameters are known a priori (e.g.,
θ1 and θ2). The multiparameter technique outlined above is
thus necessary for simultaneously estimating �, �, and �,
always beating single-parameter schemes.

We further note that every parametrization of the rota-
tion parameters has divergences in the trace of the covari-
ance matrix for particular angles. For example, if we use
the rotation operators R̂(α, β, γ ) = e−iαŜx e−iβŜy e−iγ Ŝz in our
multiparameter scheme, we find that the trace of the covari-
ance matrix again achieves Heisenberg scaling, but with di-
vergences at angles satisfying sin (2α) = cos (β )/ sin2 (β/2).
Similarly, parametrizing a rotation by its rotation angle and its
rotation axis, as in Eq. (4), achieves Heisenberg scaling with
divergences at χ = 0 and θ = 0 (see Appendix B for further
discussion of such coordinate singularities).

Coordinate singularities in three-dimensional parametriza-
tions of rotations relate to the assertion of Brouwer’s fixed-
point theorem, the so-called hairy-ball theorem, that nonva-
nishing continuous tangent vector fields on the sphere S2 do
not exist [42]. The theorem implies that a function mapping
the eigenvector unchanged by a rotation matrix to its orthogo-
nal basis vectors cannot be continuous, which forces three-
dimensional parametrizations of S2 to always be singular
somewhere [24]. The QFIM being singular is a signature of
the singularities present in every choice of three-dimensional
parametrizations of S2 [56].

V. FINDING 2-ANTICOHERENT STATES

The states that optimize the QFIM for estimating Eu-
ler angles are 2-anticoherent states: classically unpolarized

states with isotropic variances in their Stokes operators.
The original requirement for an N -qubit state |ψ (N )〉 =∑N

m=0 cm|m,N − m〉 to be 2-anticoherent can be written as

S = 0, S = N (N + 2)

12
I, (16)

where we define the Hermitian tensor S with components
Si,j = 〈Ŝi Ŝj 〉 [30].

To identify such states, the usual approach is via the
Majorana representation [57]. The Majorana representation
allows us to uniquely write N -qubit states as |ψ (N )〉 ∝∏N

k=1 â
†
θk,φk

|vac〉. Then, the N creation operators â
†
θk,φk

=
cos θk

2 â† + eiφk sin θk

2 b̂† uniquely map the state |ψ (N )〉 to the
N points {(θm, φm)} on the unit sphere, known as the Poincaré
sphere in the context of polarization [40,58].

A deep conjecture relating the Majorana representation of
anticoherent states to spherical designs was proposed in 2010
[48], but counterexamples were elucidated shortly thereafter
[49]. A fruitful new approach for numerically finding these
states has recently come to light [35,50,59]; we comment
briefly on earlier approaches and show an elegant, geometrical
method for finding 2-anticoherent states that has not yet been
elucidated.

A. Mathematical scheme

Similar to the method in Ref. [50], we present simple
mathematical criteria for finding 2-anticoherent states. All
2-anticoherent states must have

N∑
m=0

|cm|2m = N

2
,

N∑
m=0

|cm|2m2 = N (2N + 1)

6
, (17)

due to 〈Ŝz〉 = 0 and 〈Ŝ2
z 〉 = N (N + 2)/12, in addition to the

usual normalization
∑

m |cm|2 = 1. The other conditions can
all be satisfied if we impose the additional requirement that
cmcm+1 = cmcm+2 = 0 for all m (i.e., the spacing between
each nonzero cm should be at least two values of m). This
yields a set of three equations for the real parameters |cm|2,
which can be solved analytically or numerically for a given
choice of nonzero {cm} (see especially Ref. [50] for interesting
numerical results).

As an example, we give an analytical solution for systems
with four nonzero coefficients cN/4, cN/2, c3N/4, and cN (we
choose this example because there are no 2-anticoherent states
listed in Refs. [12,50] with exactly four nonzero coefficients).
We find the infinite family of states

∣∣ψ (N )
4

〉 = c|N, 0〉 + eiφ1

√
2(2 + N )

3N
− 3c2

∣∣∣∣3N

4
,
N

4

〉

+ eiφ2

√
3c2 − 8 + N

3N

∣∣∣∣N2 ,
N

2

〉

+ eiφ3

√
2(2 + N )

3N
− c2

∣∣∣∣N4 ,
3N

4

〉
, (18)

for arbitrary c ∈ ( 8+N
9N

, 4+2N
9N

) and N � 12. The states |ψ (N )
4 〉,

and other easy-to-find 2-anticoherent states, can thus be used
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to achieve Heisenberg scaling of O(1/N ) in the precision of
simultaneously estimating all three Euler angles of a rotation.

