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There has been a body of work deriving the complex Hilbert-space structure of quantum theory from
axioms/principles/postulates to deepen our understanding of quantum theory and to reveal ways to go beyond it
to resolve foundational issues. Recent progress in incorporating indefinite causal structure into physical theories
suggests that a more comprehensive understanding of both quantum theory and the theory beyond it accounts
for indefinite causal structure. We formulate a framework of physical theories without assuming definite causal
structure and identify postulates that single out the complex Hilbert-space structure. More than one complex
Hilbert-space theory is compatible with the postulates, which leaves room for further search for the best among
these theories.
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I. INTRODUCTION

Ordinary quantum theory assumes definite causal structure.
This assumption is manifested in the existence of a dynamical
law that evolves physical states through a definitely ordered
sequence of continuous or discrete times and in the definite
causal order presumed for the quantum operations.

In recent years it has been realized that to describe nature
more comprehensively it is very likely necessary to drop the
assumption of definite causal structure and incorporate indef-
inite causal structure into the theory. Experiments claiming
realizations of operations with indefinite causal structure have
been reported [1–3], and protocols have been discovered offer-
ing a further layer of indefinite-causal-structure-over-definite-
causal-structure advantage in information processing (e.g.,
[4–9]), in addition to the quantum-over-classical advantage for
theories with definite causal structure [10]. Moreover, it was
pointed out early on that a theory unifying quantum theory and
general relativity is expected to have a causal structure that is
both dynamical and indefinite [11,12].

While the pioneer work introduces indefinite causal struc-
ture to general operational probabilistic theories [11,12], more
recent works specialize to construct theories and models with
the complex Hilbert-space structure (e.g., [5,13,14]). Ordinary
quantum theory [16] based on the complex Hilbert-space
structure suffers foundational problems which motivate a
search for better alternatives [17]. In particular, there is a
body of work that studies alternative operational probabilistic
theories (see, e.g., [18] and references therein). Some alter-
native theories exhibit interesting new features such as larger
violations of Bell’s inequality than quantum theory [19,20], but
none of the alternatives have so far been found to definitively
describe nature better than quantum theory. To answer the
deep question of what makes quantum theory special in the
landscape of possible probabilistic theories, several different
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sets of axioms/principles/postulates have been identified which
single out quantum theory (e.g., [21–30]). These works usually
contain two parts, with the first part offering a framework to
formulate a family of probabilistic theories and the second part
deriving that only quantum theory obeys certain postulates.
It is hoped that these axiomatic characterizations of complex
Hilbert-space quantum theory will not only tell us what makes
quantum theory special, but also guide the continued search
for a superior theory that resolves the foundational problems
of quantum theory.

The above axiomatic works commonly assume definite
causal structure, either at the level of the general framework, so
that all theories in the landscape have definite causal structure,
or at the level of the postulates, so that the quantum theory
that is singled out has definite causal structure. In view of
the need to incorporate indefinite causal structure already
mentioned, the assumption of definite causal structure appears
to be important limitation. For the sake of understanding what
makes quantum theory special for describing nature so well, it
is preferable not to impose definite causal structure because, as
mentioned above, a more comprehensive description of nature
likely incorporates indefinite causal structure. For the sake of
searching for a theory superior to quantum theory as well, it is
preferable not to impose a causal structure because the superior
theory may be a theory with indefinite causal structure.

The task of the present work is to find a set of postulates that
singles out the complex Hilbert structure within a framework
of theories that does not impose definite causal structure.

The framework of theories that do not impose definite causal
structure we use is built on a powerful perspective on physical
theories offered by Hardy [11,12]:

A physical theory, whatever else it does, must correlate
recorded data.

This motivates us to take operations (through which data are
recorded) and correlations as the basic concepts of the frame-
work, detailed in Sec. II. To give a mathematical structure to
the concepts, an important postulate is made so that operations
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are associated with ordered vector spaces, and correlations are
associated with (multi)linear functionals on these spaces. This
framework differs from many of the frameworks used in the
previous axiomatic works in that correlations, as a concept
distinct from operations, play a very important role.

The task of identifying postulates and deriving the complex
Hilbert-space structure is made easy by the previous works
of Wilce and Barnum [27,28] (see also [31] and references
therein for a comprehensive account of the approach and [29]
for a related work based on category theories). The original
postulates and derivations in their work are for theories with
definite causal structure. Yet we show that the same general
strategy of using the Jordan algebra structure to arrive at the
complex Hilbert space works in a framework with indefinite
causal structure. The list of postulates and the derivation of
the complex Hilbert-space structure are presented in Sec. III.
Some brief concluding remarks are offered in Sec. IV.

II. PHYSICAL THEORIES AS THEORIES OF
OPERATIONS AND CORRELATIONS

No matter what else a theory of physics does, it must
correlate recorded data [11,12]. Data are recorded through
operations. There are other things a theory of physics can
do, such as categorizing the constituents of the universe and
offering a picture of reality, but at a minimum, it must deal
with operations and correlations. In this paper, we focus on
probabilistic theories. Some basic structures about probabilis-
tic theories taking operations and correlations as fundamental
concepts are presented in this section.

