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Geometrical frustration in nonlinear photonic lattices
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Geometrical frustration in either classical or quantum lattice systems is a phenomenon in which the impossibility
of satisfying simultaneously all constraints of the system Hamiltonian leads to complex structures with degeneracy
of the ground state. We show that geometrical frustration can be observed in a simple setup consisting of classical
light propagating along a regular array of evanescently coupled photonic nonlinear waveguides arranged in a hon-
eycomb geometry. Here, geometrical frustration emerges as competition between the number of waveguides and
the need to satisfy the stationary constraints of the system. The phenomenology that exhibits these photonic arrays
mimics the behavior observed in graphene-related spin lattices. Our results show that two-dimensional arrays of
coupled photonic waveguides can be used as a proxy to study geometry frustration in diverse lattice systems.
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I. INTRODUCTION

Geometrical frustration (GF) has been an issue of great
interest in magnetic materials displaying magnetic ordering.
This is mainly because of the fascinating nontrivial magnetic
structures [1–3] that emerge and play a role in phenom-
ena such as quantum Hall effect [4–6], superconductivity
[7], quasiparticles resembling monopoles [8,9], etc. GF has
been also synthetically engineered with the help of materi-
als exhibiting magnetic properties such as ultracold atoms
[10–12], Josephson junctions [13,14], single-domain ferro-
magnetic islands [15], magnetically doped colloidal crystals
[16,17], synthetic spin lattices [18], among others.

Usually the degeneracy of the ground state in classical
and quantum systems arises from the same geometry, so GF
signatures may be observed in different physical platforms
[19,20]. For instance, it has been shown that GF signatures
can arise from complex networks [21,22] or from quantum
circuits with nonclassical light [19]. However, despite the
generality of the phenomenon, little is known about GF arising
from classical light waves in a guided medium. In this regard,
recently a lack of long-range laser phase ordering arising from
thousands of coupled lasers has been associated with signatures
of large-scale GF, similar to that observed in magnetic systems
[20]. However, beyond this proposal, observations of GF
signatures with classical light have been elusive in optical
systems in general. In particular, to the best of our knowledge,
no known study on GF emerging from an optically guided
medium exists, so far.

Relevant examples of a guided medium are the arrays of
evanescently coupled photonic waveguides [23], or in short,
photonic waveguided arrays (PWA). Classical light propa-
gating in PWA has been used to mimic diverse geometrical
phenomena observed in condensed matter physics as, for
instance, Bloch-Zener oscillations [24–26], Klein tunneling
[27], transport and Anderson localization [28], synthetic
magnetic fields [29], broken time-reversal symmetry [30],
topological transitions [31], Floquet topological insulators
[32], or four-dimensional quantum physics [33]. Nevertheless,

it remains as an open question whether classical light
propagating in PWA can be used as a platform for studying GF.

To tackle this question, we consider a two-dimensional (2D)
nonlinear PWA with a pristine honeycomb geometry. We
choose this array geometry not only for the great scientific
and technological interest in graphene [34,35] and other
honeycomb structures [32,36] but also for the signatures of
GF emergence observed in honeycomb spin lattices [1,2,11].
Our final goal is to obtain an insight into the relation between
GF emergence in guided media, nonlinearity, and transport
phenomena in honeycomb PWA.

In honeycomb spin lattices, GF has been predicted for
half-filled lattice graphene nanoflakes at zero energy [1]. It
suggests that GF, in honeycomb systems, can arise at the Dirac
points, i.e., isolated points where the upper and lower parts of
the lowest quasienergy band touch each other [37–39]. Due
to the double conical geometry of the band structure near
the Dirac points, very high mobility has been predicted and
observed in graphene and other honeycomb systems [37–39].
In this region, the system dynamics is well described, in the
continuum approximation, by the Dirac equation [37–39].
However, this equation becomes meaningless in the case
of small finite fragments of honeycomb lattice because the
band structure in these systems strongly differs from infinite
honeycomb array [40,41].

Since we are interested in finding signatures of GF from
classical light propagating in honeycomb PWA with cross
sections of any size, we resort to a discrete description of the
arrays instead of the usual continuum approximation [37–39].