B. Geometrical scheme

There are important geometrical properties of
2-anticoherent states that can be used to find new such
states without solving systems of linear equations. These
make use of the Majorana representation. To optimize
estimates of the Euler angles, one seeks states that are highly
sensitive to rotations. These optimal states, the 2-anticoherent
states, are found to be states with highly symmetric Majorana
representations [12,40].

1. Platonic solids and the Majorana representation

The problem of distributing points symmetrically about a
sphere is not new. It has been studied in relation to mathe-
matics [37], biology [60], and quantum entanglement [32].
One of the earliest results for distributing points symmetri-
cally uses the Platonic solids; the vertices of any of the five
Platonic solids will be symmetrically spaced about a sphere
circumscribing the solid.

States whose Majorana representations form a Platonic
solid are always anticoherent to order 2 or higher [12,30]. For
example, the state

|ψ〉 = 1√
3
|4, 0〉 +

√
2
3 |1, 3〉 =

(
â†4√

72
+ â†b̂†3

3

)
|vac〉,

(19)

which is the most nonclassical state with N = 4, a maximally
entangled state of four qubits, and the most sensitive N = 4
state for reference frame alignment, has vertices that form a
tetrahedron, one of the Platonic solids [34]. Moreover, states
with m Majorana points at each of the vertices of a Platonic
solid, like

|ψ〉 ∝
(

â†4

√
72

+ â†b̂†3

3

)m

|vac〉, (20)

are also anticoherent.1 Platonic solids with m Majorana points
at each vertex can thus be used to increase the particle number
N in the Heisenberg scaling for estimating the Euler angles of
a rotation (Fig. 1).

2. States with two rotational symmetries

We here present a method for finding new 2-anticoherent
states with arbitrarily large particle number N . We show that
any state with at least two discrete rotational symmetries
along independent axes |ψ〉 = R̂1|ψ〉 = R̂2|ψ〉 will satisfy
this property, and we use the Majorana representation to find
states with this property.

The key to this result is the fact that the quantities S and
S transform as vectors and tensors, respectively, under the
transformation |ψ〉 → R̂|ψ〉. For a rotation R̂(χ, n), we have
S → RS and S → RSR−1, where the rotation matrix R is
given by the famous Rodrigues rotation formula:

R =

⎛
⎜⎝

cos χ + n2
x (1 − cos χ ) nxny (1 − cos χ ) + nz sin χ nxnz(1 − cos χ ) − ny sin χ

nynx (1 − cos χ ) − nz sin χ cos χ + n2
y (1 − cos χ ) nynz(1 − cos χ ) + nx sin χ

nznx (1 − cos χ ) + ny sin χ nzny (1 − cos χ ) − nx sin χ cos χ + n2
z (1 − cos χ )

⎞
⎟⎠ (21)

(see Ref. [61] for a list of the rotation matrices generated by
the Stokes operators). If a state is unchanged via a rotation
R̂, the corresponding transformation must yield S = RS and
S = RSR−1.

A vector that is unchanged by two rotations about indepen-
dent axes must have zero length. To see this, consider a vector
unchanged by a rotation around a single axis; the vector must
point along the axis of rotation. No vector can point along two
independent axes without being the zero vector. Therefore, all
states with the property

|ψ〉 = R̂(χ1, n1)|ψ〉 = R̂(χ2, n2)|ψ〉, n1 ∦ n2, (22)

must be at least 1-anticoherent, with S = 0.
For the property given by Eq. (22) to guarantee that

S ∝ I, we must further require that χ1, χ2 �= π ; i.e., nei-
ther R1 nor R2 can be reflection matrices. Without this
condition, states such as NOON states would satisfy the
property in Eq. (22), but these are not 2-anticoherent
states.

1This little-known fact is mentioned in a footnote in Ref. [30]
without proof; we show why this is true in the next section.