A. Operation

An operation consists of an action and an observation. For
example, the game of “throwing the paper ball into the basket”
involves an operation that consists of the action of picking
up the paper ball and throwing it towards the basket and the
observation of seeing whether the paper ball goes into the
basket.

Note that the action and observation do not have to occur in
a definite sequence. There are operations with the observation
preceding the action and others with the action and the
observation occurring simultaneously. It is helpful to simplify
the situation by introducing the notion of “general action”
to unify action and observation. A general action may be
an action with a trivial observation (e.g., Alice throws the
paper ball towards the basket and looks into the sky without
observing whether the ball falls in), a pure observation (e.g.,
another person, Bob, observes whether Alice’s ball falls in),
or a combined action-observation (Alice throws the ball and
keeps on observing where it flies ).

Data are always gathered through the observation part of the
general action. The trivial observation with only one possible
outcome is still viewed to gather some data, even though
this datum offers no nontrivial information with which to
distinguish among more than one possibility.

An operation always refers to some physical objects. In the
example above the relevant physical objects are the paper ball
and the basket. In general, the relevant physical objects for an
operation can be more complicated. For example, the operation

of taking an orange and producing a cup of orange juice has
the relevant physical object, the orange, going through different
forms of existence (raw orange and orange juice). To be specific
and talk about the different forms of existence, we speak of
the relevant physical system of an operation. The physical
system shows up as part of the mathematical description of
an operation to specify what state of affairs is relevant for the
operation. In the example above, we may take the operation
to have two relevant physical systems: the state of the orange
when it is raw and the state of the orange when it becomes juice.
The physical system of an operation specifies a condition that
enables the operation and/or a condition that checks the validity
of an operation. Only when a paper ball and a basket are present
can one play the game of throwing, and only when the orange
is turned into juice (but not, say, a half-peeled orange) is the
operation valid in that context. We note that in some situations
the data recorded also invoke physical systems to store the data.
For example, in a paper-ball-throwing competition the result
of whether Alice’s ball falls into the basket may be recorded on
a piece of paper for further reference. This datum, either “yes”
or “no,” is classical. In other cases the data recorded may take
the form of a quantum state or states in some types of systems.

To summarize, in a physical theory, a minimal description
of an operation consists of a general action, a set of possible
data gathered from the general action, and the relevant physical
systems for the operation. More generally, there are situations
where multiple choices for the operation are available. A
general operation consists of a set of possible general actions,
each with its own possible data set and its own relevant physical
systems. We settle on this characterization of operations.

To symbolize an operation we adopt the following conven-
tion. A general action is denoted with capital letters in the
form A. A physical system is denoted with lowercase letters
in the form a. Sometimes we group systems together into a
composite system. If the composite physical system a consists
of subsystems a1, a2, . . . , an, we write a = a1a2 . . . an and
may use either the left side or the right side to refer to the
composite system. The set of possible data is enumerated
by letters i in a different font. These symbols A, a, i can be
combined to make explicit different pieces of information. For
example, a general action A with system a is referred to as Aa,
and its ith datum may be referred to as Aa[i].

In this language, an operation O is described by an indexed
set of objects {Aa[i]}A,a,i , where it is understood that the sets of
possible values a and i vary according to the choice of general
action A. We write

O = {Aa[i]}A,a,i . (1)

Example 1. A familiar example of an operation is the
quantum instrument used in quantum theory [32]. A quantum
instrument is a set of completely positive maps {E[i]}i from
some input-state space L(Ha1 ) (the space of bounded linear
operators on the complex Hilbert space Ha1 ) to some output-
state space L(Ha2 ). The set of maps is required to sum up
to a completely positive trace-preserving map (channel). The
quantum instrument describes a general action whose possible
observational outcomes are i and whose physical system has
two subsystems. The input subsystem a1 is the one associated
with the space L(Ha1 ) and the output system a2 is the one
associated with the space L(Ha2 ). We write the composite
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system of the operation as a = a1a2. Then the operation takes
the form {Ea[i]}a,i , which is a special case of (1) with only one
choice for the general action.

B. Correlations and probabilistic theories

The other basic concept of the framework is the correlation.
The correlation among data registered from operations may
be established through some other operation that interacts
with the physical systems of the original operations. In
some information-theory-inspired circuit models of opera-
tional probabilistic theories this is the only way to establish
a correlation. Yet it is also possible that the correlation is not
established through other operations conducted by agencies.
For example, the global states in quantum field theory establish
correlations for operations coupled to the field states, but the
global state is not supposed to always be prepared by some
other operations. Both kinds of correlations, those established
through and not established through operations, can be de-
scribed in the present framework.