To find these signatures in the nonlinear solutions of the
system we follow a two-step protocol. First, since GF has
been predicted as a lack of magnetic ordering in half-filled
lattice graphene nanoflakes at zero energy [1], we set at the
zero-energy-like state an infinite honeycomb PWA. For that
purpose the phases associated with a Dirac point of the first
Brillouin zone are imposed on the system. Second, since
GF is an extensive phenomenon, we look for excitations in
the form of extensive-field solutions in the presence of Kerr
nonlinearity. We show that despite the fact that extensive
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FIG. 1. (a) N = {l, m} site index distribution in the honeycomb lattice. δδδj with j = 0, 1, 2 are displacement vectors between al′,m′ and bl,m

sites [39,42]. (b) The honeycomb band structure and its projection into the first Brillouin zone. (c) The honeycomb band structure along the
symmetry points of the structure. (d) Configuration of negative (dark orange) and positive (light gray) couplings of the Honeycomb lattice at
the Dirac point, k = (4π/(3

√
3), 0): The relative phases with respect to the b sites are also shown. All plotted quantities are dimensionless.

stationary collective excitations in infinite systems exist, they
do not exist for finite fragments of the honeycomb lattice
geometry. This behavior is due to the inherent frustrated nature
of PWA with finite cross sections when configured in a Dirac
point.

II. THEORY AND RESULTS

In the tight-binding approximation, the dynamics associated
with the two lowest bands of the infinite nonlinear honeycomb
PWA is well described by a discrete nonlinear Schrödinger
equation (DNLSE) [23,29,39,42,43], reading as

i∂zψN(z) + C
∑

N′ �=N

ψN′ (z) + U |ψN(z)|2ψN(z) = 0, (1)

where ψN is the complex electric field envelope function in
the N waveguide. The index vector N′ in Eq. (1) runs over
nearest-neighboring waveguides; C > 0 is the coupling con-
stant between waveguides, and U is the nonlinear coefficient
of the cubic nonlinear response.

The DNLSE (1) not only describes the dynamics of
honeycomb PWA [37,39,42] but also that of Bose-Einstein
condensates (BECs) trapped in deep optical honeycomb lat-
tices [38,39,42]. In the latter case the coordinate z in Eq. (1) is
interpreted as time.

Here it is worth mentioning that the Kuramoto model
[21,22,44] was suggested in Ref. [20] to study GF arising
from disordered relative phases in discrete photonic systems.
However, this model cannot be strictly derived from the linear
approximation (U = 0) of Eq. (1). Therefore, the Kuramoto
model is not appropriate for studying the physics of honeycomb
PWA. For that reason, instead of studying GF emerging
from disordered relative phases, here we study the amplitude
behavior of classical laser beams propagating in PWA. In
particular, we analyze the transverse wave propagation in the
system as a collective excitation.

To proceed, we substitute a Floquet ansatz of the form ψN =
exp(iβz)ηN into Eq. (1). Afterward, we use the Bloch ansatz,
ηN = exp(ik · rN)φN, where rN is the transverse position of
the N waveguide. Under these considerations, the stationary
equation for the φN functions reads as [42]

βφN = C
∑

N′ �=N

φN′eik·�rNN′ + U |φN|2φN, (2)

where �rNN′ = rN′ − rN denotes the displacement vectors
between the N and N′ waveguides [see Fig. 1(a)], so they
connect the two honeycomb sublattices. In general �rNN′ =
±δj , where δj with j = 0, 1, 2 are plotted in Fig. 1(a). For
simplicity we consider |δj | = 1.
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In the absence of the Kerr nonlinearity (U = 0) the usual
quasienergy band β can be obtained from Eq. (1) as a function
of the Bloch wave vector k [see Fig. 1(b)] [37–39,42].

In half-filled graphene nanoflakes, GF has been predicted
to emerge at the ground state, i.e., at the zero-energy eigenstate
[1]. This suggests that in honeycomb PWA, GF may arise from
configurations associated with zero-β collective excitations
when U = 0 [linear case in Eq. (2)]. Notice that in infinite
arrays, the level β = 0 intersects the Dirac points of the linear
energy band [K points in Fig. 1(c)] [37–39]. So, in linear
systems, the Bloch wave vector of a zero-β excitation should
be chosen at one Dirac point.