Equation (22) guarantees that the eigenvectors of S are
all degenerate. The degeneracy follows from that fact that S
commutes with both R1 and R2, because S = R1SR−1

1 =
R2SR−1

2 . The eigenvalue equation Sv = λv then guarantees
that R1v and R2v are also eigenvectors of S with the same
eigenvalue λ. Of note, the only real eigenvectors of R1 and R2

are proportional to n1 and n2, respectively, because rotations
in three dimensions only have a single axis that they leave
unchanged. We can then always find one of the three linearly
independent eigenvectors of the 3 × 3 Hermitian tensor S that
is outside of the span of n1 and n2, call it v0, and guarantee
that v0, R1v0, and R2v0 span three dimensions. The entire
eigenspace of S is thus spanned by vectors with degenerate
eigenvalues; this implies that S is proportional to the identity
matrix.

The proportionality constant in S ∝ I is fixed by Eq. (3) to
yield the 2-anticoherence properties given in Eq. (16):

S = 0, S = N (N + 2)

12
I. (23)

Any state with two independent rotational symmetries
[Eq. (22)] will achieve Heisenberg scaling in estimating
rotation parameters.
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FIG. 1. Example of the Majorana representation of a quantum
state that can be used to achieve Heisenberg-limited sensitivities
O(1/N ) for simultaneously estimating all three parameters of a
rotation. The image shows two intersecting tetrahedra that are duals
to each other, one colored in purple and the other in orange. The
vertices of the respective tetrahedra are on the surface of the sphere,
colored as purple (small) and orange (large) points. Also shown as
green cubes are the vertices of a truncated tetrahedron aligned with
the purple tetrahedron. A state whose Majorana representation has m

degenerate points at each of the (purple, small, spherical) vertices of
one tetrahedron, n degenerate points at the (orange, large, spherical)
vertices of the other tetrahedron, and k degenerate points at the
(green, cubic) vertices of the truncated tetrahedron is a 2-anticoherent
state, with N = 4(m + n + 3k).

3. Applications of the geometrical condition

All of the Platonic solids have multiple discrete rotational
symmetries, about axes defined by the lines from the center
of the sphere through any of the solids’ vertices or through
the middle of any of the solids’ faces. These symmetries
are a property of the geometry alone, and so states whose
Majorana representations have m-fold degeneracies at each of
the vertices of a Platonic solid are 2-anticoherent states.

Moreover, the duals of a polyhedron share its rotational
symmetries, so any state whose Majorana representation fea-
tures m-fold degeneracies at the vertices of a Platonic solid
as well as n-fold degeneracies at the vertices of the Platonic
solid’s dual is also 2-anticoherent. For example, a state whose
Majorana constellation has m points at each of the vertices of
a cube and n points at each of the vertices of the cube’s dual,
an octahedron, is a 2-anticoherent state (see Fig. 1 for a similar
example). Combinations of Platonic solids and their duals can
be used to measure rotation parameters with high sensitivity.

Our criteria thus help motivate the Platonic solids as ideal
states for measuring rotations. They also point to a much
broader class of ideal states. One such extension is the class
of Archimedean solids (Figs. 1 and 2). The 13 Archimedean
solids all have discrete rotational symmetries along multiple
independent axes.

For example, the truncated tetrahedron, an Archimedean
solid, has the same rotational symmetries as the tetrahedron,
with 12 vertices. Thus, one can form Majorana constellations
made from any combination of m points at each of the vertices

FIG. 2. The Archimedean solids, other than the truncated tetra-
hedron. These shapes can all be circumscribed by a sphere that inter-
sects every one of their vertices. All of the faces of the Archimedean
solids are regular polygons, and every vertex of an Archimedean
solid is symmetric with every other vertex of the solid (in the sense
that they are connected by global isometries). States whose Majorana
representations correspond to the vertices of the Archimedean solids
are 2-anticoherent and can be used to attain quantum enhancements
in measuring rotations.

of a tetrahedron, n points at the vertices of the tetrahedron’s
dual tetrahedron, i points at the vertices of the associated
truncated tetrahedron, and j points at the vertices of the
truncated tetrahedron associated with the dual tetrahedron, to
obtain a 2-anticoherent state with N = 4n + 4m + 12i + 12j

quanta (Fig. 1). Similar constructions can be made with all
of the Platonic and Archimedean solids that share rotational
symmetries.