Correlation is a broad term, and in general a theory mention-
ing the concept of correlation may not refer to probabilities. Yet
in this paper we focus on probabilistic theories. In this context
the main function of a probabilistic theory is to calculate the
probabilities of allowed operations registering certain data. In
general, the probabilities to be calculated take the form of
conditional probabilities. When a conditional probability is
well defined [33], a probabilistic theory is expected to offer
a method with which to calculate it.

In general the conditional probabilities are of the form
p(i, j, . . . , k|cond) ∈ R, where i, j, . . . , k is a possible set of
data to be registered from a set of general actions, and cond
encodes a prerequisite condition for the probability to make
sense. The conditions include the choice of general action for
each operation and further conditions to make the probabilities
well defined. For example, in a circuit model cond can include
the wiring configurations of the devices. In this probabilistic
theory setting a correlation specifically refers to a map from a
set of data to the set of real numbers, offering information on the
conditional probabilities. A central theme of any probabilistic
theory is to specify the properties of such maps. A natural
structure to be imposed is linearity, which forms the topic of
the next subsection.

C. Theory structure regarding probabilities

Conventionally, absolute probabilities are used for
probabilities. Conditional probabilities of the form
p(i, j, . . . , k|cond) ∈ R obey

p(i, j, . . . , k|cond) � 0, (2)
∑

i,j,...,k

p(i, j, . . . , k|cond) = 1, (3)

where the sum is over possible data to be recorded from the
set of general actions. These imply that

1 � p(i, j, . . . , k|cond) � 0. (4)

There is an alternative option of using probability weights.
Probability weights w(i, j, . . . , k|cond) ∈ R are only required

to obey

∞ > w(i, j, . . . , k|cond) � 0. (5)

These probability weights are meaningful in comparison with
each other, which eliminates the need for normalization. For
any pair w(i|cond) and w(j |cond) of probability weights
(Here for simplicity we use one letter, i or j , to represent a
list of observational outcomes.), if w(j |cond) �= 0, then the
prediction is that the datum i is r = w(i|cond)/w(j |cond)
times as likely to be recorded as j . If w(j |cond) = 0, a
comparison of probability weights in terms of the ratio r =
w(i|cond)/w(j |cond) should not be made, and the physical
meaning is that the datum j is predicted never to be recorded.

When 0 <
∑

i,j,...,k w(i, j, . . . , k|cond) < ∞, where the
sum is over all possible outcomes for the set of general actions,
normalization can be conducted and the absolute probabilities
can be obtained from the relative probabilities as

p(i, j, . . . , k|cond) = w(i, j, . . . , k|cond)∑
i,j,...,k w(i, j, . . . , k|cond)

. (6)

The case of 0 = ∑
i,j,··· ,k w(i, j, . . . , k|cond) should not ap-

pear in a physically meaningful setup, since among all pos-
sible outcomes some outcome should happen. In a physi-
cally meaningful setup and for finitely many outcomes, 0 <∑

i,j,...,k w(i, j, . . . , k|cond) < ∞ always holds, and the abso-
lute probabilities can always be obtained from the probability
weights. Whereas the absolute probabilities are unique, the
probability weights may be rescaled by the same factor without
changing the physical content. This means that two theories
using probability weights may give physically equivalent
predictions even when the exact values for the probability
weights of the same outcomes do not agree. The case of
a diverging

∑
i,j,...,k w(i, j, . . . , k|cond) may appear when

infinitely many outcomes are allowed by a theory. Then one
needs to specify a separate rule to convert probability weights
to absolute probabilities, if one still wants to do the conversion.
As far as the derivation of the complex Hilbert-space structure
of this paper goes we do not need to worry about this case,
since the number of outcomes is assumed to be finite.

So far we have been talking about operations as an abstract
concept without embedding them in a mathematical model.
We now introduce a basic postulate to endow the operations
(along with correlations) with some additional mathematical
structure. Under this postulate, observational data will become
vector-space elements, and the map of correlations will become
(multi)linear functionals over such vector spaces.

The motivation comes from the probabilistic mixing of
general actions. LetO = {Aa[i]}A,a,i contain Aa and Ba as two
choices for the general action associated with the same physical
system a. Provided both general actions distinguish finitely
many possible outcomes, without loss of generality we can sup-
pose that they have the same total number of outcomes (adding
void outcomes that are never triggered to the general action
with the smaller number of outcomes if needed). Suppose a
theory predicts that w(i|cond, A) should A be chosen as the
general action to be performed, and w(i|cond, B) should B be
chosen as the general action to be performed. Probabilistically
mixing A and B means performing A with probability weight
wA and B with probability weight wB. Under this mixing
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{A, B; wA, wB} the prediction for the outcomes is expected to
be

w(i|cond, {A, B; wA, wB})

= wAw̄Bw(i|cond, A) + wBw̄Aw(i|cond, B), (7)

where w̄A = ∑
i w(i|cond, A) and w̄B = ∑

i w(i|cond, B).
This is analogous to

p(i|cond, {A, B; pA, pB})