In contrast to other physical setups exhibiting emergent GF
[1–3,10–18,37], nonlinearity, in the form of the Kerr effect, is
readily available in PWA [23,36]. In fact, little is known about
the effect of nonlinearity on GF emergence in discrete systems.
In general, the presence of nonlinearity increases the β-value
accessible range of the system [42]. So, at the Dirac points we
can expect similar behavior. It opens the possibility of looking
for stationary solutions and its relation with emergent GF in
unlikely and counterintuitive parameter regions such as the
Dirac points.

In the following, since the experimental photonic setup
allows us to impose the value of k, for convenience we
chose the Dirac point k = (4π/(3

√
3), 0). Extensive stationary

solutions can be easily calculated by first assuming that φN
functions are real and second by distinguishing the fields
of each sublattice [42], i.e., φl,m+1 = al,m+1 and φl,m = bl,m,
where m = 2n and l ∧ n ∈ Z. Under these considerations
Eq. (2) for al,m+1 and bl,m sites [see Fig. 1(a)] becomes

β al,m+1 = C

2
(2bl,m − bl−1,m+1 − bl+1,m) + U a3

l,m+1

+ i

√
3 C

2
(bl+1,m+1 − bl−1,m+1), (3)

and

β bl,m = C

2
(2al,m+1 − al−1,m − al+1,m) + U b3

l,m

+ i

√
3 C

2
(al+1,m − al−1,m). (4)

Since al,m+1 and bl,m are real functions, the constraints

al+1,m = al−1,m and bl+1,m+1 = bl−1,m+1 (5)

should be imposed.
Interestingly, in this configuration the nearest neighboring

(NN) sites with different l index are negatively coupled, while
those NN sites with different m index are positively coupled
[see Fig. 1(d)]. In addition, the relative-phase magnitude
between NN negatively coupled sites is ±2π/3 and between
positively NN coupled sites is zero.

The presence of negatively coupled sites has been identified
as a necessary but not sufficient condition to observe GF
emergence in network lattices [20,22,44,45]. So, to check the
presence of GF signatures in PWA, we look for collective
excitations in the form of a stationary solution of Eq. (3). In the
case of spin lattices, GF has been associated with the inability
to simultaneously pair all orbitals in the entire lattice [1]. In
the same way, we associate the inability of the entire photonic

array to bear spatially extensive stationary solutions with the
GF emergence in nonlinear PWA systems.

Extensive solutions of Eqs. (3) and (4) can be determined by
considering only constant fields, i.e., al,m+1 = A and bl,m = B.
In this case, it is straightforward to obtain algebraic expressions
of the form

B = ±A with A = ±
√

β/U, (6)

where β U > 0. Similar solutions can be found β U < 0 in the
presence of a global phase π/2. Without loss of generality, in
the following, we are going to consider only the case β U > 0.

The existence of A and B solutions, in Eq. (6), implies
that at least for infinitely extended PWA, there exist stationary
collective excitations that satisfy all constraints of the system.
So, despite of the presence of negative couplings in the array,
no GF signatures are observed in infinite systems. This result
is counterintuitive, taking into account that in the literature
only moving excitations, described by the 2D Dirac equations,
have been reported in the vicinity of Dirac points in infinitely
extended honeycomb systems [34,35,37–39,42,46].

Beyond unrealistic infinite systems, GF signatures have
been observed in finite systems, for example, in honeycomb
spin nanoflakes [1]. So, we may expect similar behavior in
honeycomb PWAs with finite cross section. In fact, if we look
at Eq. (3), it becomes apparent that the nontrivial solutions A

and B, found in Eq. (6) for infinite systems, do not satisfy
edge conditions if the honeycomb PWA has a finite cross
section because the constraints that appear for real functions
[see Eq. (5)] cannot be satisfied. This observation can be
easily generalized to any nontrivial real extensive function
φN. For example, since finite honeycomb PWAs have finite
cross section, the site or sites with the highest l value, lmax,
are located at the edge. This implies that for l > lmax sites do
not exist. So, at least one of the constraints in Eq. (5) cannot
be satisfied by any nontrivial extensive field. This means that
finite honeycomb PWAs, regardless of the cross-section shape,
configured at a Dirac point unavoidably shows GF signatures.