This gives a broad class of states that achieve Heisenberg
scaling in estimating the three angles of a rotation. Our sym-
metry property can be used as a simple geometrical method
for generating new 2-anticoherent states. Such states can be
created experimentally in numerous ways: using light’s orbital
angular momentum degree of freedom to do polarimetry or
ellipsometry, as in Ref. [41]; likewise, using polarization of
light, as in Refs. [62,63]; or using the 2l + 1 orbitals of the
lth sublevel of a hydrogenlike atom to do magnetometry [64].
We conjecture that increasing the degeneracy of the Majorana
representation of any 2-anticoherent state will yield a new
2-anticoherent state.

VI. CONCLUSIONS

We have presented a thorough investigation of how to
attain maximally sensitive measurements of rotations. We
derived the quantum Fisher information matrix for Euler angle
measurements, and established a quantum Cramér-Rao bound
on the covariance between the Euler angles being measured.
Specifically, we then focused on the states that optimize the
Fisher information: the 2-anticoherent states. This yielded
Heisenberg-scaling precisions in simultaneously measuring
all three Euler angles [Eq. (14)], offering enhancements over
the shot-noise limit. We showed that the corresponding matrix
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is always singular for particular combinations of rotation
parameters, which is an important consideration in all rotation
measurements. Finally, we mentioned that states whose Majo-
rana representations have two independent rotational symme-
tries are 2-anticoherent states. This geometrical technique is a
powerful way of uncovering new 2-anticoherent states.

Using 2-anticoherent states to optimize rotation measure-
ments has many applications. The quantum enhancements ob-
tained by using 2-anticoherent states can naturally be used in
polarimetry and ellipsometry, using light’s polarization degree
of freedom, and can further be used in precision measure-
ments of electric and magnetic fields, biological samples, and
even components of quantum technologies. The exciting field
of quantum-enhanced multiparameter estimation has many
important ramifications for the near future.
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APPENDIX A: SINGLE-PARAMETER VARIANCES

In this section we derive a bound on the variances of three
rotation parameters estimated using three optimal single-
parameter estimation schemes.

We consider as usual the NOON states |ψNOON〉 =
|N,0〉+|0,N〉√

2
(with N > 2 quanta) and the rotation oper-

ators R̂(�,�,�) = e−i�Ŝz e−i�Ŝy e−i�Ŝz . We try to mini-
mize the variance in estimating �, �, and � by us-
ing three NOON states, each with N/3 particles, aligned
along various axes. Without loss of generality, we con-
sider the states |ψ0(a, b)〉 = R̂(0, a, b)|ψNOON〉, where a =
tan−1(uy/ux ) and b = cos−1(uz) parametrize the unit vector
u = (ux, uy, uz) around which the NOON state |ψ0(a, b)〉 is
most sensitive to measuring rotations.

The state |ψNOON〉 has

S = 0, S = 1

4

⎛
⎝N 0 0

0 N 0
0 0 N2

⎞
⎠. (A1)

The quantum Fisher information is calculated as before with the Ĥl operators, but now we must take expectation values with
respect to the states |ψ0(a, b)〉. For this, we use the transformations

R̂†(0, a, b)Ĥ�R̂(0, a, b) = − sin aŜx + cos aŜz,

R̂†(0, a, b)Ĥ�R̂(0, a, b) = Ŝx cos a(sin b cos � − cos b sin �) + Ŝy (cos b cos � + sin b sin �)

+ Ŝz sin a(sin b cos � − cos b sin �),

R̂†(0, a, b)Ĥ�R̂(0, a, b) = Ŝx (sin � cos � cos a cos b + sin � sin � cos a sin b − cos � sin a) + Ŝy (sin � sin � cos b

− sin � cos � sin b) + Ŝz(sin � cos � sin a cos b + sin � sin � sin a sin b + cos � cos a). (A2)

We are looking to optimize measurements of a single param-
eter, using Var[θi] � 1/4Var[Ĥi]:

Var[�] � 1

N2[u · nz]2 + N [u × nz]2
,

Var[�] � 1

N2[u · n�]2 + N [u × n�]2
, (A3)

Var[�] � 1

N2[u · n�,�]2 + N [u × n�,�]2
,

for unit vectors

nz = (0, 0, 1),

n� = (− sin �, cos �, 0),

n�,� = (sin � cos �, sin � sin �, cos �),

u = (sin a cos b, sin a sin b, cos a). (A4)

The variances are similar to those in the known-axis case,
in which the denominators look like N2 cos2 θ + N sin2 θ for
a rotation around axis (sin θ cos φ, sin θ sin φ, cos φ).