= pAp(i|cond, A) + pBp(i|cond, B) (8)

for ordinary probabilities, where A is performed with
probability pA and B is performed with probability pB. In
(7) there are the extra w̄A and w̄B factors. Analogous factors
are not present for (8) because p̄A := ∑

i p(i|cond, A) =
1 = p̄B := ∑

i p(i|cond, B). Equation (8) can be arrived
at from (7) using p(i|cond, A) := w(i|cond, A)/w̄A and
p(i|cond, B) := w(i|cond, B)/w̄B, pA := wA/(wA + wB),
pB := wB/(wA + wB), p(i|cond, {A, B; wA, wB}) :=
w(i|cond, {A, B; wA, wB})/

∑
i w(i|cond, {A, B; wA, wB}),

and noting that
∑

i

w(i|cond, {A, B; wA, wB})

=
∑

i

wAw̄Bw(i|cond, A) + wBw̄Aw(i|cond, B)

= (wA + wB)w̄Aw̄B. (9)

Theories in which Eq. (7) holds have a certain linear
structure for the correlation as a map from the outcomes to
the probability weights. This suggests that the recorded data
on the same physical system be represented as elements in
a vector space, with real numbers such as wAw̄B and wBw̄A
forming the field for the vector space, and the correlations as
multilinear maps from these vector spaces to the probability
weights. We realize this suggestion as a postulate.

Postulate 1 (linearity). Recorded data for general actions
with the same relevant physical system are represented as
positive cone elements in an ordered vector space with some
trivial datum as an order unit. Correlations are represented as
positive multilinear functionals in such spaces.

Here an ordered vector space is a real vector space V

endowed with a convex cone V + such that V + spans V and
that V + ∩ −V + = {0}. V + is called the positive cone of V . An
order unit of an ordered vector space is an element u ∈ V + so
that for any v ∈ V , there is an a > 0 such that au − v ∈ V +.

The ordered vector space of Postulate 1 is called an
operational space and is denoted in the form Oa, where a
is the relevant physical system. The dimension of the space is
denoted da. The positive cone is denoted O+

a . It contains the
elements that represent physical data. Each Aa[i] is represented
by an element of O+

a . We refer to these vector-space elements
using the same symbols Aa[i] for the observational outcomes
when no ambiguity arises. Vectors of the form Aa[i] are viewed
as members of the set of data {Aa[i]}i for the corresponding
operation. The probability weights have meaning only in
comparison, and the probability weights assigned by a state
to some vectors are only meaningful for comparing when the
vectors represent outcomes of the same operation. When it is
clear from the context, though, we often suppress the labels

[i] and refer to the vector space elements in the form Aa for
simplicity.

The correlations as positive multilinear functionals on Oa,
Ob, . . .Oc are denoted in the form Dab...c, with the physical
systems in the superscript to be distinguished from the recorded
data with the system in the subscript:

Dab...c : Oa × Ob × . . . × Oc → R,

(Aa[i], Bb[j ], . . . , Cc[k]) �→ w(i, j, . . . , k|cond).

(10)

The vector space generated by the correlations is called a
correlation space and is denoted Cab...c. The dimension of the
correlation space is denoted cab...c.

Example 2. An example of an operational probabilistic
theory that incorporates indefinite causal structure and uses
probability weights is the modified Oreshkov-Cerf theory.

The original Oreshkov-Cerf theory is an operational quan-
tum theory without predefined time [14] (See also [47].).
A main new feature in comparison to ordinary operational
quantum theory is that, in accordance with the absence of a pre-
defined time, the systems associated with an operation/general
action are not separated into input and output subsystems.

Using the notations of the original paper, an opera-
tion/general action {MAB...

i }i∈O consists of a set of possi-
ble events/outcomes indexed by the data set element i ∈
O. A,B, . . . are the physical systems associated with the
operation, with corresponding Hilbert spaces HA,HB, . . .

whose dimensions are dA, dB, . . . . The events are represented
by positive semidefinite operators MAB···

i on HA ⊗ HB ⊗
. . . . Operations come in equivalence classes. Two operations
{MAB...

i }i∈O and {NAB...
i }i∈O that yield the same joint proba-

bilities for all experimental setups (or circuits) belong to the
same equivalence class. Similarly events come in equivalence
classes. Two events MAB...

i and NAB...
i coming from different

operations that yield the same joint probabilities with other
events in all experimental setups (or circuits) belong to the
same equivalence class.

Events/operations in the same equivalence class have op-
erators that differ by a constant factor. One way to avoid this
ambiguity is to represent an equivalence class of events by

specifying a pair of operators in the form (MAB...
i ,M

AB...
),

where M
AB...

:= ∑
i∈O MAB...

i , and fixing a normalization
convention, such as

TrM
AB... = dAdB . . . . (11)

The null operation {OAB...} with trace zero is treated separately
as a singular case.