Let us consider a laser beam propagating along a finite PWA
with a rectangular cross section. A series of snapshots from
numerical simulations of the transverse intensity distribution
of the beam for four different propagation distances are shown
in Fig. 2. The initial condition, plotted in Fig. 2(a), follows from
Eq. (6) for the case A = B = 1 (β = U = 1). To follow the
evolution of the beam, isointensity contour lines (contours that
mark the same intensities) for the level values 0.96 and 1.01 are
plotted in the figures. The region (plotted in white) between the
two contour lines shows the evolution of the part of the beam
with constant intensity (φ2

N = 1). We observe GF emergence
as field distortions that appear at the array edges [see Figs. 2(b)
and 2(c)] and move into the center. These distortions eventually
destroy the initial stationary beam [white isointensity region
between the two contour lines shown in Fig. 2]. So, in the long
term, only moving excitations prevail in this configuration.

It is worth noting here that the constraints in Eq. (5) not
only apply at the edges but also in the whole PWA cross
section, regardless of the array shape. These constraints can be
satisfied only by extensive fields. So, there does not exist any
localized field (with finite energy) that can remain stationary
in a honeycomb PWA configured at a Dirac point. This
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FIG. 2. Snapshots of the transverse intensity distribution, |ψN|2,
at z = 0 (a), z = 2.0 (b), z = 4.0 (c), and z = 6.0 (d) of a PWA with a
rectangular cross section and configured at a Dirac point. At z = 0 the
initial condition follows from Eq. (6) with A = B = 1 (β = U = 1).
In the color scale, white corresponds to values near unity. On the other
hand, red colors correspond to any values above 2. The dotted and
dashed contour lines are isointensity lines (contours that mark the
same intensities) for the level values 0.96 and 1.01, respectively.

nonexistence of stationary localized fields is also a signature
of the inherent frustration of the array configuration.

The fact that GF is unavoidable in finite honeycomb PWA
(regardless of the array cross-section shape) configured in a
Dirac point is an interesting insight, because in spin lattices
the absence of frustration (observed as perfect pairing of
all orbitals) has been predicted in some particular graphene
nanoflake shapes [1]. This difference in the behavior between
spin lattices and PWA systems hints at the possibility of
constructing logic gates with finite PWA systems, in the spirit
of spintronic devices [1], without the burden of designing
special geometric shapes for the honeycomb array.

For example, with a simple honeycomb PWA with a rectan-
gular cross section [see Figs. 3(a)–3(c)] we can easily mimic
the NOR and NAND gates proposed in Ref. [1] for spin-lattice
systems. For that purpose we consider finite energy excitations
in the form of Gaussian laser beams propagating along the
array. Figure 3(d) shows the peak-maximum-intensity behavior
of three, or less, input laser beams propagating along the
propagation coordinate z of a rectangular shape of 561 photonic
evanescently coupled waveguides. A single beam in the system
can be interpreted as a logic one, otherwise the absence implies
a logic zero. The beams are placed to form an equilateral
triangle in the array cross section [see Figs. 3(a)–3(c), regions

FIG. 3. Intensity distribution of three (a), two (b), or one (c)
Gaussian laser beams in a equilateral triangular configuration. (d)
Evolution of the peak intensity along the dimensionless propagation
coordinate z. Truth tables of NOR (e) and NAND (f) gates.

A, B, and C]. The beam Bloch wave vector of each Gaussian
beam is chosen to be one of the six Dirac points of the band
structure, such that each beam transversely moves across the
geometrical center of the triangle [region D in Figs. 3(a)–3(c)].
The initial amplitude and envelope shapes are the same for any
beam, so the initial peak-maximum-intensity (z = 0) remains
the same if one or more beams are propagating in the PWA
system. Depending on the number of beams initially launched,
the maximum intensity of the system can reach different values
when the beams cross each other and superimpose in region
D, which corresponds to the propagation distance z = 4. To
define the NOR and NAND operation from the three beams,
we consider that two of them behave as information bits and
the remaining one programs the setup to be NOR or NAND
gate [1], as shown in Figs. 3(e) and 3(f). In the regions A, B,
and C, the presence (absence) of a beam corresponds to a logic
one (zero). In the region D we impose a threshold [red line
in Fig. 3(d)]. A maximum intensity in the region D (at z = 4)
below (above) the threshold corresponds to a logic one (zero).
With this simple setup the NOR and NAND operations can be
performed.