The unknown axis contributes the parameters � and �,
and one must choose combinations of a and b that optimize
estimates of �, �, and �. The best possible choice for
estimating � is by taking u = nz. Similarly, the best possible

choices for estimating � and � use u = n� and u = n�,�,
respectively; however, these axes cannot be known a priori.

Each scheme can only use N/3 particles, so the optimal
combination of these three variances for various choices
of a and b yields Eq. (15) above, where we have chosen
n� · u = cos θ1 and n�,� · u = cos θ2. However, this idea of
combining the single-parameter Cramér-Rao bounds for a
multiparameter estimation technique, like in Refs. [26,27],
cannot be sufficient. If it were the case, we could simply take
the diagonal components of Eq. (12), invert them, and achieve
Heisenberg-scaling precisions for �, �, and � regardless of
rotation angle, which is impossible. The difference here is that
we cannot treat two out of the three parameters as known
while estimating the third, so one cannot truly subdivide
the system and estimate a single parameter for each section
while being ignorant of the other parameters. Only a true
multiparameter estimation technique can succeed in our case.

APPENDIX B: DIVERGENCES IN EVERY
ROTATION ANGLE PARAMETRIZATION

We here discuss the fact that every rotation angle
parametrization yields singular quantum Fisher information
matrices for particular combinations of rotation angles.
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We start by choosing three rotation parameters a, b, and c.
Any triplet of rotation parameters can in principle be obtained
from any other such triplet (e.g., by equation the rotation
matrices for the various parametrizations and solving the
resulting nonlinear equations), so we use our parametrization
R̂(�,�,�) = e−i�Ŝz e−i�Ŝy e−i�Ŝz for variables

� = �(a, b, c), � = �(a, b, c), � = �(a, b, c).

(B1)

Next, we formally compute the derivatives

dkR̂ = −i(Ĥ�dk� + Ĥ�dk� + Ĥ�dk�) ≡ −iĤkR̂, (B2)

for k ∈ (a, b, c) and dk ≡ d/dk. In the θ̃ = (a, b, c)
parametrization, the quantum Fisher information matrix has
components related to the θ = (�,�,�) QFIM:

[
Iθ̃

]
i,j

= (
di� di� di�

)
Iθ

⎛
⎝dj�

dj�

dj�

⎞
⎠. (B3)

We recognize the Jacobian

J =
⎛
⎝da� db� dc�

da� db� dc�

da� db� dc�

⎞
⎠ (B4)

and the transformation Iθ̃ = JTIθJ. We have already shown
that the matrix Iθ is singular at angle � = 0, because
Det[Iθ ] ∝ sin2 �. The new matrix Iθ̃ is singular whenever Iθ

is singular, unless Det[J] diverges as 1/ sin �. This singularity
is a coordinate singularity; there is no set of coordinates that
can cover a sphere without such singularities. The best that
can be done is to hope for a parametrization whose coordinate
singularity occurs at a different set of coordinates.

The only possibility of Iθ̃ being invertible at � = 0
is if Det[J] ∝ 1/ sin � for all values of � and � at that
point. Namely, one would need da�(dc�db� − db�dc�) +
db�(dc�da� − da�dc�) + dc�(db�da� − da�db�) ∝
1/ sin � for all values of � and � as � → 0. This requires
that da� ∝ db� ∝ dc� ∝ 1/ sin � as � → 0. If that were
the case, then one would never be able to estimate the value
of � from the three parameters a, b, and c near � = 0.

Still, if one indeed had Det[J] ∝ 1/ sin �, we would expect
Det[J] → 0 at a different value of θ , because coordinate
singularities are present regardless of parametrization. Since
the rotation parameters are unknown a priori, it is impossible
to definitively choose a parametrization that is guaranteed to
be nonsingular for a given rotation measurement. Perhaps
one could avoid the divergences by using N/2 particles in
each of two separate rotation measurements whose singular
coordinates do not coincide.
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