The normalization requirement, (11), is weaker than what
is usually imposed in ordinary quantum theory. Ordinary
quantum theory is time asymmetric in the sense that mea-
surement outcomes represented by POVM elements sum up
to the identity (or, more generally, outcomes represented by
quantum instrument elements sum up to a channel), but states
in a preparation are only required to have their traces sum up
to 1. In a theory without predefined time this time asymmetry
should be absent, and in the Oreshkov-Cerf theory the time
asymmetry is eliminated by weakening the requirement on
outcomes so that only a sum of trace condition (11) is imposed.
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The correlation is encoded in the following formula for joint
probabilities:

p(i, j, . . . |{M...
i }i∈O, {N...

j }j∈Q, . . . ; network)

= Tr[(M...
i ⊗ N...

j ⊗ . . . )Wwires]

Tr[(M
... ⊗ N

... ⊗ . . . )Wwires]
. (12)

This is a special case of (6). The condition in the conditional
probability specifies the relevant operations and the way they
are connected (“network”). The connection can be specified
using a graph. The operations are located at the nodes. Each
(sub)system of an operation is connected to a (sub)system of
another operation with the same dimension using a “wire,”
which is an edge labeled by the system dimension. A wire
tells which systems interact with which and is mathematically
described as a pure bipartite entangled state |Φ〉〈Φ| whose
precise form depends on the symmetry of the system. The
operator Wwires is the tensor product of all these wire operators.
This is the Oreshkov-Cerf theory in a nutshell. Details on the
motivations and discussions about causality can be found in
the original article [14].

The theory as presented so far does not fit into
the present framework. The map (M...

i , N...
j , . . . ) �→

p(i, j, . . . |{M...
i }i∈O, {N...

j }j∈Q, . . . ; network) according
to (12) is not multilinear because of the division by
Tr[(M

... ⊗ N
... ⊗ . . .)Wwires]. To make the map multilinear

and fit into the present framework one could use probability
weights with the formula

w(i, j, . . . |{M...
i }i∈O, {N...

j }j∈Q, . . . ; network)

= Tr[(M...
i ⊗ N...

j ⊗ . . . )Wwires]. (13)

This map (M...
i , N...

j , . . . ) �→ w(i, j, . . . |{M...
i }i∈O, {N...

j }j∈Q,

. . . ; network) is then multilinear.
In comparison to (12), in (13) the operators with overline

no longer show up. By modifying the theory to use probability
weights, we depart from describing operations and events in

equivalence classes in the form (MAB...
i ,M

AB...
). There is now

a constant multiplicative factor ambiguity in the probability
weights, since one is allowed to rescale the operators of
the events in the same operation by an arbitrary common
positive factor. This ambiguity does not affect the physical
predictions, since the probability weights are only meaningful
in comparison to each other, specifically through taking ratios.

D. Subsystem structures

As the last part to specify the basic framework for proba-
bilistic theories with operations and correlations, we discuss
the subsystem structure for composite physical systems. We
assume two very basic properties for the operational spaces
of composite systems. A system a with da = dim Oa = 1 is
called a trivial system. The space of a trivial system supports
only one linearly independent vector, which describes a trivial
data. We assume that for a trivial system a, Oab

∼= Ob as
ordered vector spaces for all b.

The second basic property we assume is that any operational
space Oab with two subsystems contain all the product ele-
ments while preserving linear independence, i.e., if Aa ∈ Oa
and Bb ∈ Ob, then there is an element AaBb ∈ Oab so that
if Aa and A′

a are linearly independent in Oa and Bb and B′
b

are linearly independent in Ob, then AaBb, A′
aBb, AaB′

b, and
A′

aB′
b are all linearly independent in Oab. This implies that

dadb � dab.
There is a similar basic property we assume for correlations

that pertain to two operational spaces. Suppose Ca is a corre-
lation pertaining to Oa itself and Db is a correlation pertaining
to Ob. Then we assume that there is a correlation CaDb

pertaining to Oab so that CaDb(AaBb) = Ca(Aa)Db(Bb), i.e.,
the probability weights multiply.

E. Comments on the framework

The framework just presented family-resembles other
frameworks used in previous axiomatic works, but with some
notable differences. First, no assumption of definite causal
structure is imposed on the current framework. Moreover,
correlations carrying nontrivial physical information but not
generated by operations are allowed in the current framework.
This is in contrast with the circuit models [23,25,34], where
the operations carry nontrivial physical correlations and the
wires do not. Some theories are more naturally described in
the current framework. For example, as mentioned, the global
state of quantum field theory is not prepared by an operation
and is more suitably viewed as encoding the correlation of
operations. Another example is the process matrices that allow
correlations with indefinite causal structure [13,35,36]. It is
found that the process matrices cannot be parallel-composed
without constraints [37]. This would appear unnatural if the
process matrices are viewed as operations but natural if they
are viewed as correlations among operations.