To get further insight into the emergence of GF in optical
system, we next focus with more detail on the sign of the
coupling constant C. In this regard, in the case of thousands of
coupled lasers in Ref. [20] it has been suggested that negative
coupling constants are more appropriate than the positive ones
to observe GF signatures. This is because negatively coupled
spin lattices have been shown to be prone to large degeneracy,
independently of the Hamiltonian symmetry. On the other
hand, by using the Kuramoto model, it has been argued that GF
signatures emerge under the simultaneous presence of positive
and negative coupling constants in the system [44]. In the case
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of coupled waveguide arrays, the coupling constant between
NN guides in Eq. (1) is by definition positive. However,
as discussed before, depending on the value of k, we can
effectively change the sign in front of the couplings. For
instance, we have shown that at the Dirac points there are
one positive and four negative couplings in each unit cell
[see Fig. 1(d)]. So, the fact that most of the couplings, but
not all, are negative agrees well with GF emergence observed
here and in other frustrated systems [20,44].

To verify whether the proportion between positive and
negative couplings is a determining factor in the emergence of
GF, we revisit a case where the number of positive couplings
is higher than negatives in PWA systems. This can be easily
achieved by configuring the array system in one of the M points
of the band structure [see Fig. 1(c)]. For that purpose we impose
k = (0, 2π/3) into Eq. (2) and assume the functions φN to be
real. Here we also distinguish the fields of each sublattice, as
it was done for Eqs. (3) and (4). So, we obtain that

βal,m+1 = C(bl−1,m+1 + bl+1,m+1 − bl,m) + Ua3
l,m+1 (7)

and

β bl,m = C(al−1,m + al+1,m − al,m+1) + U b3
l,m. (8)

Interestingly, Eqs. (7) and (8) do not contain any imaginary
term. So, in contrast to Eqs. (3) and (4), in the present case
no additional constraints are needed to obtain real solutions.
Moreover, in this system configuration, there are one negative
and four positive couplings in each unit cell. In fact, the
configuration is similar to that shown in Fig. 1(d), but with
signs of the couplings flipped.

In Fig. 4, we compare the behavior of the quasienergy
β along a honeycomb PWA for collective excitations at the
Dirac (red dashed line) and M (black continuous line) points.
In both cases a rectangular cross-section shape of the array,
similar to that shown in Fig. 2, is considered and the parameter
values β = U = 1 are imposed. The initial excitation in the
M point has been calculated using the imaginary propagation
method, as described in Ref. [42]. In this case, the initial
constant behavior of β shows that the initial solution is
stationary. Eventually (z > 6 in Fig. 4) it is distorted by
instabilities [42]. The fact that an initial stationary solution
can be computed means that Eq. (7) is fully satisfied, so no
GF signatures can be observed here. On the other hand, at the
Dirac point, we consider as an initial condition the solution
given in Eq. (6). Notice that the computed β value at z = 0,
in Fig. 4, is slightly different from the value of unity. This

FIG. 4. Evolution of the quasienergy β of extensive fields at the
Dirac point (dashed line) and the M point (solid line) of the Band
structure. β = 1 at z = 0. β and z are dimensionless.

slight discrepancy follows from the fact that the solution in
Eq. (6) does not satisfy the edge conditions of finite arrays.
As expected, in Fig. 4, we observe that the initial solution
at the Dirac point never reaches a stationary state due to the
inherent GF of the configuration. These results further confirm
that the sign distribution of the couplings is important for the
GF emergence in honeycomb PWA systems and agree with
behavior observed in magnetically frustrated systems.

III. SUMMARY AND CONCLUSIONS

In summary, we have shown that classical light propagating
in honeycomb photonic waveguide arrays with finite cross sec-
tion exhibits signatures of geometrical frustration. Although
the physics as well as dimensions and energies of frustrated
spin lattices are different from those of photonic waveguides
arrays, we have observed that both systems can exhibit similar
behavior when geometrical frustration is present. This opens
new avenues for studying frustration in lattice geometries be-
yond what is achievable with magnetically frustrated systems.
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