Another difference lies in the graphical representation of
using hypergraphs instead of graphs. Graphical reasoning
was important in previous axiomatic works and works on
operational theories in general (see, e.g., [23,25,34,38,39]
and references therein). If one chooses to work with the
current framework, the natural pictorial tool is the hypergraph,
rather than the graph, which is widely used in other models
(e.g., [14,23,25,34,40]). Roughly speaking, a hypergraph is
a generalized graph that allows edges to connect to other
integer numbers of nodes rather than just two. The generalized
edge is called a “hyperedge.” We can associate the nodes of a
hypergraph with the operations/outcomes and the hyperedges
with the correlations, connecting the nodes they correlate.
The implications of using hypergraphs instead of graphs for
probabilistic theories remain to be explored.

III. THE COMPLEX HILBERT-SPACE STRUCTURE

In this section we record a list of postulates and show that
they single out the complex Hilbert-space structure. We restrict
our attention to operations with finite-dimensional operational
spaces. Technically, the reason is that the derivation of the
complex Hilbert-space structure below uses dimension count-
ing arguments and lemmas that work for finite-dimensional
spaces. Conceptually, the restriction to working with finite
dimensions can be motivated by the constraints of realistic data
gathering. Even for theories whose mathematical description
uses infinite-dimensional spaces such as quantum field theory,
realistic data gathering is subject to the constraints of finite
resolution and finite range, which imply a finite data set.
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Despite these motivations for working with finite-dimensional
spaces, we do hope that some future work finds a derivation
of the complex Hilbert-space structure without restriction to
finite-dimensional spaces. There are useful theories described
with infinite-dimensional spaces (such as quantum field theory)
which introduce new features absent in theories with finite-
dimensional spaces. It is an open question to what extent the
following derivation generalizes to infinite dimensions.

A. Postulates

To state the next postulate, we need to define the notion of
transformation. In ordinary quantum theory, a transformation
is a trace-nonincreasing [41] and completely positive map.
The trace-nonincreasing property is required so that absolute
probabilities remain in the interval [0, 1]. The completely
positive property is required to ensure that physical states
get mapped to physical states even if the transformation acts
partially on a subsystem. We want a generalized definition
of transformations that applies to all the theories within the
current framework. Since the framework uses probability
weights instead of absolute probabilities, there is no require-
ment regarding the kind of trace-nonincreasing property. The
following can be viewed as a generalization of completely
positive maps.

Fix two arbitrary operational spaces Oa and Ob. We want
to define the notion of a-to-b transformation, which maps not
only from Oa to Ob, but also from Oac to Obc for arbitrary c.
An a-to-b transformation, denoted Ta,b, is a family {Tac,bc}c
of linear maps for each c,

Tac,bc : Oac → Obc, (14)

so that (i) for arbitrary Aa ∈ Oa and Bc ∈ Oc, Tac,bc(AaBc) =
Ta,b(Aa)Bc for Ta,b : Oa → Ob, and (ii) Tac,bc(O+

ac) ⊂ O
+
bc.

Condition (i) ensures that the transformation acts locally
on product elements and condition (ii) generalizes complete
positivity.

The transformations as linear maps can be summed linearly.
Given Ta,b = {Tac,bc}c and Sa,b = {Sac,bc}c, define pTa,b +
qSa,b = {pTac,bc + qSac,bc}c for p, q ∈ R. In this way a
vector space is generated. As can be checked easily, the set
of all transformations Ta,b forms a convex cone, making the
vector space an ordered vector space. Call it a transformation
space and denote it Ta,b. Denote the positive cone by T

+
a,b and

dim Ta,b by ta,b.
The above definition of transformations is intended as a

mathematical characterization of the, in principle, possible
physical transformations. Whether all these mathematically
defined transformations are actually realizable and what the
physical interpretation is for the transformations are subject to
further specifications of particular theories [42].

We can now state the postulate.
Postulate 2 (dimension). An operational space whose phys-

ical system has two subsystems has the same dimension
as the correlation space over these two systems and as the
transformation spaces between these two systems.

Equivalently, Postulate 2 states that for arbitraryOa andOb,
dab = cab = ta,b = tb,a (recall that dab = Oab). One can inter-
pret the postulate as offering the operations enough degrees
of freedom to potentially realize all two system correlations

and mathematically possible transformations. The correlations
of two operations include both those arising naturally and
those controlled by agents. The latter type of correlation
must interact with the two relevant systems and is controlled
by the agents through some operations containing the two
systems as subsystems. The postulate states that as far as
the degrees of freedom of the vector spaces are concerned,
the operations have as many degrees of freedom as the set
of all possible correlations, including the type arising from
nature. Similarly, there are transformations arising from nature
and transformations controlled by agents. The agent-controlled
transformations between two systems are realized by the agents
through some operations pertaining to the two systems as
subsystems. The postulate states that as far as the degrees of
freedom of the vector spaces are concerned, the operations
have as many degrees of freedom as the set of all possible
transformations, including the type arising from nature.

Our discussion now moves from operational-space ele-
ments’ transformations into each other to how they correlate
with each other. Without further constraints the framework
allows weird theories such as one in which data recorded from
any two operations on different systems are not correlated. In a
universe described by this theory little inference can be made.
To focus attention on more reasonable theories a postulate
is needed to offer some regularity in terms of how systems
correlate with each other. We adopt the following “pairing”
postulate for this purpose.

To state the postulate, first we need the notion of a “copy” of
operational spaces. An order isomorphism f between ordered
vector spaces V and W is a positive, invertible linear map
having a positive inverse, where positive means f (V +) ⊆ W+.
If two operational spaces Oa and Ob share an order isomor-
phism, we say that they are copies of each other. We use primes
on physical systems and vectors to signify copies (e.g., Oa′ for
the copy of Oa and A′

a′ for the copy of Aa under the order
isomorphism).

An operational space Oa is said to have a pairing if there
is a copy Oa′ and a correlation Caa′

on the two spaces so
that Caa′

(Aa, A′
a′ ) > 0 for all nonzero Aa ∈ Oa. The pairing is

said to be symmetric if Caa′
(Aa, B′

a′ ) = Caa′
(Ba, A′

a′ ) for all
Aa, Ba ∈ Oa. The pairing is said to be distinguishing if when-
ever an operational space element yields only physical (non-
negative) probability weights through the correlation, the ele-
ment is physical, i.e., whenever Aa is such that Caa′

(Aa, B′
a′ ) �

0 for all B′
a′ ∈ O

+
a′ , Aa ∈ O+

a . A factorizably symmetric distin-
guishing pairing is such that it factorizes for operational spaces
with factors while preserving the symmetric and distinguishing
properties, i.e., for Oa = Oa1a2 , Aa = Aa1Aa2 , and Ba =
Ba1Ba2 , Caa′

(Aa, B′
a′ ) = C

a1a′
1

1 (Aa1 , B′
a′

1
)C

a2a′
2

2 (Aa2 , B′
a′

2
) fac-

torizes into two pairings C
a1a′

1
1 and C

a2a′
2

2 such that both are
symmetric and distinguishing.

Postulate 3 (pairing). Each operational space has at least
one factorizably symmetric distinguishing pairing.

One can interpret the postulate as imposing some regularity
on how recorded data correlate. The existence of a pairing
offers the possibility of establishing some positive correlations
for pairs of data recorded with operations, in particular, for
operations conducted on isomorphic operational spaces, the
most elementary pair of spaces that positive correlations can
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be expected on. The strongest form of correlation we can hope
for is that from the outcomes of one operation we can infer
unambiguously the outcomes of the paired operation. Postulate
3 is a weaker requirement, asking only that paired outcomes ap-
pear together with some positive chance (Note that the physical
outcomes are elements of the positive cone, so strictly speaking
the pairing condition is an extension of the above requirement
to all elements of the operational spaces.). The symmetric
property appears as a natural assumption for operational spaces
that are isomorphic. The distinguishing property assumes that
the correlation of the pairing is strong enough to reflect (at
the mathematical level) any unphysical correlation if there is
any. Finally, the factorizing property is a natural assumption
considering the factor structure.

The next postulate is easy to state. An ordered vector space
V is homogeneous if Aut(V ), the group of order automor-
phisms on V , acts transitively on the interior of V+.

Postulate 4 (homogeneity). Operational spaces are homo-
geneous.

Intuitively, the postulate says that inside an operational
space any region looks locally like any other. For example,
the qubit space of ordinary quantum theory is homogeneous,
as there is no preferred direction or region inside the space.

The previous postulates already offer strong constraints to
arrive at self-dual (Theorem 1) and homogeneous spaces, so
that only the self-adjoint parts of real, complex, quaternionic,
3 × 3 octonion matrix algebras, spin factors, and their direct
sums are allowed [43–45]. At this stage, a most general theory
fulfilling the postulates appears to be the direct sum of the
different types of systems listed above. However, in fact as
long as a single quantum qubit shows up in the combination,
the theory must be exclusively complex Hilbert space quantum
(see “Barnum-Wilce theorem,” below). The only possibility
preventing this is that a qubit does not show up. Therefore to
arrive at the complex Hilbert space we assume:

Postulate 5 (qubit). There exists a qubit.

B. Derivation

The derivation of the complex Hilbert-space structure is
simplified immensely thanks to the previous works by Barnum
and Wilce [46], Koecher [43], Vinberg [44], and Jordan, von
Neumann, and Wigner [45]. The relevance of these results
is condensed in the “Barnum-Wilce theorem” (below), which
directly yields the final result we look for. To connect the above
postulates to the Barnum-Wilce theorem, we only need to do
two simple proofs (Theorem 1 and Theorem 2).

A finite-dimensional ordered vector space V is self-dual if
it has an inner product such that a belongs to the positive cone
V + iff 〈a, b〉 � 0 for all b ∈ V+.

Theorem 1. All Oa are self-dual.
Proof. According to Postulate 3, there is a symmetric

distinguishing pairing (Oa′ , Caa′
) for Oa. We claim that

〈·, ·〉 : Oa × Oa → R defined by 〈Aa, Ba〉 = Caa′
(Aa, B′

a′ ) is
an inner product, i.e., it is bilinear, symmetric, and positive
definite. The first property follows from Postulate 1, and the
rest from (Oa′ , Caa′

) being a symmetric pairing.
Now we show that Aa ∈ O+

a iff 〈Aa, Ba〉 � 0 for all Ba ∈
O+

a . If Aa ∈ O+
a , then 〈Aa, Ba〉 = Caa′

(Aa, B′
a′ ) � 0 for all

Ba ∈ O+
a because Caa′

is positive according to Postulate 1. If

〈Aa, Ba〉 � 0 for all Ba ∈ O+
a , Aa ∈ O+

a by the distinguishing
property of the pairing.

Theorem 2 (tomographic locality). dab = dadb = cab =
cacb.

Proof. Let Oa and Ob be arbitrary. We want to count the
number of degrees of freedom, ta,b, in defining a transformation
Tb,a ∈ Tb,a. These degrees of freedom fix its action on all
Aac ∈ Oac for arbitrary c. First, let c be trivial. The local action
of Tab on Oa is determined by taking da linearly independent
vectors fromOa and specifying an image for each. Each image
requires db real parameters to specify, so dadb independent real
parameters are needed in total.

Now let c = b. Condition (ii) (see Sec. III A) in the
definition of transformations fixes the action of Tab on product
elements of the form AaBb, but the action on the possible
additional linearly independent elements is yet unspecified.
For each of the rab := dab − dadb � 0 additional linearly
independent vectors, dbb real parameters are needed to deter-
mine the image. Hence specifying Tab requires at least lab :=
dadb + rabdbb independent real parameters, i.e., tb,a � lab. By
Postulate 2, tb,a = dab, so

lab − tb,a = dadb + rabdbb − dab = rab(dbb − 1) � 0. (15)

If db > 1, dbb � d2
b > 1. By (15), rab = 0. If otherwise db = 1,

then rab = dab − dadb = da − da = 0. Therefore rab is always
0, and dab = dadb. By Postulate 2, this also equals to cab.
Taking b to be trivial, we see that ca = da. Therefore dab =
dadb = cab = cacb.

In Proposition 1.1 in [46], Barnum and Wilce proved the
following result.

Barnum-Wilce theorem. For a homogeneous and factoriz-
ably self-dual probabilistic theory, if it obeys tomographic
locality and contains a qubit, then all its systems are self-adjoint
parts of complex matrix algebras.

The theorem was originally obtained in the context of no-
signaling probabilistic theories with definite causal structure.
However, the proof of the theorem also goes through in the
present context, as allowing indefinite causal structure does
not affect the proof and “no signaling” was only used to
prove that maps of the form (Aa, Bb) �→ Cab(Aa, Bb) are
bilinear, which holds automatically in our framework. In the
theorem, factorizably self-dual means that the self-dualizing
inner product factors on two subsystems, i.e., 〈AaBb, XaYb〉 =
〈Aa, Xa〉〈Bb, Yb〉. This property holds for the self-dualizing
product in Theorem 1 if we pick the pairing to be factorizable,
as allowed by Postulate 3. This plus Postulates 4 and 5 and
Theorem 2 leads to the following result.

Corollary. All operational-space elements are self-adjoint
parts of complex matrices.

IV. CONCLUSION

We have presented a general framework for physical theo-
ries that does not assume definite causal structure. This frame-
work takes operations and correlations as the central concepts.
We further identified a list of postulates from which finite-
dimensional complex Hilbert-space quantum theories can be
derived. This may be viewed as an axiomatic formulation of
quantum theories without assuming indefinite causal structure.
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More than one quantum theory is compatible with the
postulates. The compatible theories include both quantum
theories with an explicit indefinite causal structure (e.g.,
[5,13,14,47,48]), and ordinary formulations of quantum theory
with definite causal structure (definite causality can be imposed
as a further postulate). This leads to the interesting question
whether one among these many compatible theories describes
nature best.

The framework presented in Sec. II allows infinite-
dimensional systems [49] and can, in principle, incorporate
infinite-dimensional theories such as quantum field theory.
It is an interesting open question to identify postulates that
derive infinite-dimensional quantum theory without assuming
definite causal structure.
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M. Procopio, Č. Brukner, and P. Walther, Sci. Adv. 3, e1602589
(2017).

[4] L. Hardy, Quantum Reality, Relativistic Causality, and Closing
the Epistemic Circle (Springer, Berlin, 2009), pp. 379–401.

[5] G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron, Phys.
Rev. A 88, 022318 (2013).

[6] G. Chiribella, Phys. Rev. A 86, 040301 (2012).
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[8] A. Feix, M. Araújo, and Č. Brukner, Phys. Rev. A 92, 052326

(2015).
[9] P. A. Guérin, A. Feix, M. Araújo, and Č. Brukner, Phys. Rev.
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